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Abstract

In 2011, Beeler and Hoilman generalized the game of peg solitaire to arbitrary connected graphs.
Since then peg solitaire has been considered on quite a few classes of graphs. Beeler and Gray
introduced the natural idea of adding edges to make an unsolvable graph solvable. Recently, the
graph invariant ms(G), which is the minimal number of additional edges needed to make G solv-
able, has been introduced and investigated on banana trees by the authors. In this article, we de-
termine ms(G) for several families of unsolvable graphs. Furthermore, we provide some general
results for this number of Hamiltonian graphs and graphs obtained via binary graph operations.
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1. Introduction

In [3], Beeler and Hoilman introduced the game of peg solitaire on graphs as a generalization
of the classical peg solitaire game:

Given a connected, undirected graph G = (V,E), we can put pegs in the vertices of G. Given
three vertices u, v, w with pegs in u and v and a hole in w such that uv, vw ∈ E, we can jump with
the peg from u over v into w, removing the peg in v (see Figure 1). This jump will be denoted as
u · ~v · w.
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u v w u v w u v w

Figure 1. A jump in peg solitaire.

In general, we begin with a starting state S ⊂ V of vertices that are empty (i.e., without pegs).
A terminal state T ⊂ V is a set of vertices that have pegs at the end of the game such that no more
jumps are possible. A terminal state T is associated to a starting state S, if T can be obtained from
S by a series of jumps. We will always assume that the starting state S consists of a single vertex.

The goal of the original game is to remove all pegs but one. This is not possible for all graphs.
Therefore, we use the following notation. A graph G is called

• solvable, if there is some v ∈ V such that the starting state S = {v} has an associated
terminal state consisting of a single vertex.

• freely solvable, if for all v ∈ V the starting state S = {v} has an associated terminal state
consisting of a single vertex.

• k-solvable, if there is some v ∈ V such that the starting state S = {v} has an associated
terminal state consisting of k vertices.

• strictly k-solvable, if G is k-solvable but not `-solvable for any ` < k. In that case G has
solitaire number Ps(G) = k.

Peg solitaire has been considered for quite a few classes of graphs, including paths, complete
graphs, stars, double stars and caterpillars (for more results and variants see [7, 2, 3, 4, 5, 6, 8, 9,
11]).

In 2016 [1], Beeler and Gray considered the natural question of determining the minimum
number of edges necessary to guarantee the solvability of a connected graph. Furthermore, they
posed the question of how much the addition of edges can influence the solvability of a graph.
In [8], the authors defined the smallest number ms(G) of edges that have to be added to a graph
G to make it solvable and provided an example showing that the solvability might be improved
arbitrarily good with the addition of just one edge. Since many unsolvable graphs exist, it seems
natural trying to compute ms(G) for these graphs. We do this for several graph classes in Section
2 and provide general results in Section 3. First, we start with two rather obvious, but important
facts.

Every complete graph is solvable except for K1, which cannot have a starting state and an
associated terminal state both of size one. Therefore, ms(G) exists for every graph G 6= K1

(and thus we exclude the case G = K1 whenever considering ms(G)). Furthermore, we have the
following relationship between ms(G) and Ps(G).

Proposition 1.1. For every connected graph G = (V,E), we have ms(G) ≤ Ps(G)− 1.

Proof. The cases |V (G)| < 3 and Ps(G) = 1 are trivial, hence we assume |V | ≥ 3 and Ps(G) ≥ 2.
Let T = {t1, t2, . . . , tPs(G)} be a terminal state of G with minimal number of pegs. We find some
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u ∈ V \ T with ut1 ∈ E or ut2 ∈ E, w.l.o.g. assume ut1 ∈ E. After adding the edge t1t2, we can
jump t2 ·~t1 ·u. Next we add ut3 (unless it does already exist) and jump t3 ·~u · t1. Continuing in this
alternating manner (adding t4t1, t5u and so on) yields a terminal state with one peg after adding at
most Ps(G)− 1 edges.

2. Graph classes

In this section we determine ms(G) for some graph classes. We start with trivial results where
ms(G) is either 0 or 1. These follow from known results on Ps(G) for the respective graphs
together with Proposition 1.1.

