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Abstract

Let G be a connected graph. If σ(v) denotes the arithmetic mean of the distances from v to
all other vertices of G, then the proximity, π(G), of G is defined as the smallest value of σ(v)
over all vertices v of G. We give upper bounds for the proximity of simple triangulations and
quadrangulations of given order and connectivity. We also construct simple triangulations and
quadrangulations of given order and connectivity that match the upper bounds asymptotically and
are likely optimal.
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1. Introduction

Let G be a connected graph with vertex set V (G), and let v be a vertex of G. The total distance
σ(v) and the average distance σ(v) of v is defined as the sum and the average, respectively, of the
distances from v to all other vertices. Bounds on σ(v) were obtained, for example, in [6] [15] and
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[23]. Of particular interest are the minimum value and the maximum value over all v ∈ V (G) of
σ(v) in a graph G, usually referred to as the proximity π(G) and the remoteness ρ(G), respectively,
of G. A closely related graph invariant is the minimum status of G, defined as the minimum value
over all v ∈ V (G) of σ(v).

It was shown by Zelinka [23] and, independently, by Aouchiche and Hansen [5] that the prox-
imity and remoteness of a connected graph of order n are at most approximately n

4
and n

2
, respec-

tively. For graphs of given minimum degree δ these bounds were improved in [12] by a factor of
about 3

δ+1
. The difference between remoteness and proximity in a connected graph of order n was

shown to be at most about n
4

(see [5]), and this was improved by a factor of about 3
δ+1

in [13]. For
more recent results on proximity and remoteness see, for example, [19] and [22].

This paper is concerned with bounds on the proximity of triangulations, i.e., maximal planar
graphs, and quadrangulations, i.e., maximal bipartite planar graphs. Several bounds on distance
measures in maximal planar graphs are known, for example for radius [1], average eccentricity [2],
Wiener index [10, 11, 16, 17]. (The Wiener index of a graph is the sum of the distances between
all unordered pairs of graphs. The radius is the smallest of the eccentricities of the vertices of
a graph, where the eccentricity of a vertex v is the distance to a vertex farthest from v.) Sharp
upper bounds on the remoteness of maximum planar graphs were given in [10] and [11], in the
latter one sharp upper bounds on the remoteness of maximum bipartite planar graphs as well.
However, no bound on the proximity of maximum planar graphs appears to be known. The aim
of this paper is to fill this gap and give upper bounds on proximity of simple triangulations and
quadrangulations of given order and connectivity. Our matching constructions make these bounds
tight within an additive constant. We conjecture that these constructions are of maximum proximity
in their respective classes. It is a tedious routine calculation to determine the minimum status (i.e.
the conjectured maximum proximity in the respective class) in the constructions, we just provide
the results in formulae (1), (2), (3), (4), and (5). Remarkably, all of the structures we found
to maximize the proximity are identical to the structures we conjecture to maximize the Wiener
Index in [11]. Similarly, the structures match the graphs which maximize the remoteness, outside
of 5-connected triangulations on 5k + 3 vertices.

The notation we use in this paper is as follows. If G is a graph, then we denote its vertex set
by V (G), and by n(G) we mean the order, defined as |V (G)|. The eccentricity e(v) of a vertex
v is the distance to a vertex farthest from v, i.e., e(v) = maxu∈V (G) dG(v, u). The largest and the
smallest of the eccentricities of the vertices ofG are the diameter and the radius ofG, respectively.
The neighbourhood of a vertex v of G is the set of vertices adjacent to v, it is denoted by NG(v),
and the cardinality |NG(v)| is the degree of v, which we denote by degG(v). If i is an integer with
0 ≤ i ≤ e(v), then Ni(v) denotes the set of all vertices at distance exactly i from v, and we write
ni(v) for |Ni(v)|. If there is no danger of confusion, we often omit the subscript G or the argument
G or v. If A,B ⊆ V (G), then m(A,B) denotes the number of edges that join a vertex in A to a
vertex in B, and G[A] denotes the subgraph of G induced by A.

