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Abstract

Assume that G(V,E) is a graph with V and E as its vertex and edge sets, respectively.
We have G is simple, connected, and undirected. Given a function λ from a union of V
and E into a set of k-integers from 1 until k. We call the function λ as a totally irregular
total k-labeling if the set of weights of vertices and edges consists of different numbers. For
any u ∈ V , we have a weight wt(u) = λ(u) +

∑
uy∈E λ(uy). Also, it is defined a weight

wt(e) = λ(u) + λ(uv) + λ(v) for each e = uv ∈ E. A minimum k used in k-total labeling
λ is named as a total irregularity strength of G, symbolized by ts(G). We discuss results
on ts of some caterpillar graphs in this paper. The results are ts(Sp,2,2,q) =

⌈
p+q−1

2

⌉
for p, q

greater than or equal to 3, while ts(Sp,2,2,2,p) =
⌈
2p−1
2

⌉
, p ≥ 4.
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1. Introduction

Graph theory is one of branch of mathematics. In this field, many real life problems can
be solved, especially on optimization problem [8]. Given a graph G(V,E) which is assumed
as connected, simple, and undirected graph. A function that assigns a set of elements
(vertex/edge) of G into a set of integers is mentioned as labeling (Wallis [12]). The labeling
is said to be a total labeling if the domain is a union of vertex and edge sets.

A function f : V ∪ E → {1, 2, . . . , k} is named a vertex irregular total k-labeling if
wtf (u) 6= wtf (v) for each u 6= v ∈ V (G), where wt(u) = f(u) +

∑
uz∈E f(uz) [1]. A

minimum k in which there exists a vertex irregular total k-labeling of G is named as a
total vertex irregularity strength (tvs) of G. Indriati et al. [4] obtained tvs of generalized
helm. Recently, the tvs of comb product of two cycles and two stars has been found in [10].
Meanwhile, Nurdin et al. [11] proved tvs of tree T which does not have vertex of degree two
and has n pendant nodes, i.e.

tvs(T ) =

⌈
n+ 1

2

⌉
. (1)

Further, a total k-labeling g that assigns a union of V and E into {1, 2, . . . , k} is called
an edge irregular when the requirement wt(xy) 6= wt(x′y′) is satisfied for each pair xy 6= x′y′

in E(G) with wt(xy) = g(x) + g(xy) + g(y). Bača et al. [1] mentioned the minimum k
required in labeling g as a total edge irregularity strength (tes) of G. The exact value of tes
of generalized web graphs was given in [2]. Recent research has found tes of some n-uniform
cactus chain graphs and related chain graphs [6]. In addition, tes of any tree has been given
in [7], i.e. tes(T ) is equal to

max

{⌈
(|E(T )|+ 2)

3

⌉
,

⌈
(∆(T ) + 1)

2

⌉}
. (2)

Furthermore, the total k-labeling g becomes a totally irregular total k-labeling if the set of
all weights of vertices and edges contains distinct numbers [9]. A minimum k needed in the
labeling g is named as total irregularity strength (ts) of G. Marzuki, et al. observed

ts(G) ≥ max of {tes(G), tvs(G)}. (3)

Different with tes and tvs, the value of ts of tree has not been obtained. In order to find
ts of tree, we have started the investigation for double stars Sp,q and related graphs Sp,2,q

([3], [5]). In this research, we verify ts of caterpillar graphs Sp,2,2,q and Sp,2,2,2,p.
We use the notion of caterpillar Sp,2,2,q. It is a graph which is formed from double-star

Sp,q by putting two vertices on the path which are connected to the two centers of stars in
Sp,q. The value of tes of graph Sp,2,2,q can be found by (2), that is

tes(Sp,2,2,q) = max

{⌈
max{p, q}+ 1

2

⌉
,

⌈
p+ q + 3

3

⌉}
=

⌈
p+ q + 3

3

⌉
. (4)

This graph has two vertices of degree two. Therefore, (1) cannot be used for determining
tvs of this graph. The next theorem gives this parameter.
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Theorem 1.1. Let Sp,2,2,q be a caterpillar with p, q greater than or equal to 3. The graph
Sp,2,2,q has

tvs(Sp,2,2,q) =

⌈
p+ q − 1

2

⌉
.

