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Abstract

This paper seeks to develop the multicolor version of star-critical Ramsey numbers, which serve
as a measure of the strength of the corresponding Ramsey numbers. We offer several general
theorems, some of which focus on Ramsey-good cases (i.e., cases in which the corresponding
Ramsey number is equal to a general lower bound). We also prove some specific cases for small
graphs, and conclude with a table of known multicolor star-critical Ramsey numbers.
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1. Introduction

First defined by Hook in [27], star-critical Ramsey numbers seek to measure the strength of the
Ramsey number for a given pair of graphs. We focus our investigation on the multicolor analogue
of star-critical Ramsey numbers. As is standard, Kn will denote a complete graph of order n and
K1,n will denote a star of order n + 1 (containing exactly n vertices of degree 1 and one vertex of
degree n). The Ramsey number r = r(G1, G2, . . . , Gt) is defined to be the least natural number
r such that every t-coloring of the edges of Kr contains a monochromatic copy of Gi in color i,
for some 1 ≤ i ≤ t. The star-critical Ramsey number r∗(G1, G2, . . . , Gt) is defined to be the least
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natural number k such that every t-coloring of the edges of Kr−1tK1,k contains a monochromatic
Gi in some color i. Here, Kr−1 t K1,k is the graph formed by taking the disjoint union of Kr−1
with a vertex v, then adding edges between v and exactly k of the vertices in theKr−1. Star-critical
Ramsey numbers in the case where t = 2 have been extensively studied (e.g., see [24], [27], [28],
[29], [33], [34], [36], [42], and [44]).

While star-critical Ramsey numbers determine the minimum number of edges that must be
introduced between a vertex and Kr−1 to establish the Ramsey property, the deleted edge number
was introduced in [5] to determine how many edges of a star K1,k must be removed from Kr in
order to destroy the Ramsey property. To be precise, first define the k-deleted Ramsey number
Dk(G1, G2, . . . , Gt) to be the least natural number p such that every t-coloring of the edges of
Kp − E(K1,k) contains a monochromatic copy of Gi in some color i. It is easily confirmed that

D0(G1, G2, . . . , Gt) = r(G1, G2, . . . , Gt)

and
r(G1, G2, . . . , Gt) ≤ Dk(G1, G2, . . . , Gt) ≤ r(G1, G2, . . . , Gt) + 1,

for all k. The deleted edge number de(G1, G2, . . . , Gt) is then defined to be the unique value of k
such that

Dk−1(G1, G2, . . . , Gt) < Dk(G1, G2, . . . , Gt).

It follows from these definitions that

r∗(G1, G2, . . . , Gt) + de(G1, G2, . . . , Gt) = r(G1, G2, . . . , Gt). (1)

When G1 = G2 = · · · = Gt, we denote the t-colored Ramsey number by rt(G1), the t-colored
deleted edge number by det(G1), and the t-colored star-critical Ramsey number by rt∗(G1). We
extend the definition of the Ramsey number to the 1-color case (and leave off the superscript) by
setting r(G) = |V (G)|. This extension follows from the observation thatG is a subgraph ofK|V (G)|
and |V (G)| vertices are needed to have a monochromatic G. When G is assumed to be connected,
the 1-color deleted edge number can then be defined by de(G) = |V (G)| − δ(G), where δ(G) is
the minimum degree among the vertices of G. It follows from Equation (1) that r∗(G) = δ(G).

A well-known lower bound for the Ramsey number r(G1, G2) was proved by Burr [7]:

r(G1, G2) ≥ (c(G1)− 1)(χ(G2)− 1) + s(G2) whenever c(G1) ≥ s(G2),

where c(G1) is the order of a maximal connected component inG1, χ(G2) is the chromatic number
for G2, and s(G2) is the chromatic surplus of G2 (the least cardinality of a color class among all
vertex colorings of G2 using χ(G2) colors). When equality holds, one says that G1 is G2-good.
This concept was introduced by Burr and Erdős in [8, 9] and was investigated from the perspective
of star-critical Ramsey numbers by Zhang, Broersma, and Chen in [44].