We say that a graph G is k-connected, k ∈ N, if deleting fewer than k vertices from G always
leaves a connected graph.
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2. Upper bounds on proximity of triangulations and quadrangulations

In this section we present bounds on the proximity of k-connected triangulations for k ∈
{3, 4, 5} and k-connected quadrangulations for k ∈ {2, 3}. All bounds are sharp apart from an
additive constant.

Our strategy is as follows: If G is a k-connected triangulation or quadrangulation, then we
choose a central vertex v and derive certain properties of the sequence n0(v), n1(v), n2(v), . . . , nr(v).
These properties will be used to obtain a bound on the average distance of v, which in turn is a
bound on the proximity of G. The following lemmata were proved in [1] (see the proofs of Theo-
rems 2.7, 2.9 and 2.10 there).

Lemma 2.1. [1] Let G be a 3-connected plane graph of radius r with maximal face length `. If v
is a central vertex of G, then
(i) ni(v) ≥ 3 for i ∈ {1, 2, . . . , b `

2
c} ∪ {r − b `

2
c, r − b `

2
c+ 1, . . . , r − 1},

(ii) ni(v) ≥ 4 for i ∈ {b `
2
c+ 1, b `

2
c+ 2, . . . , `} ∪ {r − `, r − `+ 1, . . . , r − b `

2
c − 1},

(iii) ni(v) ≥ 6 for i ∈ {`+ 1, `+ 2, . . . , r − `− 1}.

Lemma 2.2. [1] Let G be a 4-connected plane graph of radius r with maximal face length `. If v
is a central vertex of G, then
(i) ni(v) ≥ 4 for i ∈ {1, 2, . . . , `} ∪ {r − `, r − `+ 1, . . . , r − 1},
(ii) ni(v) ≥ 6 for i ∈ {`+ 1, `+ 2, . . . , b3`

2
c} ∪ {r − b3`

2
c, r − b3`

2
c+ 1, . . . , r − `− 1},

(iii) ni(v) ≥ 8 for i ∈ {b3`
2
c+ 1, b3`

2
c+ 2, . . . , r − b3`

2
c − 1}.

Lemma 2.3. [1] Let G be a 5-connected plane graph of radius r with maximal face length `. If v
is a central vertex of G, then
(i) ni(v) ≥ 5 for i ∈ {1, 2, . . . , `} ∪ {r − `, r − `+ 1, . . . , r − 1},
(ii) ni(v) ≥ 6 for i ∈ {`+ 1, `+ 2, . . . , b3`

2
c} ∪ {r − b3`

2
c, r − b3`

2
c+ 1, . . . , r − `− 1},

(iii) ni(v) ≥ 8 for i ∈ {b3`
2
c+ 1, b3`

2
c+ 2, . . . , 2`} ∪ {r − 2`, r − 2`+ 1, . . . , r − b3`

2
c − 1}.

(iii) ni(v) ≥ 10 for i ∈ {2`+ 1, 2`+ 2, . . . , r − 2`− 1}.

We also need a corresponding result for 2-connected quadrangulations. The following two
lemmata follow the approach in [1]. Given a fixed vertex v, we say that a vertex in Ni(v) is active
if it has a neighbour in Ni+1(v). The set of active vertices in Ni(v) is denoted by Ai(v).

Lemma 2.4. Let G be a quadrangulation, v a vertex of G and i ∈ N with 1 ≤ i ≤ e(v) − 1. For
every active vertex w ∈ Ni(v) there exists another active vertex w′ ∈ Ni(v) such that w and w′

share a face of G.

Proof. Let u be an arbitrary vertex in Ai. Since u is active, it has neighbours in Ni−1 and in Ni+1.
Number the neighbours of u as x0, x1, . . . , xt such that the edges uxj appear in clockwise order,
x0 is in Ni−1 and, say, xk is in Ni+1. Denote the face containing u, xj , xj+1 and a fourth vertex by
fj for j = 0, 1, . . . , t, where subscripts are taken modulo t + 1, and let yj be the vertex on fj not
equal to u, xj and xj+1.