Proof. Without loss of generality, we can assume that p ≤ q. We know that Sp,2,2,q contains
p + q − 2 pendants, two vertices with degree two, one vertex with degree p, and one vertex
of degree q. The smallest weight of each vertex is at least two. Each pendant vertex has the
smallest weight which is not less than p+ q− 1, i.e. the weight is a sum of two labels. Then,
the largest number to label pendant vertices is not less than

⌈
p+q−1

2

⌉
. The graph Sp,2,2,q

consists of V (Sp,2,2,q) = {v1r : 1 ≤ r ≤ q− 1} ∪ {v4r : 1 ≤ r ≤ p− 1} ∪ {vs : s = 1, 2, 3, 4} and
E(Sp,2,2,q) = {v1v1r : 1 ≤ r ≤ q − 1} ∪ {v4v4r : 1 ≤ r ≤ p− 1} ∪ {vsvs+1 : s = 1, 2, 3}.
Next we will distinguish the following three cases, i.e. p = q = 3, p = q ≥ 4 and 3 ≤
p < q. Assume k =

⌈
p+q−1

2

⌉
for all cases, and define a total k-labeling λ on each element

x ∈ V (Sp,2,2,q) ∪ E(Sp,2,2,q) as follows.

x λ(x) Case for p, q

vsr 1, 1 ≤ r ≤ p− 1; s = 1 p = q ≥ 3
r, 1 ≤ r ≤ p− 1; s = 4
1, 1 ≤ r ≤ k; s = 1
r − k + 1, k + 1 ≤ r ≤ q − 1; s = 1 3 ≤ p < q
q − k + r, 1 ≤ r ≤ p− 1; s = 4

vs 1, s= 1, 2 p = q = 3
k, s= 3, 4
1, s= 1, 3
2, s= 2 4 ≤ p = q
4, s= 4
1, s= 1⌈
|p−q|+5

2

⌉
, s = 2 3 ≤ p < q⌈

|p−q|
2

⌉
, s = 3

4, s= 4
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x λ(x) Case for p, q

vsvsr r, 1 ≤ r ≤ p− 1; s= 1 p = q ≥ 3
k, 1 ≤ r ≤ p− 1; s= 4
i, 1 ≤ r ≤ k; s= 1
k, k + 1 ≤ r ≤ q − 1; s= 1 3 ≤ p < q
k, 1 ≤ r ≤ p− 1; s= 4

vsvs+1 k, s= 1, 3 p = q = 3
k − 1, s = 2
p− 1, s = 1, 3 p, q ≥ 4
p, s = 2⌈
p+q−4

2

⌉
, s = 1

p, s = 2, 3 ≤ p < q
k, s= 3

We observe that each vertex and each edge has been labeled with a number which is at most
k =

⌈
p+q−1

2

⌉
. Further, each vertex x ∈ V (Sp,2,2,q) has a weight as follows.

x wt(x) Case for p, q

vsr r + 1, 1 ≤ r ≤ p− 1; s = 1 p = q ≥ 3
p+ r, 1 ≤ r ≤ p− 1; s = 4
r + 1, 1 ≤ r ≤ q − 1; s = 1 p < q; p, q ≥ 3
q + r, 1 ≤ r ≤ p− 1; s = 4

vs 7, s= 1
6, s= 2 p = q = 3
8, s= 3
12, s= 4
p(p+1)

2
, s= 1

2p+ 1, s= 2 p = q ≥ 4
2p, s = 3
p2 + 3, s = 4

−k2

2
+ k(q − 1/2) + 1 +

⌈
p+q−4

2

⌉
, s= 1

p+ q + 1, s= 2 p < q; p, q ≥ 3
p+ q, s = 3
4 + kp, s = 4

It is shown above, each vertex has a distinct weight under total labeling f . Therefore,
tvs(Sp,2,2,q) = k =

⌈
p+q−1

2

⌉
.

Furthermore, an exact value of ts of Sp,2,2,q is proved in the next theorem.

Theorem 1.2. Given a caterpillar Sp,2,2,q with p, q greater than or equal to 3. We get

ts(Sp,2,2,q) =

⌈
p+ q − 1

2

⌉
.
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Proof. According to (3), by using Equality (4) and Theorem 1.1, the lower bound is as
follows:

ts(Sp,2,2,q) ≥max
{⌈p+ q + 3

3

⌉
,

⌈
p+ q − 1

2

⌉}
=

⌈
p+ q − 1

2

⌉
. (5)

Furthermore, we use total k-labeling λ constructed in Theorem 1.1 to get a totally irregular
total k-labeling. Under labeling λ, we obtain the edge-weights below.

Case 1: For p = q = 3.

wt(vsvsr) =

{
r + 2, 1 ≤ r ≤ p− 1, s = 1,

2k + r, 1 ≤ r ≤ p− 1, s = 4.

wt(vsvs+1) =


k + 2, s = 1,

2k, s = 2,

3k, s = 3.

Case 2: For p = q ≥ 4 and 3 ≤ p < q.

wt(vsvsr) =

{
r + 2, 1 ≤ r ≤ q − 1, s = 1,

q + 4 + r, 1 ≤ r ≤ p− 1, s = 4.

wt(vsvs+1) =


q + 2, s = 1,

q + 3, s = 2,

q + 4, s = 3.

It can be seen that each edge has a different weight. This concludes that λ is totally irregular
total k-labeling. Thus, ts(Sp,2,2,q) = k =

⌈
p+q−1

2

⌉
.