In the multicolor setting, assuming that r(G1, G2, . . . , Gt−1) ≥ s(Gt), it can be shown that

r(G1, G2, . . . , Gt) ≥ (r(G1, G2, . . . , Gt−1)− 1)(χ(Gt)− 1) + s(Gt).

The proof of this inequality follows that of the analogous statement for Gallai-Ramsey hyper-
graph numbers proved in Theorem 5 of [6]. When equality holds, we say that the multiset
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H = {G1, G2, . . . , Gt−1} is Gt-good. Section 2 focuses on general multicolor star-critical Ramsey
number theorems. In Theorem 2.1, we prove an inequality involving multicolor deleted edge num-
bers that depends on a multiset being Gt-good. Theorem 2.2 gives bounds for certain star-critical
Ramsey numbers involving multiple complete graphs. Theorem 2.3 generalizes the tree-complete
graph star-critical Ramsey number evaluated in [29] to multiple complete graphs, and Theorem
2.4 considers certain star-critical Ramsey numbers for multiple stars. While we find it easier to
prove (and state) many of these results as deleted edge number results, we provide their analogues
in terms of star-critical Ramsey numbers for the sake of being comprehensive.

In Section 3, we prove several explicit values of multicolor star-critical Ramsey numbers for
small graphs, including several new 2-color cases. We conclude with a table of known multicolor
star-critical Ramsey numbers.

2. General Multicolor Results

The following theorem can be viewed as a generalization of a weakened version of Theorem 3
in [44].

Theorem 2.1. Suppose thatG1, G2, . . . , Gt are connected graphs such thatH = {G1, G2, . . . , Gt−1}
is a Gt-good multiset satisfying r(G1, G2, . . . , Gt−1) ≥ s(Gt). Then

de(G1, G2, . . . , Gt) ≤ de(G1, G2, . . . , Gt−1).

Proof. Let m = r(G1, G2, . . . , Gt−1). We will construct a t-coloring of

K(m−1)(χ(Gt)−1)+s(Gt) − E(K1,de(G1,G2,...,Gt−1))

that lacks a monochromatic copy of Gi in color i, for all 1 ≤ i ≤ t. Start with a (t− 1)-coloring of
Km−E(K1,de(G1,G2,...,Gt−1)) that lacks a monochromatic copy ofGi in color i for all 1 ≤ i ≤ t−1,
and call this graph A1. Let a be the center vertex for the missing star. Let A2, A3, . . . , Aχ(Gt)−1 be
copies ofA1−{a}. Finally, letAχ(Gt) be formed by taking another copy ofA1−{a} and removing
m− s(Gt) vertices. Hence, Aχ(Gt) is a (t− 1)-colored Ks(Gt)−1 that lacks a monochromatic copy
of Gi in color i for all 1 ≤ i ≤ t− 1. Form the union⋃

1≤j≤χ(Gt)

Aj,

and interconnect the Aj with edges in color t. By construction, the resulting

K(m−1)(χ(Gt)−1)+s(Gt) − E(K1,de(G1,G2,...,Gt−1))

lacks a monochromatic copy of Gi in color i for all 1 ≤ i ≤ t − 1. To see that it also lacks
a monochromatic copy of Gt in color t, we consider two cases. First, if s(Gt) = 1, then any
subgraph in color t can be vertex colored using χ(Gt)− 1 colors (by assigning colors according to
the vertex sets of Aj). Hence, Gt cannot be such a subgraph. Second, if s(Gt) > 1, then coloring
any t-colored subgraph using χ(Gt) colors results in a chromatic surplus of at most s(Gt) − 1.
Once again, we find that Gt cannot be such a subgraph. Thus, the theorem follows.
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When the hypotheses of Theorem 2.1 are met, it follows from Equation (1) that

r∗(G1, G2, . . . , Gt)− r(G1, G2, . . . , Gt) ≥ r∗(G1, G2, . . . , Gt−1)− r(G1, G2, . . . , Gt−1).

In the case where t = 2, the implication becomes

de(G1, G2) ≤ |V (G1)| − δ(G1)

(equivalently, r∗(G1, G2) ≥ r(G1, G2)− |V (G1)|+ δ(G1)).
The fact that de(Kn1 , Kn2) = 1 was first proved by Erdős and Faudree [18], and it was observed

by Cowen [17] that this fact easily extends to the more general multicolor result

de(Kn1 , Kn2 , . . . , Knt) = 1.