Consider the (x0, xk)-walkW : x0, y0, x1, y1, . . . , xk−1, yk−1xk. SinceW joins a vertex inNi−1
to a vertex in Ni+1, it contains a vertex in Ni. Since G is bipartite, none of the neighbours of u is in
Ni, so there exists a vertex yj which is in Ni. We may assume that yj is the last such vertex. Then
yj has a neighbour in Ni+1 and is thus active. Since u and yj share a face, Lemma 2.4 follows.
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Lemma 2.5. Let G be a quadrangulation of order n and radius r. If v is a central vertex of G,
then
(i) ni ≥ 2 for i ∈ {1, 2, r − 2, r − 1}, and
(ii) ni ≥ 4 for i ∈ {3, 4, . . . , r − 3}.

Proof. Let v be a central vertex of the quadrangulation G and let i ∈ {1, 2, . . . , r − 1}, where r is
the radius of G.
(i) Clearly, Ni contains an active vertex. It follows from Lemma 2.4 that every active vertex in Ni

shares a face with some other active vertex in Ni. Hence Ni contains at least two active vertices,
and so (i) follows.
(ii) Suppose to the contrary that (ii) does not hold. Then there exists i ∈ {3, 4, . . . , r−3} such that
ni ≤ 3.

Denote the set of active vertices in Ni by Ai. Since by Lemma 2.4 every vertex in Ai shares
a face with some other vertex in Ai, and since |Ai| ≤ |Ni| = 3, there exist a vertex zi ∈ Ai that
shares a face in G with every other vertices of Ai. Since all faces of G have length 4, it follows
that dG(zi, yi) ≤ 2 for all yi ∈ Ai. Let z3 ∈ N3 be a vertex on a shortest (v, zi)-path in G, so that
dG(z3, zi) = i− 3.

We now bound d(z3, x) for all x ∈ V (G). First let x ∈
⋃r−4
j=0Ni. Then dG(z3, x) ≤ dG(z3, v)+

dG(v, x) ≤ 3 + (r − 4) = r − 1. Now let x ∈
⋃r
j=r−3Ni. Let xi ∈ Ni be a vertex on a shortest

(v, x)-path inG. Then xi ∈ Ai, and so dG(zi, xi) ≤ 2. Hence dG(z3, x) ≤ dG(z3, zi)+dG(zi, xi)+
dG(xi, x) ≤ (i− 3) + 2 + (r − i) = r − 1. So dG(z3, x) ≤ r − 1 in all cases, a contradiction to r
being the radius of G. Hence our assumption ni ≤ 3 is false, and (ii) follows.

For the proofs below we define the functionF which assigns to a finite sequenceX = (x0, x1, . . . , xk)
of integers the value F (X) =

∑k
i=0 ixi. So if v is a vertex of eccentricity r in a connected graph

G, then σ(v) =
∑r

i=0 ini(v) = F (n0, n1, . . . , nr).

Theorem 2.1. Let G be a planar graph of order n and v a central vertex of G.
(a) If G is a triangulation, then

π(G) ≤ n+ 19

12
+

25

3(n− 1)
.

(b) If G is a 4-connected triangulation, then

π(G) ≤ n+ 35

16
+

91

4(n− 1)
.

(c) If G is a 5-connected triangulation, then

π(G) ≤ n+ 57

20
+

393

10(n− 1)
.

(d) If G is a quadrangulation, then

π(G) ≤ n+ 11

8
+

9

2(n− 1)
.
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(e) If G is a 3-connected quadrangulation, then

π(G) ≤ n+ 25

12
+

169

12(n− 1)
.

Proof. We only prove part (a) of the theorem; the proofs of (b)-(e) are analogous. Let G be a
simple triangulation, let r be its radius and let v be a central vertex of G. It suffices to prove that

σ(v) ≤ 1

12
(n2 + 18n+ 81).

Let ni := ni(v) for i = 0, 1, . . . , r. Then σ(v) =
∑r

i=1 ini = F (n0, n1, . . . , nr). By Lemma 2.1,
we have n1, nr−1 ≥ 3, n2, n3, nr−3, nr−2 ≥ 4, and ni ≥ 6 for i = 4, 5, . . . , r − 4. Moreover, we
have n0 = 1, nr ≥ 1, and

∑r
i=0 ni = n.

