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Abstract

A k-regular planar graph G is nearly Platonic when all faces but one are of the same degree while
the remaining face is of a different degree. We show that no such graphs with connectivity one
can exist. This complements a recent result by Keith, Froncek, and Kreher on non-existence of
2-connected nearly Platonic graphs.
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1. Introduction

A Platonic graph of type (k, d) is a k-vertex regular and d-face regular planar graph. It is
well known that there exist exactly five Platonic graphs, which can be viewed as skeletons of
the five Platonic solids—tetrahedron, cube, dodecahedron, octahedron, and icosahedron, of types
(3, 3), (3, 4), (3, 5), (4, 3) and (5, 3), respectively.

There are several classes of vertex-regular planar graphs with all but two faces of one degree
and two faces of another degree. Hence, it is an intriguing question whether there exist vertex-
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regular planar graphs with exactly one exceptional face? This question was answered in the nega-
tive by Deza, Dutour Sikirič, and Shtogrin [2] with a sketch of a proof, and for 2-connected graphs
proved in detail by Keith, Froncek, and Kreher [4].

Theorem 1.1 ([2], [4]). There is no finite, planar, 2-connected, regular graph that has all but one

face of one degree and a single face of a different degree.

We complement the result by offering a detailed case-by-case analysis for the remaining case
with connectivity one. The main idea of our proof is the following. If such a graph with connec-
tivity one exists, then there must exist an endblock, that is, a 2-connected graph with all vertices
but one of degree k, one vertex of degree 1 < l < k, all faces but one of degree d1 and one face of
degree d 6= d1. The non-existence of such graphs was claimed by Deza and Dutour Sikirič in [1].
Because we were not satisfied with the proof, a purely combinatorial alternative is presented in this
paper.

Our goal is to present an alternative proof of the following:

Theorem 1.2 ([1]). There is no finite, planar, regular graph with connectivity one that has all but

one face of one degree and a single face of a different degree.

The main idea is to look at the blocks of such a potential graph and show that no endblock with
required properties can exist.

The paper is organized as follows. In Section 2, we define the relevant notions and prove some
basic observations that will be later used in our further proofs.

In Sections 3, 4, and 5 we discuss in details the non-existence of endblocks of types (3, d), (4, d)
and (5, d), respectively.

Finally, in Section 6 we use the lemmas proved in the previous sections to present our proof of
Theorem 1.2.

2. Basic notions and observations

We start with a formal definition of an endblock.

Definition 2.1. A (k, d1, d)-endblock B(k, l) is a 2-connected planar graph on n vertices with n�1
vertices of degree k, one exceptional vertex x1 with deg(x1) = l and 1 < l < k, all faces but one
of common degree d1, and the remaining face of degree d 6= d1, where the exceptional vertex x1

belongs to the face of degree d.

We will often use in our arguments the notion of saturated paths.

Definition 2.2. Let G be a 2-connected planar graph with maximum vertex degree k, common face
degree d1 and outerface x1, x2, . . . , xd of degree d 6= d1. A vertex u 6= x1 is k-saturated (or simply
saturated) if deg(u) = k and k-unsaturated (or simply unsaturated) if deg(u) < k. Similarly,
for a given integer 2  l < k, vertex x1 is l-saturated (or simply saturated) if deg(x1) = l and
l-unsaturated (or simply unsaturated) if deg(x1) < l.

Let a path P = u1, u2, . . . , ud1 be an induced subgraph of G such that the graph G + u1ud1 is
still planar and the cycle C = u1, u2, . . . , ud1 is a boundary of a face of degree d1. If all vertices
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ui for i = 2, 3, . . . , d1 � 1 are saturated and both u1 and ud1 are unsaturated, then P is called a
weakly-k-saturated d1-path. If at most one of u1 or ud1 is unsaturated while all other vertices are
saturated, then P is called a strongly-k-saturated d1-path. When k and d1 are fixed, we call these
paths simply weakly saturated or strongly saturated, respectively.

The following assertions are easy to verify.

Observation 2.3. Let G be a 2-connected planar graph with maximum vertex degree k, minimum

face degree d1 and outerface x1, x2, . . . , xd of degree d 6= d1. If a strongly-k-saturated d1-path

P = u1, u2, . . . , ud1 is on a boundary of an inner face of G, then G cannot be completed into a

(k, d1, d)-endblock.

Proof. If G is a subgraph of a (k, d1, d)-endblock, then the whole path P must be a part of an inner
face of degree d1, which implies that the remaining edge of that face must be u1ud1 . However, this
edge cannot be added, because at least one of the degrees of u1 and ud1 would then exceed k, a
contradiction.