Proposition 2.1. Let Kn be the complete graph on n vertices, Km,n be the complete bipartite
graph on m + n vertices, Pn the path on n vertices, Cn the cycle on n vertices and W (B) the
windwill with B blades. Table 1 gives ms(G) for these graphs.

G Kn Km,n P2n P2n+1 C2n C2n+1 W (B)
Ps(G) 1 1 1 2 1 2 1
ms(G) 0 0 0 1 0 1 0

Table 1. ms(G) for some graph classes.

To determine ms(G) for windmills with pendants and for stars, we define a more general ver-
sion of generalized windmills. Let P,B ∈ Z≥0. A general windmill W ∗(P,B) with B blade
vertices and P pendant vertices is a graph G with a vertex u that is adjacent to exactly P pendant
vertices and B vertices that lie in blades, i.e., the induced subgraph defined by these vertices is a
disjoint union of paths. Figure 2 shows a windmill W ∗(3, 7).

Figure 2. A general windmill W ∗(3, 7).

Note that the parameters B and P do not fully characterize a general windmill, since, for
example, the windmill W ∗(1, 4) could have 4 vertices lying in one blade of length 4 or two times
two vertices lying in blades of length 2. This will not be a problem for us since we are only
interested in the total number of blade vertices. Note also that in [4] the windmill W (P,B) has 2B
blade vertices (which by definition induce a union of B paths of length 2), whereas W ∗(P,B) has
only B blade vertices (this is due to the fact that we do not make assumptions on the size of the
blades).
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We begin with a result about solvability of general windmills. We assume (P,B) /∈ {(1, 0), (2, 0)}
since otherwise we are dealing with the paths P2 resp. P3. To deal with general windmills and dou-
ble stars we need the following lemma.

Lemma 2.1 ([1, Corollary 2.2]). A graph G is not solvable if it contains a vertex which is adjacent
to at least 1

2
|V (G)| leaves.

Proposition 2.2. Let (P,B) /∈ {(1, 0), (2, 0)}. The general windmill W ∗(P,B) is solvable if and
only if B ≥ P .

Proof. If P > B, Lemma 2.1 immediately yields the unsolvability of W ∗(P,B) since every pen-
dant vertex is a leaf. If B ≥ P , we can use the same strategy as in [4] to solve the graph:

Start with a hole in a pendant vertex. Jump from another pendant vertex over the centre into the
hole. From now on, whenever the centre is empty, jump from two adjacent blade vertices into the
centre. If the centre is not empty, jump from a pendant vertex over the centre into a blade vertex
(in such a way that adjacent blade vertices are filled with pegs). Iterating this process yields the
solvability.

Remark 2.1. Using the above strategy, we can also show that Ps(W ∗(P,B)) = P − B + 1 if
P > B.

This gives the following result about ms(G) for general windmills.

Proposition 2.3. Let (P,B) /∈ {(1, 0), (2, 0)}. We have

ms(W ∗(P,B)) = max

{⌈
P −B

4

⌉
, 0

}
. (1)

Proof. Note that if we add any non-existent edge to a graph W ∗(P,B), there are four possibilities:

1. We add an edge between two pendant vertices. This results in a graph W ∗(P − 2, B + 2).
2. We add an edge between a pendant vertex and a blade vertex. This yields a graph W ∗(P −

1, B + 1).
3. We add an edge between two blade vertices lying in disjoint blades. This gives us a graph
W ∗(P,B).

4. We add an edge between two blade vertices lying in the same blade. The resulting graph will
not be a general windmill any more but has the same number of leaves.

Due to Lemma 2.1, we need to add edges such that the number of leaves gets reduced. This means
that the fourth option will never increase the solvability. Hence, we only need to consider the
first three types of edges. Therefore, adding an edge will always yield another general windmill.
Then, ms(W ∗(P,B)) is the least number of edges that result in a graph W ∗(P ′, B′) with B′ ≥ P ′.
This implies that the best option is to join two pendant vertices with each edge added. Every such
edge lowers Ps(W ∗(P,B)) by 4 (except for potentially the last edge). Thus, ms(W ∗(P,B)) is the
smallest k such that P −B + 1− 4k ≤ 1, i.e., ms(W ∗(P,B)) =

⌈
P−B
4

⌉
.