Suppose that G1, G2, . . . , Gs are connected graphs such that r = r(G1, G2, . . . , Gs) and r′ =
r(Kn1 , Kn2 , . . . , Knt). If

r(G1, G2, . . . , Gs, K`) = (r − 1)(`− 1) + 1

for all ` ≥ 2, then Omidi and Raeisi (see Theorem 2.1 of [38]) proved that

r(G1, G2, . . . , Gs, Kn1 , Kn2 , . . . , Knt) = (r − 1)(r′ − 1) + 1. (2)

This result motivates the following theorem.

Theorem 2.2. Let G1, G2, . . . , Gs be connected graphs, r = r(G1, G2, . . . , Gs), and
r′ = r(Kn1 , Kn2 , . . . , Knt). If r(G1, G2, . . . , Gs, K`) = (r − 1)(`− 1) + 1 for all ` ≥ 2, then

de(G1, G2, . . . , Gs, Kn1 , Kn2 , . . . , Knt) ≤ de(G1, G2, . . . , Gs).

Proof. Consider a t-coloring of Kr′ − e that lacks a monochromatic copy of Knj
in color s+ j for

all 1 ≤ j ≤ t. The existence of such a coloring follows from

de(Kn1 , Kn2 , . . . , Knt) = 1.

Let a and b be the vertices of the missing edge. Replace each vertex other than a with a copy of
Kr−1 that uses the first s colors and lacks a monochromatic copy of Gi in color i, for all 1 ≤ i ≤ s.
Edges interconnecting the copies of Kr−1 with each other and with a are colored according to the
edges between the vertices that were replaced. The missing edge between a and b is now a missing
E(K1,r−1). None of these edges can be given colors s + 1, s + 2, . . . , s + t without producing a
copy of Knj

in color s + j for some 1 ≤ j ≤ t. It is possible to color such edges using colors
1, 2, . . . , s, with only de(G1, G2, . . . , Gs) edges having to remain missing. Thus, we have formed
an (s+ t)-colored

K(r−1)(r′−1)+1 − E(K1,de(G1,G2,...,Gs))

that lacks Gi in color i for all 1 ≤ i ≤ s and Knj
in color s+ j, for all 1 ≤ j ≤ t. It follows that

de(G1, G2, . . . , Gs, Kn1 , Kn2 , . . . , Knt) ≤ de(G1, G2, . . . , Gs),

completing the proof.
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Assuming the hypotheses stated in Theorem 2.2 and applying Equations (1) and (2), the above
implication can be restated as

r∗(G1, G2, . . . , Gs, Kn1 , Kn2 , . . . Knt) ≥ r∗(G1, G2, . . . , Gs) + (r − 1)(r′ − 2).

Next, we consider the case of a tree versus complete graphs. In [29], it was shown that when
Tm is a tree of order m,

r∗(Tm, Kn) = (m− 1)(n− 2) + 1.

The equivalent result for deleted edge numbers was considered in Theorem 2.1 of [5], but the proof
given there contains a mistake in the inductive step. At the present time, the only correct proof that
we know of is the proof of Theorem 2.5 in Hook and Isaak’s paper [29]. In the next theorem, we
extend this result to the multicolor case involving a single tree and multiple complete graphs.

Theorem 2.3. Let ni ≥ 3 for all 1 ≤ i ≤ t, where t ≥ 1. Assume that Tm is a tree of order m ≥ 2
that satisfies m ≤ r(Kn1 , Kn2 , . . . , Knt). Then

de(Tm, Kn1 , Kn2 , . . . , Knt) = m− 1.

Proof. Since de(Tm) = m − 1 and r(Tm, Kn) = (m − 1)(n − 1) + 1 (see [15]), Theorem 2.2
implies that

de(Tm, Kn1 , Kn2 , . . . , Knt) ≤ m− 1.

To prove the opposite inequality, let r = r(Kn1 , Kn2 , . . . , Knt) and consider a (t + 1)-coloring of
the edges in

K(m−1)(r−1)+1 − E(K1,m−2).