Observation 2.4. Let G be a 2-connected planar graph with maximum vertex degree k, minimum

face degree d1 and outerface x1, x2, . . . , xd of degree d 6= d1. If a weakly-k-saturated d1-path

P = u1, u2, . . . , ud1 is on a boundary of an inner face of G, then the edge u1ud1 must be added in

order to complete G into a (k, d1, d)-endblock.

Proof. Similarly as above, the whole path P must be a part of an inner face of degree d1, which
implies that the remaining edge of that face must be u1ud1 . Hence, we must add it to G to complete
it into the required endblock.

Observation 2.5. Let G be a subgraph of a (k, 3, d)-endblock B(k, l) and u, v, w be a triangle

such that v is saturated and has no neighbors inside the triangle. Then the triangle u, v, w is a face

boundary.

Proof. By Observation 2.4, the path u, v, w must be a part of a triangular face. Suppose that u
has neighbors inside the triangle. Then at least one of them, say u1, must be on the boundary
containing edges u1u and uv. Since v has no neighbors inside the triangle, the boundary also
contains the edge vw. But then the edges u1u, uv, vw bound a face that is longer than a triangle,
which is impossible.

Now we start eliminating certain forbidden configurations. In a (k, d1, d)-endblock B(k, l)
with x1, x2, . . . , xd as the boundary of the exceptional face, by a chord we mean an edge xixj not
on the boundary of the exceptional face. That is, if i < j and xixj is a chord, then j� i 6= 1, d� 1.

Lemma 2.6. A (3, d1, d)-endblock B(3, 2) for d1 = 4, 5 does not have a chord.

Proof. Let the cycle x1, x2, . . . , xd be the boundary of the exceptional face of this graph and there
exists a chord xixj and j > i. Then j � i � 3, otherwise j = i+ 2 and xixi+1xj is a triangle such
that xi is saturated and has no neighbor inside the triangle. By Observation 2.5, this triangle is the
boundary of a face, therefore, xi+1 is of degree 2, which is impossible.
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Now, we consider the subgraph H induced by all vertices on and inside the cycle xi, xi+1, . . . ,

xj�1, xj . Create an isomorphic copy '(H) = H
0 of H by assigning '(v) = v

0 for every v 2 H .
Then amalgamate the edges xixj and x

0
ix

0
j . The resulting graph is a 2-connected, 3-regular planar

graph with all faces of degree d1 except the outerface, which is of degree 2(j � i). We proved
above that j � i � 3, which implies that the outerface is of degree 2(j � i) � 6. Thus we have
constructed a 2-connected, 3-regular planar graph with one face of degree greater than 5 and all
remaining faces of degree d1  5. This contradicts Theorem 1.1.

Lemma 2.7. A (4, 3, d)-endblock B(4, l), with the cycle x1, x2, . . . , xd as the boundary of the

exceptional face does not have a chord, other than x2xd when l = 2.

Proof. Let the graph have some chords and the chord xixj with j > i be the shortest one. It means
that there is no other chord xsxt with 0 < t� s < j � i.

If i = 1, then l = 3. In this case the graph has only one vertex of an odd degree, which is
impossible.

Now let i > 1 and yi be the fourth neighbor of xi. If yi is on or inside of the cycle x1, x2, . . . , xi,
xj, xj+1 . . . , xd, then the path xj, xi, xi+1 is a weakly-4-saturated 3-path and we must have the
triangular face xj, xi, xi+1. If j � (i + 1) = 1, then deg(xi+1) = 2, which is impossible and so
j � (i + 1) � 2 and xi+1xj is a chord shorter than xixj , a contradiction. Hence, yi must be inside
of the cycle xi, xi+1, . . . , xj . By symmetry, the fourth neighbor yj of xj must be inside that cycle
as well. But then we see that the path xi�1, xi, xj is a weakly saturated 3-path and by Observation
2.4, we must have the edge xi�1xj .

If j < d, then xj has neighbors xi�1, xi, yj, xj�1, xj+1 and is of degree at least 5, a nonsense.
Therefore, j = d and we must have xi�1 = x1, which concludes the proof.

Lemma 2.8. A (5, 3, d)-endblock B(5, l), with the cycle x1, x2, . . . , xd as the boundary of the

exceptional face does not have a chord other than x2xd when l = 2.