2. A graph Sp,2,2,2,p

A graph that is formed from the double-star Sp,p by inserting three vertices on the path
connecting two centers of the two stars in Sp,p is called as a caterpillar Sp,2,2,2,p. Hence,
Sp,2,2,2,p is a kind of tree with |E(Sp,2,2,2,p)| = 2p+2 and it has maximal degree ∆ = p. Based
on (2), tes of Sp,2,2,2,p is

tes(Sp,2,2,2,p) = max

{⌈
p+ 1

2

⌉
,

⌈
2p+ 4

3

⌉}
=

⌈
2p+ 4

3

⌉
. (6)

Meanwhile, tvs of Sp,2,2,2,p is given in Theorem 2.1.

Theorem 2.1. If Sp,2,2,2,p, p ≥ 4 is a caterpillar with p ≥ 4, then

tvs(Sp,2,2,2,p) = p.
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Proof. The graph Sp,2,2,2,p is a tree that consists of 2p− 2 pendant vertices, three vertices of
degree two, and it has two vertices with degree p ≥ 4. By the similar reason as in Theorem
1.1 we get tvs(Sp,2,2,2,p) ≥ p. Let V (Sp,2,2,2,p) = {vsr : 1 ≤ r ≤ p − 1, s = 1, 5} ∪ {vs : s =
1, 2, 3, 4, 5} and E(Sp,2,2,2,p) = {vsvsr : 1 ≤ r ≤ p − 1, s = 1, 5} ∪ {vsvs+1 : s = 1, 2, 3, 4}. To
find tvs of Sp,2,2,2,p, we create a total labeling f of an element x, x ∈ V (Sp,2,2,2,p)∪E(Sp,2,2,2,p)
as follows.

x f(x) Case for p

vsr 1, 1 ≤ r ≤ p− 1; s = 1 p ≥ 4
r, 1 ≤ r ≤ p− 1; s = 5

vsvsr r, 1 ≤ r ≤ p− 1; s = 1 p ≥ 4⌈
2p−1
2

⌉
, 1 ≤ r ≤ p− 1; s = 5

vs 1, s = 1, 2
2, s= 3 p = 4
4, s= 4, 5

x f(x) Case for p

1, s= 1, 2
2, s= 3, 4 p ≥ 5
5, s= 5

vsvs+1 p, s= 1, 2, 4 p = 4
p− 2, s = 3
p, s = 1, 2, 3 p ≥ 5
p− 2, s = 4
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Under labeling f , we can see that each vertex has label at most
⌈
2p−1
2

⌉
.

x wt(x) Case for p

vsr r + 1, 1 ≤ r ≤ p− 1; s = 1 p ≥ 4
p+ r, 1 ≤ r ≤ p− 1; s = 5

vs 1/2(p2 + p) + 1, s= 1 p ≥ 4
2p+ 1, s= 2 p ≥ 4
2p, s= 3
2p+ 2, s= 4 p = 4
5p, s= 5
2p+ 2, s= 3
2p, s = 4 p ≥ 5
p2 + 3, s = 5

Moreover, the weight for each x ∈ V (Sp,2,2,2,p) is shown above. We can see that the each
vertex has a distinct weight. Therefore, tvs(Sp,2,2,2,p) = k =

⌈
2p−1
2

⌉
.

The exact value of ts of Sp,2,2,2,p is discussed in the next theorem.

Theorem 2.2. If Sp,2,2,2,p is a caterpillar with p ≥ 4, then

ts(Sp,2,2,2,p) = p.

Proof. Based on (3), by using Theorem 2.1 and Equality (6) we get the lower bound of ts of
Sp,2,2,2,p as follows:

ts(Sp,2,2,2,p) ≥max
{⌈2p+ 4

3

⌉
, p
}

= p.

To construct totally irregular total k-labeling, we use the vertex irregular total k-labeling f
defined in Theorem 2.1. Under labeling f , we get the edge-weights as follows.

xy wt(xy) Case for p

vsvsr r + 2, 1 ≤ r ≤ p− 1; s = 1 p ≥ 4
2p+ r, 1 ≤ r ≤ p− 1; s = 5 p = 4
p+ 5 + r, 1 ≤ r ≤ p− 1; s = 5 p ≥ 5

vsvs+1 p+ 2, s= 1
p+ 3, s= 2 p ≥ 4
p+ 4, s= 3
3p, s= 4 p = 4
p+ 5, s= 4 p ≥ 5

It is obvious that each edge has a different weight. Hence, the labeling f is desired a totally
irregular total k-labeling with ts(Sp,2,2,2,p) = k = p, (p ≥ 4).

Conjecture 1. For p, q ≥ 4: ts of Sp,2,2,2,q is
⌈
p+q−1

2

⌉
.
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