Viewing colors 2, 3, . . . , t + 1 as a single color and using Hook and Isaak’s 2-color result [29],
we find that the resulting coloring contains a copy of Tm in the first color or a copy of Kr in the
second color. In the first case, we are done, so assume that there is a copy of Kr spanned by edges
in colors 2, 3, . . . , t + 1. Since r = r(Kn1 , Kn2 , . . . , Knt), there is a copy of Kni

in color i, for
some 2 ≤ i ≤ t+ 1. It follows that

de(Tm, Kn1 , Kn2 , . . . , Knt) ≥ m− 1,

completing the proof of the theorem.

Combining Equations (1) and (2) with Theorem 2.3, it follows that

r∗(Tm, Kn1 , Kn2 , . . . , Knt) = (m− 1)(r(Kn1 , Kn2 , . . . , Knt)− 2) + 1.

Now we consider the case of multiple stars. Let S = {m1,m2, . . . ,mt}, where each mi ≥ 2.
Define N =

∑
1≤i≤tmi and denote by k the number of elements in S that are even. Burr and

Roberts [10] proved

r(K1,m1 , K1,m2 , . . . , K1,mt) =

{
N − t+ 1, if k ≥ 2 is even,
N − t+ 2, otherwise. (3)
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Theorem 2.4. If k = 0 or k is odd, then

r∗(K1,m1 , K1,m2 , . . . , K1,mt) = 1.

Proof. In the case where k = 0 or k is odd,

r(K1,m1 , K1,m2 , . . . , K1,mt) = N − t+ 2.

Consider a t-colored KN−t+2 and observe that removing N − t edges incident with a fixed vertex
still leaves one vertex having degree N − t + 1. By the pigeonhole principle, this vertex must be
incident with at least mi edges in color i for some i. Hence, all N − t + 1 edges incident with a
fixed vertex must be removed in order to destroy the Ramey property. It follows that

de(K1,m1 , K1,m2 , . . . , K1,mt) = N − t+ 1,

and applying (1) and (3) completes the proof.

In 1974, Harary and Prins [26] defined the Ramsey multiplicity R(G1, G2, . . . , Gt) to be the
smallest possible total number of G1 in color 1, G2 in color 2, . . . , Gt in color t in any t-coloring
of Kr, where r = r(G1, G2, . . . , Gt). In the case where G1, G2, . . . , Gt are all stars, Jacobson [31]
proved that when all mi ≥ 2 are integers,

R(K1,m1 , K1,m2 , . . . , K1,mt) =

{
k/2, if k ≥ 2 is even,
N − t+ 2, otherwise.

In particular, when k = 2, we find that there exists a t-coloring of Kr that contains a single
monochromatic K1,mi

in some color i, and which does not contain a K1,mi+1 in color i. It follows
that a single edge in color i can be removed to produce a Kr− e that lacks a monochromatic K1,mi

in color i, for all 1 ≤ i ≤ t. Hence, we obtain the following theorem.

Theorem 2.5. If m1,m2, . . . ,mt are integers greater than 1, exactly two of which are even, then

r∗(K1,m1 , K1,m2 , . . . , K1,mt) = N − t.

In general, we conjecture the following evaluation of r∗(K1,m1 , K1,m2 , . . . , K1,mt).

Conjecture 1. If m1,m2, . . . ,mt are integers greater than 1, exactly k of which are even, then

r∗(K1,m1 , K1,m2 , . . . , K1,mt) =

{
N − t, if k ≥ 2 is even,
1, otherwise.

When trying to prove the case where k > 2 is even, we must construct a t-coloring of KN−t+1 − e
that lacks a copy of K1,mi

in color i for all 1 ≤ i ≤ t. We can use Theorem 9.1 of Harary’s book
[25], which states that K2n contains a 1-factorization. Start with KN−t, where N − t is necessarily
even. We can color 1-factors, but must switch the colors of some of the edges, as was done in
Theorem 3.1 of [5]. This is not very simple to handle in general.
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3. Some Small Multicolor Star-Critical Ramsey Numbers

In this section, we give some specific multicolor star-critical Ramsey numbers, including a few
new 2-color numbers, when the graphs being considered are small. We denote by Kn−e the graph
formed by removing a single edge from Kn and we denote by Pn a path on n vertices. The graph
K1,3 + e is formed by adding a single edge connecting two of the leaves in K1,3.