Proof. Let the graph have some chords and the chord xixj with j � i > 1 be the shortest one. It
means that there is no other chord xsxt with 0 < t� s < j � i.

We denote by C the cycle xi, xi+1, . . . , xj and by C
0

the cycle xj, xj+1, . . . , xd, x1, . . . , xi.
First, we consider the case i 6= 1 and so deg(xi) = deg(xj) = 5. Call y1i and y

2
i the neighbors

of xi other than xi�1, xi+1, xj and those of xj other than xj�1, xj+1(or x1),xi similarly y
1
j and y

2
j .

We will discuss several cases based on placement of the vertices yts within cycles C and C
0.

If both y
1
i , y

2
i are within C

0, then the path xj, xi, xi+1 is a weakly-5-saturated 3-path and by
Observations 2.4 and 2.5, we must have the triangular face xi, xi+1, xj . Since j � (i + 1) < j � i

the edge xi+1xj is not a chord. But then xi+1 would have three other neighbors inside that face,
which is impossible.

Similarly to the previous case, if both y
1
j , y

2
j are within C

0, then the path xi, xj, xj�1 is a weakly-
5-saturated 3-path and by Observations 2.4 and 2.5, we must have the triangular face xi, , xjxj�1.
Since (j � 1) � i < j � i the edge xixj�1 is not a chord. But then xj�1 would have three other
neighbors inside that face, which is impossible.

If one of xi, xj has both remaining neighbors inside C, say xi, then the path xi�1, xi, xj is
weakly 5-saturated path and we must have edge xi�1xj completing the triangle. We observe that
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xi�1 cannot have any neighbors inside this triangle. If j = d, then it follows that i � 1 = 1 and
l = 2 and we are done. If j < d, then by the previous case, xj has one neighbor other than xj�1

inside C and the graph bounded by the cycle xi�1, xi, . . . , xj, xi�1 has xi�1 of degree 2 and xj of
degree 4. Hence, we can take two copies and amalgamate them to obtain a 5-regular graph with
the outer face of degree more than 3 and all other faces triangular. However, such a graph does not
exist, so this case is impossible.

The only remaining case is that xi and xj have exactly one neighbor within both C and C
0. In

this case, we can again obtain a contradiction in a similar manner as in Lemma 2.7. Denote by H

the induced subgraph of G consisting of all vertices on or within C and create an isomorphic copy
H

0. Then amalgamate xi with x
0
i and xj with x

0
j . The resulting graph is a 2-connected 5-regular

graph with the outerface of degree 2(j � i) > 3 and all other faces of degree 3. Such a graph
cannot exist by Theorem 1.1.

Finally, we consider the case i = 1, that is, the graph has a chord x1xj with j 6= 2, d. If l = 3,
then x1 has no neighbor within C and so by Observation 2.4, x2xj is an edge and the graph has a
shorter chord than x1xj , which is impossible.

For l = 4, the vertex x1 has the fourth neighbor y11 62 {x2, x3, . . . , xj} [ {xd}.
If y11 is not the inside of C, then as in the previous case, the graph has a shorter chord x2xj , a

contradiction. Thus, y11 is within C. By applying Observation 2.4 on the weakly-4-saturated 3-path
xd, x1, xj , we deduce that the triangle x1, xd, xj is the boundary of a triangular face of the graph.

We have 1 < j < d. If xjxd is a chord, we find the shortest chord xi0xj0 such that j  i
0
<

j
0  d and repeat the case i

0 6= 1 from the first part of the proof.
If xjxd is not a chord, by the first part of this proof, and so j = d� 1 and deg(xd) = 2, which

is impossible.
We have exhausted all possibilities and the proof is complete.

Lemma 2.9. Let t be the number of vertices of the (k, d1, d)-endblock B(k, l) not on the boundary

of the outer exceptional face. Then the values of t are as follows:

k d1 l t

3 3 2 (5� d)/3
3 4 2 3
3 5 2 d+ 7
4 3 2 2
5 3 2 d+ 3
5 3 3 d+ 4
5 3 4 d+ 5

Proof. Denote the order of the graph by n, the number of its edges by m and the number of faces
by f , thus the sum of the vertex degrees will be k(n� 1) + l, which is twice the number of edges.
By Euler’s formula, the number of faces is

f = m+ 2� n =
k(n� 1) + l

2
+ 2� n.
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Also since the sum of the face degrees is twice the number of edges, we have

(f � 1)d1 + d = 2m = k(n� 1) + l.

Solve for n, we have

n =
(2� d1)(k � l) + 2d1 + 2d

2k + 2d1 � kd1
.