Now assume that for given n the integers r′, n′0, n
′
1 . . . , n

′
r′ are chosen to maximiseF (n′0, n

′
1, . . . , n

′
r′)

subject to the above conditions (with ni and r replaced by n′i and r′, respectively). Then clearly
n′0 = 1, n′1 = 3, n′2 = n′3 = 4, n′i = 6 for i = 4, 5, . . . , r′ − 4, and n′r′−3 = n′r′−2 = 4, n′r′−1 = 3.

Consider the sequenceX∗ = (n′0, n
′
1, . . . , n

′
r′−1, 1). The sum of the entries ofX∗ is n−nr′ +1.

Simple calculations show that r′ = 1
6
(n− n′r′ + 19) and F (X∗) = 1

2
r′(n− n′r′ + 1). Hence

F (n′0, n
′
1, . . . , n

′
r′) = F (X∗) + r′(n′r′ − 1) =

1

2
r′(n+ n′r′ − 1).

Substituting r′ = 1
6
(n− n′r′ +19) yields, after simplification, F (n′0, n

′
1, . . . , n

′
r′) =

1
12
(n2 +18n−

(n′r′)
2 + 20n′r′ − 19). Since the function −x2 + 20x attains its maximum 100 for x = 10, we have

−(n′r′)2 + 20n′r′ ≤ 100, and so we get F (n′0, n
′
1, . . . , n

′
r′) ≤ 1

12
(n2 + 18n+ 81) and thus

σ(v) = F (n0, n1, . . . , nr) ≤ F (n′0, n
′
1, . . . , n

′
r′) ≤

1

12
(n2 + 18n+ 81),

as desired.

The bounds in Theorem 2.1 appear not to be sharp. The graphs constructed in the following
section show that the bounds are sharp up to an additive constant.

3. Computational Results

This section includes figures of the extremal structures which minimize the status given certain
connectivity. Additionally, formulae and tables summarize these minimized values. This paper
heavily utilized a software package called Plantri, we are grateful for their hard work and dedica-
tion to the exploration of planar graphs. For each category of problem (triangulations, 4-connected
triangulations, 5-connected triangulations, quadrangulations and 3-connected quadrangulations)
there is a function (see formulae (1), (2), (3), (4), and (5)), which states the minimum status of
the structures, along with a table, which summarizes the largest minimum status found for a given
order in that category and a “Count”, summarizing how many graphs attain the optimal value. (Re-
call that the minimum status is defined by (n − 1)π(G).) We use the minimum status rather than
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the proximity in the tables to remain in the domain of integers. If any Table entry displays a dash,
there exists no graphs in that category on the given number of vertices. We searched the same
number of isomorphism classes as [7], [8], [9], [18], [21], verifying that our values are in fact opti-
mal. In each figure below, red edges represent the repeating pattern and the black node marks one
of the vertices which minimizes the status in that graph and likely maximizes the proximity within
the category defined by order and connectivity. Due to fact that few congruence classes of a large
modulus fall into the range, where we can do exhaustive calculations, finding a repeating pattern
was difficult by brute force calculations. Once a pattern was established, extensive sampling was
conducted in order to test if a better structure could be found, but no such structure ever arose. We
conjecture that the bounds presented in this section are optimal.

Figure 1. A triangulation Tn on n = 6k vertices which is conjectured to maximize the proximity among triangulations
of this order.

Figure 2. A triangulation Tn on n = 6k + 1 vertices which is conjectured to maximize the proximity among triangu-
lations of this order.

Figure 3. A triangulation Tn on n = 6k + 2 vertices which is conjectured to maximize the proximity among triangu-
lations of this order.
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Figure 4. A triangulation Tn on n = 6k + 3 vertices which is conjectured to maximize the proximity among triangu-
lations of this order.

Figure 5. A triangulation Tn on n = 6k + 4 vertices which is conjectured to maximize the proximity among triangu-
lations of this order.

Figure 6. A triangulation Tn on n = 6k + 5 vertices which is conjectured to maximize the proximity among triangu-
lations of this order.
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Order Min Status Count
4 3 1
5 4 1
6 6 1
7 7 2
8 9 2
9 11 1

10 13 1
11 14 44
12 18 1
13 19 2
14 22 1
15 24 2
16 27 2
17 30 1
18 33 3

Table 1. A summary of the largest minimum status among all triangulations.