Theorem 3.1. r∗(K4 − e,K3) = 5.

Proof. Since r(K4 − e,K3) = 7 (see [16]), it follows that K4 − e is K3-good. Theorem 2.1 then
implies de(K4 − e,K3) ≤ 2 (also, see Figure 1). To obtain the inequality de(K4 − e,K3) ≥ 2, we

Figure 1. A 2-coloring of K7 − E(K1,2) that lacks a red K4 − e and a blue K3 (and hence, a blue K1,3 + e).

must show that every red/blue coloring of K7 − e contains a red K4 − e or a blue K3. Consider
an arbitrary 2-coloring of K7 − e and let a and b be the vertices of the missing edge. If we
remove vertex b, we have a 2-coloring of K6, which must contain a red K3 or a blue K3 since
r(K3, K3) = 6 (see [21]). In the latter case, we are done, so suppose there is a red K3. We must
now consider two cases, based on whether or not a is one of the vertices in the red K3.
Case 1. Suppose that a is not in the red K3. Label the vertices in the red K3 by x, y, z and the
other vertices a, b, c, d. If any of a, b, c, d is adjacent via 2 or more red edges to x, y, z, then a red
K4 − e is formed. Otherwise, each of a, b, c, d is adjacent via at least 2 blue edges to {x, y, z}. If
the subgraph induced by {a, b, c, d} does not contain a red K4 − e, then at least one edge is blue.
Without loss of generality, suppose that ac is blue. Then a and c are each adjacent via at least two
blue edges to {x, y, z}. By the pigeonhole principle, there is a vertex, say x, in which ax and cx
are both blue, forcing {a, c, x} to form a blue K3.
Case 2. Suppose that the red K3 consists of vertices a, x, y and the other vertices are labelled
b, c, d, e. If any edge in the subgraph induced by {c, d, e} is blue, then we can use an argument
similar to the previous case to force the existence of a blue K3. So, suppose this subgraph is a red
K3, then at least two of the edges bc, bd, and be must be blue (otherwise the subgraph induced by
{b, c, d, e} is a red K4 − e). Without loss of generality, suppose that bc and bd are blue. If b is
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adjacent via red edges to both of x and y, then a red K4 − e is formed. So, assume one such edge,
say bx is blue. If either cx or dx is blue, when including b, we obtain a blue K3. If they are both
red, then the subgraph induced by {x, c, d, e} contains a red K4 − e.
In both cases, we find that K7 − e contains a red K4 − e or a blue K3, completing the proof.

In the case of the pair of graphs, K4 − e and K1,3 + e, an interesting phenomenon occurs.
Namely, r(K4 − e,K1,3 + e) = 7 [16], and it is easily confirmed that K4 − e is (K1,3 + e)-good
and K1,3 + e is (K4 − e)-good. By Theorem 2.1, it follows that

de(K4 − e,K1,3 + e) ≤ min{4− δ(K4 − e), 4− δ(K1,3 + e)} = 2.

The following theorem shows that this bound is tight.

Theorem 3.2. r∗(K4 − e,K1,3 + e) = 5.