Recall that t = n � d, so when we plug in the corresponding values of k, d1, and l, we obtain our
desired values of t as a function of d.

3. Type (3, d1)

Lemma 3.1. A (3, 3, d)-endblock B(3, 2) does not exist for any d.

Proof. By Lemma 2.9, we must have d = 2 or d = 5, otherwise t is not a non-negative integer.
Recall that the number of vertices is d+ t. If d = 2, then t = 1 and the graph has 3 vertices in total.
Hence, we cannot have vertices of degree 3. When d = 5, then t = 0 and the graph has 5 vertices
in total. By applying Observation 2.4 on the weakly-2-saturated 3-path x5, x1, x2 we conclude that
x2x5 is an edge of the graph. Now, the path x5, x2, x3 is a strongly-3-saturated 3-path. Hence, the
graph has a face with the length greater than 3 and G cannot be completed into B(3, 2).

Lemma 3.2. A (3, 4, d)-endblock B(3, 2) does not exist for any d.

Proof. Recall that by t we denote the number of vertices of B(3, 2) inside of the cycle bounding
the face of degree d, that is, all vertices other than x1, x2, . . . , xd. It follows from Lemma 2.9 that
t = 3.

We denote the internal vertices by y1, y2 and y3. Since d1 = 4, there are at most two edges
yiyj , which implies that there are at least five edges yixj . As there is no chord by Lemma 2.6, each
xi, i 6= 1 has exactly one neighbor yj and hence d � 6. Because x1 is of degree 2, it is a saturated
vertex. Let x2y1 be an edge. Then y1, x2, x1, xd is a weakly-3-saturated 4-path, and we must have
the edge y1xd.

If the third neighbor of x3 is y1, then we have a triangular face, which is impossible. Assume
that x3 is adjacent to y2. Then y1, x2, x3, y2 is a weakly-3-saturated 4-path, and we must have the
edge y1y2. Now, the path y2, y1, xd, xd�1 is a weakly-3-saturated 4-path, and we must have the
edge y2xd�1. Since d � 6, we have d � 1 6= 4 and so x4 6= xd�1. Then x4, x3, y2, xd�1 is a
strongly-3-saturated 4-path, and B(3, 2) cannot be completed.

Lemma 3.3. A (3, 5, d)-endblock B(3, 2) does not exist for any d.

Proof. Assume that the cycle x1, x2, . . . , xd is the boundary of the outerface and deg(x1) = 2.
By Lemma 2.6 the graph has no chord and so each xi, except x1, is adjacent to an interior vertex,
say yi�1. All yi’s are distinct, otherwise as we see in Figure 1(right), if i < j and two vertices xi

and xj have a common interior neighbor, say y, then we have two cycles xi, xi+1, . . . , xj�1, xj, y

and x1, x2, . . . , xi, xj, xj+1, . . . , xd and we consider the cycle that the third neighbor of y is not
in. If this cycle is a triangle then the graph has an interior triangular face or a cut-vertex, which
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x2xd

xd�1

xd�2

xd�3

y3

y2

y1
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w2 z2
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zd�2 w1

zd�3
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xi

xi�1

xj+1

xj

xj�1
y

Figure 1

is impossible. If this cycle is a square or pentagon then the graph has a cut-vertex, which is
impossible. If the length of this cycle is greater than 5 then one of two paths xi�1, xi, y, xj, xj+1 or
xi+1, xi, y, xj, xj�1 is a weakly-3-saturated 5-path and the graph has a chord xi�1xj+1 or xi+1xj�1,
respectively, which is impossible.

The path y1, x2, x1, xd, yd�1 is a weakly-3-saturated 5-path and so y1yd�1 is an edge.
For any 1  i  d � 1, the path yi, xi+1, xi+2, yi+1 is a weakly-3-saturated 4-path and so two

vertices yi and yi+1 have a common adjacent zi to construct a pentagonal face. These vertices
are distinct. If zi = zi+1 for some i, then deg(yi+1) = 2 and if zi = zj , where j � i > 1, then
deg(zi) � 4, which is impossible. If d = 3, then z1 is a cut-vertex, which is impossible and so
d � 4.