π(Tn) =



n+5
12

+ 5
12(n−1) if n = 6k

n+5
12

if n = 6k + 1
n+5
12

+ 5
12(n−1) if n = 6k + 2

n+5
12

+ 2
3(n−1) if n = 6k + 3

n+5
12

+ 3
4(n−1) if n = 6k + 4

n+5
12

+ 2
3(n−1) if n = 6k + 5

(1)

Figure 7. A 4-connected triangulation T 4
n on n = 8k + 2 vertices which is conjectured to maximize the proximity

among triangulations of this order and connectivity.
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Figure 8. A 4-connected triangulation T 4
n on n = 8k + 3 vertices which is conjectured to maximize the proximity

among triangulations of this order and connectivity.

Figure 9. A 4-connected triangulation T 4
n on n = 8k + 4 vertices which is conjectured to maximize the proximity

among triangulations of this order and connectivity.

Figure 10. A 4-connected triangulation T 4
n on n = 8k + 5 vertices which is conjectured to maximize the proximity

among triangulations of this order and connectivity.

Figure 11. A 4-connected triangulation T 4
n on n = 8k + 6 vertices which is conjectured to maximize the proximity

among triangulations of this order and connectivity.
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Figure 12. A 4-connected triangulation T 4
n on n = 8k + 7 vertices which is conjectured to maximize the proximity

among triangulations of this order and connectivity.

Figure 13. A 4-connected triangulation T 4
n on n = 8k vertices which is conjectured to maximize the proximity among

triangulations of this order and connectivity.

Figure 14. A 4-connected triangulation T 4
n on n = 8k + 1 vertices which is conjectured to maximize the proximity

among triangulations of this order and connectivity.
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Order Min Status Count
6 6 1
7 7 1
8 9 1
9 11 1

10 13 1
11 14 10
12 18 1
13 19 1
14 21 13
15 24 1
16 27 1
17 29 5
18 32 2
19 34 28
20 37 13
21 40 6
22 44 5

Table 2. A summary of the largest minimum status among all 4-connected triangulations.

π(T 4
n) =



n+9
16

+ 21
16(n−1) if n = 8k + 2

n+9
16

+ 3
2(n−1) if n = 8k + 3

n+9
16

+ 25
16(n−1) if n = 8k + 4

n+9
16

+ 3
2(n−1) if n = 8k + 5

n+9
16

+ 21
16(n−1) if n = 8k + 6

n+9
16

+ 1
n−1 if n = 8k + 7

n+9
16

+ 25
16(n−1) if n = 8k

n+9
16

+ 1
n−1 if n = 8k + 1

(2)
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Figure 15. A 5-connected triangulation T 5
n on n = 10k + 7 vertices which is conjectured to maximize the proximity

among triangulations of this order and connectivity.

Figure 16. A 5-connected triangulation T 5
n on n = 10k + 8 vertices which is conjectured to maximize the proximity

among triangulations of this order and connectivity. Here, the orange pattern is to be repeated twice rather than once.

Figure 17. A 5-connected triangulation T 5
n on n = 10k + 9 vertices which is conjectured to maximize the proximity

among triangulations of this order and connectivity.
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Figure 18. A 5-connected triangulation T 5
n on n = 10k vertices which is conjectured to maximize the proximity

among triangulations of this order and connectivity.

Figure 19. A 5-connected triangulation T 5
n on n = 10k + 1 vertices which is conjectured to maximize the proximity

among triangulations of this order and connectivity.

Figure 20. A 5-connected triangulation T 5
n on n = 10k + 2 vertices which is conjectured to maximize the proximity

among triangulations of this order and connectivity.
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Figure 21. A 5-connected triangulation T 5
n on n = 10k + 3 vertices which is conjectured to maximize the proximity

among triangulations of this order and connectivity.

Figure 22. A 5-connected triangulation T 5
n on n = 10k + 4 vertices which is conjectured to maximize the proximity

among triangulations of this order and connectivity.

Figure 23. A 5-connected triangulation T 5
n on n = 10k + 5 vertices which is conjectured to maximize the proximity

among triangulations of this order and connectivity.
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Figure 24. A 5-connected triangulation T 5
n on n = 10k + 6 vertices which is conjectured to maximize the proximity

among triangulations of this order and connectivity.