Proof. As mentioned above, Theorem 2.1 implies that de(K4 − e,K1,3 + e) ≤ 2 (also, see Figure
1). Proving the opposite inequality requires showing that every red/blue coloring ofK7−e contains
a red K4 − e or a blue K1,3 + e. Consider such a coloring and observe that Theorem 3.1 implies
that there is a red K4−e or a blue K3. In the first case, we are done, so assume the latter condition.
We obtain two cases, based on whether or not the missing edge is incident with a vertex in the blue
K3. Let a and b be the vertices of the missing edge.
Case 1. Suppose that neither a nor b are contained in the blue K3. Label the vertices in the blue
K3 by x, y, z and the other vertices by a, b, c, d. If any edge connecting {x, y, z} to {a, b, c, d} is
blue, then a blue K1,3+ e is formed. So, assume that all such edges are red. Other than the missing
edge, if any edge in the subgraph induced by {a, b, c, d} is red, then a red K4 − e is formed. All
such edges must then be blue, forcing a blue K1,3 + e as a subgraph.
Case 2. Without loss of generality, suppose that the vertices of the blue K3 are given by a, x,
y and the other vertices are given by b, c, d, e. Similar to the previous case, with the exception
of the missing edge, if any edge joining {a, x, y} to {b, c, d, e} is blue, then a blue K1,3 + e is
formed. Assume that all such edges are red. Avoiding a red K4 − e forces the subgraph induced
by {b, c, d, e} to contain a blue K1,3 + e.
In both cases, the K7 − e contains a red K4 − e or a blue K1,3 + e, completing the proof of the
theorem.

Theorem 3.3. r∗(P4, K4 − e) = 4.

Proof. Since r(P4, K4 − e) = 7 (see [16]), it follows that P4 is (K4 − e)-good. So, Theorem 2.1
implies that

de(P4, K4 − e) ≤ 3

(also, see Figure 2). To prove the other direction, consider a red/blue K7 − E(K1,2). Let vertex a
be the center of the missing star, and let vertices b and g be its leaves. Removing vertices a and g
results in a red/blue coloring of K5. Since r(P3, K4 − e) = 5, this coloring contains a red P3 or a
blue K4 − e. In the latter case, we are done, so assume that there is a red P3. The location of this
P3 in the original coloring relative to the missing K1,2 produces three cases, as illustrated in Figure
3.
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Figure 2. A 2-coloring of K7 − E(K1,3) that lacks a red P4, and a blue K3 (and hence, a red K1,3 + e and a blue
K4 − e).
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Figure 3. Three cases describing the location of a monochromatic P3 relative to a missing K1,2 in a 2-coloring of
K7 − E(K1,2).

Case 1. Consider the case given by the first image in Figure 3. Avoiding a red P4 forces edges be,
bf , bg, de, df , and dg to be blue. If no blue K4 − e exists, then bd, ef , eg, and fg must be red. If
any one of ac, ad, af , or cf are red, then a red P4 is formed. Otherwise, all four edges are blue
and the subgraph induced by {a, c, d, f} contains a blue K4 − e.
Case 2. Consider the case given by the second image in Figure 3. Avoiding a red P4 forces edges
ce, cf , de, and df to be blue. If no blue K4 − e exists, then edge cd must be red. At this point, we
have reduced this case to the situation that occurs in Case 1.
Case 3. Consider the case given by the third image in Figure 3. Avoiding a red P4 forces edges
ac, ae, bc, be, cf , cg, ef , and eg to be blue. If no blue K4 − e exists, then af , ce, and fg must be
red. If bg is red, then a red P4 is formed. Otherwise, the subgraph induced by {b, c, e, g} contains
a blue K4 − e.
In all three cases, we find that there is either a red P4 or a blue K4 − e.

Theorem 3.4. r∗(K1,3 + e,K3) = 4.
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Proof. In [16], it was shown that r(K1,3 + e,K3) = 7, from which it follows that K1,3 + e is
K3-good. By Theorem 2.1, it follows that

de(K1,3 + e,K3) ≤ 3

(also, see Figure 2). It remains to be shown that every 2-coloring of K7 − E(K1,2) contains a red
K1,3 + e or a blue K3. Consider an arbitrary 2-coloring of K7 − E(K1,2) and let a be the vertex
that is incident with the 2 missing edges. Removing vertex a produces a 2-coloring of K6, which
necessarily contains a red K3 or a blue K3. Assume the former case, and denote the vertices in the
red K3 by b, c, d. Label the remaining three vertices e, f, g. If any edges connecting {b, c, d} with
{a, e, f, g} are red, then a red K1,3+ e is formed. So suppose that all such edges are blue, resulting
in three cases (see Figure 4).

a

b

c

d

e

f

g
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c

d

e
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d

e
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g

Figure 4. Three cases describing the location of a monochromatic K3 relative to a missing K1,2 in a 2-coloring of
K7 − E(K1,2).