Since K1,n is a general windmill W ∗(n, 0) and W (P,B) is a general windmill W ∗(P, 2B), we
get the following result.
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Corollary 2.1. • LetK1,n be the star graph with n leaves. If n ≥ 3, we have ms(K1,n) =
⌈
n
4

⌉
.

• We have ms(W (P,B)) = max
{⌈

P−2B
4

⌉
, 0
}

.

We now turn our attention to double stars. The double star DS(L,R) is the union of the stars
K1,L and K1,R together with an edge connecting the centres of the two stars. The following result
on their solvability is known.

Proposition 2.4 ([4, Theorem 3.1]). Given L,R ∈ N with R ≥ L ≥ 1, the double star DS(L,R)
is solvable if and only if R ≤ L+ 1.

Proposition 2.5. For every L,R ∈ N with R ≥ L ≥ 1 we have

ms(DS(L,R)) =

⌈
R− L− 1

4

⌉
.

Proof. AssumeR ≥ L+2 (since otherwiseDS(L,R) is solvable and we get ms(DS(L,R)) = 0).
First we show that at least

⌈
R−L−1

4

⌉
edges need to be added. The idea is similar to the proof of

Proposition 2.3. The right centre of the graph DS(L,R) has R adjacent leaves. Since R ≥ L + 2
holds, we have R ≥ 1

2
(R+ L+ 2) = 1

2
|V |, hence Lemma 2.1 yields that DS(L,R) is unsolvable.

Moreover, we have to reduce the number of leaves adjacent to the right centre. Adding at most⌈
R−L−1

4

⌉
− 1 edges results in a graph such that the right centre has at least R + 2 − 2

⌈
R−L−1

4

⌉
adjacent leaves. By considering the four possible cases R−L ≡ 0, 1, 2, 3 mod 4, we see that this
quantity is at least 1

2
(R+L+2) = 1

2
|V |. Hence the graph is still unsolvable, so ms(DS(L,R)) ≥⌈

R−L−1
4

⌉
.

To show that adding
⌈
R−L−1

4

⌉
edges suffices, we start with a hole in the left centre, denoted

by cL. Again, we distinguish four possible cases. If R − L ≡ 2, 3 mod 4, we start with solving
a subgraph DS(L,L) of DS(L,R). This leaves a subgraph K1,R−L+1 with a hole in a pendant
vertex (in cL, to be more specific). Then Corollary 2.1 implies

ms(DS(L,R)) ≤ ms(K1,R−L+1) =

⌈
R− L+ 1

4

⌉
=

⌈
R− L− 1

4

⌉
.

This idea does not work for R−L ≡ 0, 1 mod 4 (let d denote this remainder) since the last equa-
tion does not hold in those cases. We modify the proof slightly and use the fact ms(DS(1, 5)) =
ms(DS(1, 6)) = 1. In both cases we start with solving a copy ofDS(L−1, L−1), leaving pegs in
one left pendant vertex, say `1, in R−L+1 right pendant vertices, denoted by r1, r2, . . . , rR−L+1,
and in the right centre cR. We jump r1·~cR ·cL. Using the idea from Theorem 2.2 in [4] (see the proof
of Proposition 2.2), we can, after adding R−L−d

4
edges rR−L+1rR−L, rR−L−1rR−L−2, . . . , reduce the

(solvable) windmill subgraph, which is induced by the vertices cR and ri for i ∈ [2+d,R−L+1],
such that only pegs in r2+d, r3+d, rR−L+1, rR−L remain. The subgraph induced by `1, cL, cR and ri
for i ∈ [2, 3 + d] ∪ {R− L+ 1, R− L}, which contains the last remaining pegs and has a hole in
cR, is solvable.
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3. General results

Note that ms(G) ≤ ms(H) holds if H is a spanning subgraph of G. On the other hand, if
Ps(G) ≤ Ps(G′), but no relationship between G and G′ is known, we cannot conclude anything
about the relationship of ms(G) and ms(G′). For example, if Bn,k denotes the banana tree on
n stars, we have Ps(B2,k) = 2k − 2 and ms(B2,k) ≤ 2 (see [8]), but Ps(K1,k) = k − 1 and
ms(K1,k) =

⌈
k
4

⌉
.