Order Min Status Count
12 18 1
13 — 0
14 21 1
15 24 1
16 27 1
17 29 1
18 32 1
19 34 4
20 37 6
21 40 3
22 44 2
23 46 5
24 49 19
25 52 18
26 56 3
27 60 3
28 63 3
29 66 2
30 69 59
31 73 2
32 80 1

Table 3. A summary of the largest minimum status among all 5-connected triangulations.
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π(T 5
n) =



n+13
20

if n = 10k + 7
n+13
20
− 7

20(n−1) if n = 10k + 8
n+13
20
− 4

5(n−1) if n = 10k + 9
n+13
20
− 7

20(n−1) if n = 10k
n+13
20
− 1

n−1 if n = 10k + 1
n+13
20
− 1

4(n−1) if n = 10k + 2
n+13
20
− 8

5(n−1) if n = 10k + 3
n+13
20
− 11

20(n−1) if n = 10k + 4
n+13
20
− 3

5(n−1) if n = 10k + 5
n+13
20
− 3

4(n−1) if n = 10k + 6

(3)

Figure 25. A quadrangulation Qn on n = 4k vertices which is conjectured to maximize the proximity among quad-
rangulations of this order.

Figure 26. A quadrangulation Qn on n = 4k + 1 vertices which is conjectured to maximize the proximity among
quadrangulations of this order.

π(Qn) =


n+1
8

+ 17
8(n−1) if n = 4k

n+1
8

+ 2
n−1 if n = 4k + 1

n+1
8

+ 21
8(n−1) if n = 4k + 2

n+1
8

+ 2
n−1 if n = 4k + 3

(4)
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Figure 27. A quadrangulation Qn on n = 4k + 2 vertices which is conjectured to maximize the proximity among
quadrangulations of this order.

Figure 28. A quadrangulation Qn on n = 4k + 3 vertices which is conjectured to maximize the proximity among
quadrangulations of this order.

Order Min Status Count
4 4 1
5 5 1
6 7 1
7 8 2
8 12 1
9 13 1

10 16 1
11 18 1
12 20 19
13 23 1
14 28 1
15 30 1
16 34 2
17 38 1
18 43 1
19 47 1
20 52 2

Table 4. A summary of the largest minimum status among all quadrangulations.
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Figure 29. A 3-connected quadrangulation Q3
n on n = 6k+2 vertices which is conjectured to maximize the proximity

among quadrangulations of this order and connectivity.

Figure 30. A 3-connected quadrangulation Q3
n on n = 6k+3 vertices which is conjectured to maximize the proximity

among quadrangulations of this order and connectivity.

Figure 31. A 3-connected quadrangulation Q3
n on n = 6k+4 vertices which is conjectured to maximize the proximity

among quadrangulations of this order and connectivity.

Figure 32. A 3-connected quadrangulation Q3
n on n = 6k+5 vertices which is conjectured to maximize the proximity

among quadrangulations of this order and connectivity.
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Figure 33. A 3-connected quadrangulation Q3
n on n = 6k vertices which is conjectured to maximize the proximity.

Figure 34. A 3-connected quadrangulation Q3
n on n = 6k+1 vertices which is conjectured to maximize the proximity

among quadrangulations of this order and connectivity.

π(Q3
n) =



n+9
12
− 23

12(n−1) if n = 6k + 2
n+9
12
− 4

n−1 if n = 6k + 3
n+9
12
− 13

4(n−1) if n = 6k + 4
n+9
12
− 8

3(n−1) if n = 6k + 5
n+9
12
− 13

4(n−1) if n = 6k
n+9
12
− 3

n−1 if n = 6k + 1

(5)
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Order Min Status Count
8 12 1
9 — 0

10 15 1
11 18 1
12 20 2
13 22 1
14 28 1
15 29 1
16 32 4
17 35 1
18 39 1
19 41 3
20 44 23
21 47 7
22 55 1
23 57 1
24 60 16
25 65 1
26 71 1
27 74 3
28 80 2

Table 5. A summary of the largest minimum status among all 3-connected quadrangulations.
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