Regardless of which case we are in, if any edges in the subgraph induced by {a, e, f, g} are
blue, then a blue K3 is formed. The only other possibility is that all such edges (other than those
removed) are red. In all three cases, we obtain a red K1,3 + e as a subgraph. It follows that

de(K1,3 + e,K3) ≥ 3,

completing the proof.

Current literature indicates that the star-critical Ramsey number r∗(K3 − e,Kn − e) is known
and can be found in [27]. As this document is not readily available, and because the upper bounds
to de(K3 − e,Kn − e) follow from Theorem 2.1, we offer a complete proof.

Theorem 3.5. For all n ≥ 4,

r∗(K3 − e,Kn − e) = 2n− 1.

Proof. It is easily shown that R(K3 − e,Kn − e) = 2n− 3 (see Section 3.1 of [39]), from which
we see that K3 − e is (Kn − e)-good. It follows from Theorem 2.1 that

de(K3 − e,Kn − e) ≤ 2
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......

KKn-2 n-2

Figure 5. A 2-coloring of K2n−3 − E(K1,2) that lacks a red K3 − e and a blue Kn − e.

(also, see Figure 5). It remains to be proved that every red/blue coloring of the edges of K2n−3− e
contains a red K3− e or a blue Kn− e. Consider a two- coloring of K2n−3− e and let the missing
edge be between vertices a and b. Remove vertex a and assume that the resulting K2n−4 lacks a
red copy of K3 − e and a blue copy of Kn − e (otherwise we are done). Notice that the red edges
must form a matching M . Let m be the size of this matching. Certainly m ≤ n − 2. A blue copy
of Kn− e could only be formed by taking, at most, one vertex from m− 1 matchings, two vertices
from the remaining matching, and all vertices that are not incident with a red edge. In order to
avoid this, we need

1 +m+ (2n− 4− 2m) < n =⇒ m > n− 3.

So, a red/blue coloring of a K2n−4 that lacks a red copy of K3− e and a blue copy of Kn− e must
contain a red matching of size n − 2. Now consider vertex a. If a is incident with any red edges,
a red K3 − e is formed. If all 2n− 5 edges incident with a are blue, then a must be adjacent to at
least one vertex in each matching, labeled x1, x2, ..., xn−2. This only accounts for n− 2 edges, so
there is certainly a vertex y such that ay is blue and xky is red for some 1 ≤ k ≤ n− 2. Then the
subgraph induced by {a, y, x1, x2, ..., xn−2} forms a blue Kn − e.

Note that K3 − e = P3 = K1,2.

Theorem 3.6. If t ≥ 1 is odd, then
rt∗(P3) = 1.

Proof. It is known that when t is odd, rt(P3) = t + 2 (see [30]). Consider a t-coloring of Kt+1

that lacks a monochromatic P3. Such a coloring has every vertex incident with exactly one edge in
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each of the t colors. Adding in an additional vertex and assigning any color to an edge joining this
vertex with the Kt+1 necessarily produces a monochromatic P3.

Finally, we conclude this section by considering the star-critical numbers for multiple copies
of P3 versus complete graphs. Using the observation that P3 is a star, Jacobson proved in [32] that

r(P3, P3 . . . , P3︸ ︷︷ ︸
s terms

, K`) = (rs(P3)− 1)(`− 1) + 1

for all ` ≥ 1. It follows that the multiset consisting of s copies of P3 is K`-good. Thus, Theorem
2.2 implies that

de(P3, P3 . . . , P3︸ ︷︷ ︸
s terms

, Kn1 , Kn2 , . . . , Knt) ≤ des(P3).

When s is odd, Theorem 3.6 implies that

de(P3, P3 . . . , P3︸ ︷︷ ︸
s terms

, Kn1 , Kn2 , . . . , Knt) ≤ s+ 1.

When s = 2, we have the following theorem.

Theorem 3.7. For all 1 ≤ i ≤ t and ni ≥ 1,

de(P3, P3, Kn1 , Kn2 , . . . , Knt) = 1.

Proof. It is easily confirmed that r(P3, P3) = 3 and de(P3, P3) = 1, from which Theorem 2.2
implies the statement of the theorem.