Furthermore, it is not true that the edges which have to be added to make G solvable have
to connect vertices of a best possible terminal state. Therefore, in general, we have to start with
adding edges instead of solving the original graph first and adding edges later (again the banana
tree B2,k is a nice example for this phenomenon).

Now we turn to some general bounds for ms(G). Since every path is at least 2-solvable, the
following result is immediate (see [3, Corollary 2.5] for some connections between solvability and
the existence of a Hamiltonian cycle).

Proposition 3.1. If G has a Hamiltonian path after adding k edges, we have ms(G) ≤ k + 1.

This raises the question of how many edges have to be added to a graph to get a Hamiltonian
path. There are various criteria (found in many books and web sources) for a graph G which
guarantee that G has a Hamiltonian path. Together with Proposition 3.1 these may be used to give
bounds on ms(G) for a given graphG. We will only show a connection to the path partition number
of a graph (there are certainly many more). A path partition of a graph G is a set of paths such
that every vertex of G belongs to exactly one path; the minimum cardinality, denoted by πp(G), of
such a partition is called the path partition number of G [12].

Proposition 3.2. For every graph G = (V,E), we have

ms(G) ≤ πp(G).

Proof. Start with a minimal path partition P = {P (1), P (2), . . . , P (k)} of G. For each i =

1, 2, . . . , k, let P (i) = {p(i)1 , p
(i)
2 , . . . , p

(i)
ti } with p

(i)
j p

(i)
j+1 ∈ E for j = 1, 2, . . . , ti − 1. Adding

the edges p(i)ti p
(i+1)
1 for i = 1, 2, . . . , k− 1 yields a Hamiltonian path which is solvable after adding

at most one more edge.

To end the section, we will give some results about binary graph operations. Since the join
G+H , which is G ∪H together with additional edges connecting every pair of vertices g, h with
g ∈ V (G) and h ∈ V (H), of any two graphs G and H with |V (G)|, |V (H)| ≥ 2 is solvable [3,
Theorem 2.7], we have ms(G + H) = 0 in that case. The special case, where at least one of the
graphs is K1, can be dealt with in the following way. As usual G[W ] denotes the subgraph of G
induced by some set W ⊆ V (G).

Lemma 3.1. The vertex set of a non trivial connected graphG can be partitioned into V1, V2, . . . , V`
such that G[Vi] contains a spanning star on at least two vertices for every i ∈ {1, . . . , `}.

Proof. W.l.o.g. we may assume G to be a tree. Let u be a vertex of degree 1 and v be a neighbour
of u. Then G[{v} ∪ Nv], where Nv are the neighbours of v with degree 1, is a star. Iterating this
process on the components of G[V (G) \ ({v} ∪Nv)] yields the statement of the lemma.
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Lemma 3.2. LetG be a star, the union of two stars or the union of at least 3 non trivial stars. Then
G+K1 is solvable.

Proof. The special case G = 2K1 yields G +K1 = P3, which is solvable, hence from now on G
is not of this form.

Let w denote the vertex corresponding to K1 and V1, V2, . . . , V` be the vertex sets of the stars
from G such that Vi = {v1,i, v2,i, . . . , vsi,i} (si = |Vi| ≥ 2) and v1,i is adjacent to all the vertices in
Vi. Start with a hole in w.

As long as Vi and Vj (i 6= j) with each of them containing at least 3 pegs exist, we carry out a
double star purge on Vi ∪Vj ∪{w} (with centres w and v1,i or v1,j , depending on the size of Vi and
Vj) until there is a hole in w and at least one of Vi and Vj contains exactly two pegs (one of them
being in the star centre v1,i resp. v1,j). This results in a configuration, where we have a hole in w
and all Vi with i 6= j for some j ∈ {1, . . . , `} contain exactly two pegs.

If Vj contains exactly two pegs, we are done, since we find a solvable windmill subgraph.
Otherwise, we can easily reduce the number of pegs in Vj using w and induced cycles of length 3.
Again, we obtain a solvable windmill subgraph.

Proposition 3.3. Let G be a graph with k isolated vertices. Then G+K1 is solvable if and only if
k ≤

⌊
|V (G)|

2

⌋
.

Proof. The necessity is an immediate consequence of Lemma 2.1. Let us now consider a graph G
with k ≤

⌊
|V (G)|

2

⌋
and let u1, u2, . . . , uk denote the isolated vertices of G.

The vertex set (ignoring isolated vertices) of G may be partitioned using Lemma 3.1 into
V1, V2, . . . , V` such that Vi = {v1,i, v2,i, . . . , vsi,i} (si = |Vi| ≥ 2) and v1,i is adjacent to all the
vertices in Vi. Note that

k ≤
∑̀
i=1

si (2)

holds.
If si = 2 for every i ∈ {1, . . . , `}, G +K1 contains a solvable windmill (where w, the vertex

corresponding to K1 in G+K1, is the centre and every Vi forms a blade) because of (2).
Otherwise we can, starting with a hole in u1 and jumping u2 · ~w ·u1, remove pegs from the sets

Vi with si ≥ 3 and from leaves of G +K1 using double star purges on the subgraphs induced by
{uj, uj+1, . . . , uj+si−2}∪ {w}∪ (Vi \ {v2,i}) (pick the smallest j such that uj contains a peg) until
one of two configurations is reached.

• No Vi with more than two pegs exists. Again, we find some solvable windmill subgraph
(which is a subgraph of the graph induced by all vertices with pegs together with w).

• There is a hole in every ui and at least one Vi contains more than 2 pegs. This can be solved
by Lemma 3.2.

Combining this result and Lemma 2.1, we get the following proposition.
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Proposition 3.4. Let G be a graph with k isolated vertices. Then

ms(G+K1) = max

{⌈
2k − |V (G)|

4

⌉
, 0

}
.

For graphs G and H we denote the Cartesian product of G and H by G � H and use the
(common) notation (g, h) ∈ V (G � H) for the vertex induced by g ∈ V (G) and h ∈ V (H).
Beeler and Hoilman showed that G � H is solvable if G and H are solvable or if G is solvable
and H is distance 2-solvable (meaning it is 2-solvable and the terminal vertices are at distance
2) or if both are 2-solvable [3]. The authors of this paper proved that P2 � G is solvable for any
connected graph G and conjectured Ps(G � H) = 1 for any two non trivial connected graphs G
and H [10]. Hence, we suggest ms(G �H) = 0 in that case. This statement seems out of reach at
the moment. Since ms(G�H) can be a lot smaller than ms(G) and ms(H) (for example if both are
stars [10]), lower bounds seem difficult to achieve. Upper bounds are mostly trivial, hence we will
not continue exploring Cartesian products in this article (although the above mentioned conjecture
should definitely be investigated further).

If G ∪ H denotes the union of G and H , we have ms(G ∪ H) ≤ ms(G) + ms(H) + 2. To
verify this, start with solving G using ms(G) additional edges. Let w ∈ H be any vertex such that
H can be solved starting with a hole in w when adding ms(H) edges (and add these to G ∪ H).
Let v ∈ H be any neighbour of w. Connect the terminal vertex t of G with v by an additional edge
and jump v · ~t · u for some u ∈ G. Next, add an edge between u and w and jump u · ~w · v. Now
solve H .

Iterating this process gives the following result.

Proposition 3.5. Let G be a graph with connected components G1, G2, . . . , Gk. Then

ms(G) ≤ 2(k − 1) +
k∑

i=1

ms(Gi).

4. Open problems

Since the definition of ms(G) is new, there are some more questions that naturally arise. For
instance, ms(G) could be determined for other classes of graphs (for example caterpillars, banana
trees, or trees of diameter 4).

One might also define the number ms∗(G) to be the minimal number of edges that have to be
added to make a graph freely solvable (sinceKn is freely solvable, this number exists and is clearly
greater than or equal to ms(G)). It would be interesting to examine this number for certain graph
classes, get general results and see how this quantity relates to ms(G).

It would also be interesting to connect ms(G) to the edge-critical graphs defined in [1].
Moreover, adding edges may yield solvable graphs even if the original graphs are disconnected.

This gives the possibility to study peg solitaire on graphs for which it was previously not possible.
Obtaining more results on disconnected graphs than the ones in the previous section would be a
desirable goal.
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