Using Equations (1) and (2), Theorem 3.7 implies that

r∗(P3, P3, Kn1 , Kn2 , . . . , Knt) = r(P3, P3, Kn1 , Kn2 , . . . , Knt)− 1

= (r(P3, P3)− 1)(r(Kn1 , Kn2 , . . . , Knt)− 1)

= 2(r(Kn1 , Kn2 , . . . , Knt)− 1)

= 2r∗(Kn1 , Kn2 . . . . , Knt).

In particular, r∗(P3, P3, K`) = 2`− 2 for all ` ≥ 1.

4. Conclusion

In this section, we compile the known values of r∗(G1, G2, . . . , Gt). Besides the partial results
contained in Theorems 2.4 and 2.5, Table 1 is intended to provide the current known multicolor
star-critical Ramsey numbers, along with the corresponding Ramsey numbers and relevant cita-
tions. The only graph in Table 1 that we have not yet defined is the fan Fm, defined to be the join
of K1 and mK2, where mK2 consists of m disjoint copies of K2.
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Table 1. Known star-critical Ramsey numbers, along with their corresponding Ramsey numbers.
r(G1, G2, . . . , Gt) r∗(G1, G2, . . . , Gt)

r(Tm, Kn) = (m− 1)(n− 1) + 1 [15] (m− 1)(n− 2) + 1 [29]
r(Cm, K3) = 2m− 1 for m > 3 [11] m+ 1 [44]
r(C4, K4) = 10 [43] 9 [34]
r(Cm, K4) = 3m− 2 for m ≥ 5 [43] 2m [34]
r(Cm, K5) = 4m− 3 for m ≥ 5 [2] 3m− 1 [33]
r(Fm, K3) = 4m+ 1 for m ≥ 2 [35] 2m+ 2 [36]
r(Fm, K4) = 6m+ 1 [41] 4m+ 2 [24]
r(K4 − e,K3) = 7 [39] 5 (Theorem 3.1)
r(K4 − e,K1,3 + e) = 7 [16] 5 (Theorem 3.2)
r(P4, K4 − e) = 7 [16] 4 (Theorem 3.3)
r(K1,3 + e,K3) = 7 [16] 4 (Theorem 3.4)
r(K3 − e,Kn − e) = 2n− 3 for n ≥ 4 [39] 2n− 5 [27], (Theorem 3.5)
rt(P3) = t+ 2 for t ≥ 1 odd [30] 1 (Theorem 3.6)
r(P3, P3, K`) = 2`− 1 [32] 2`− 2 (Theorem 3.7)

Much of the recent research on star-critical Ramsey numbers has focused on the evaluation of
r∗(Cm, Kn). This is due to the fact that the complete evaluation of r(Cm, Kn) is a well known
open problem. The fact that

r(Cm, Kn) ≥ (m− 1)(n− 1) + 1

follows from Lemma 4 of [16]. In 1973, the work of Bondy and Erdős [3] led to the conjecture
(see [19]) that

r(Cm, Kn) = (m− 1)(n− 1) + 1

whenever m ≥ n ≥ 3, except for the case m = n = 3. At the present time, this conjecture has
been shown to be true when m ≥ 4n + 2 [37], when m > n = 3 [11], when m ≥ n = 4 [43],
when m ≥ n = 5 [2], when m ≥ n = 6 [40], when m ≥ n = 7 [13], as well as a few other special
cases.

The recent paper by Wang, Li, and Li [42] introduced variations of the concept of a star-critical
Ramsey number defined by removing graphs other than just stars from complete graphs. In this
sense, their generalizations demonstrate that the deleted edge number is a little more natural than
the star-critical Ramsey number. One direction for future inquiry that seems to follow from such
generalizations is to define a deleted cycle number, where cycles of various lengths are removed to
destroy the Ramsey property.

Finally, we encourage the reader to consider star-critical versions of other Ramsey-type num-
bers. In particular, Gallai-Ramsey numbers (see [20], [22],and [23]) and bipartite Ramsey numbers
(see [1] and [14]) can also be destroyed by the removal of edges incident with a fixed vertex. We
reserve such investigations for future research.
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