If d � 4, then the path zd�2, yd�1, y1, z1 is a weakly-3-saturated 4-path and two vertices zd�2

and z1 must have a common neighbor w1 to obtain a pentagonal face. We have w1 6= zi, 2  i 
d � 3, otherwise deg(w1) � 4, which is impossible. If d = 4, then w1 is a cut-vertex, which is
impossible and so d � 5. If d � 5, then the path w1, z1, y2, z2 is a weakly-3-saturated 4-path and
two vertices w1 and z2 must have a common neighbor w2 to obtain a pentagonal face (see Figure
1 (left)). We have w2 6= zi, 3  i  d� 4, otherwise deg(w2) � 4, which is impossible. If d = 5,
then w2 is a cut-vertex and so d � 6. If d = 6, then the cycle w2z2y3z3 is the boundary of a square
face, which is impossible and so d � 7.

If d � 7, then the path yd�3, zd�3, w2, z2, y3 is a strongly-3-saturated 5-path and we have an
interior face with the length greater than 5, which is impossible.

4. Type (4, 3)

For the two remaining cases, we use dual graphs. Recall that the dual graph G
D of a planar

graph G with vertex, edge, and face sets V (G), E(G), F (G), respectively, has V (GD) = F (G),
F (GD) = V (G) and and edge e = f1f2 2 V (GD) if and only if the faces f1 and f2 share an edge
in G. In general, GD can be a multigraph with loops. In our case, we only look at dual graphs of
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blocks, hence no loops will arise. Concerning multiple edges, we can only have one double edge
when l = 2.

Lemma 4.1. A (4, 3, d)-endblock B(4, l) does not exist for any l and d.

Proof. We cannot have l = 3, as in that case the endblock would have a single vertex of an odd
degree, a nonsense. Thus, we have l = 2.

x1

x2

x3

x4

xd�1

xd�2

xd fd = f1

f2

f3fd�2

fd�1
gd = g2

g3

g4

gd�1

gd�2

Figure 2: B(4, 2)

First we show that d � 4. Suppose d = 3. Then the outerface is a triangle x1, x2, x3. Vertex x1

is saturated, hence the inner face containing x1 is the triangle x1, x2, x3. By Lemma 2.9, we have
t = 2, hence there are exactly two other vertices y1 and y2, each of degree 4. But then y1 would
have to be adjacent to x2, x3, y2 and also to x1, which is impossible.

Now we denote the outerface of B(4, 2) by f and an inner face containing edge xixi+1 by fi

for i = 1, 2, . . . , d. Further, for i = 2, 3, . . . , d the inner face containing xi but not sharing an edge
with the outerface will be denoted by gi (see Figure 2).

Let D be the dual graph of B(4, 2). Because d � 4, we have degD(f) � 4. Notice that we
have double edge ff1 (see Figure 3).

f

fd = f1

g2 = gdf2

g3

f3

fd�1

gd�1

fd�2
D

Figure 3: The dual graph of B(4, 2)

Let d = 3q+ r where 0  r  2. We have d � 4, hence q � 1. We now construct a new graph
D

0 with �(D0) = 3 as follows. We split vertex f into vertices f 0
, f

1
, . . . , f

q and each f
i will be

incident with edges f i
f3i+1, f

i
f3i+2, f

i
f3i+3 except possibly for f q, which may be of degree zero,

one, or two (see Figure 4).
The outer boundary is now f

0
, f3, g4, f4, f

1
, f6, . . . , f1. If f q is of degree zero, then we remove

it and obtain an outerface f 0
, f3, g4, f4, f

1
, f6, . . . , fd�2, fq�1, f1 of length at least six. But then we
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f
0

f
1

f
q

f
q�1

fd = f1

gd = g2f2
g3

f3
g4

f4

fd�1
gd�1

fd�2
gd�2

fd�3 D
0

Figure 4: r = 1

have a 2-connected, 3-vertex regular nearly Platonic graph with one face of size at least 6 and all
other faces of size 4, which does not exist by Theorem 1.1.

If f q is of degree one, as in Figure 4, we remove it and obtain an outerface f
0
, f3, g4, f4, f

1
,

f6, . . . , fq�1, fd�1, g2, f1 where f1 is now of degree two and we have a (3, 4, d0)-endblock B(3, 2),
which does not exist by Lemma 3.2.

Finally, when f
q is of degree two, then the boundary is

f
0
, f3, g4, f4, f

1
, f6, . . . , gd�1, fd�1, fq, f1 where f q is now of degree two and then again we have a

(3, 4, d0)-endblock B(3, 2), which does not exist by Lemma 3.2.

5. Type (5, 3)

Lemma 5.1. A (5, 3, d)-endblock B(5, l) does not exist for any l and d.

Proof. We again use the dual graph technique to prove the claim. We start with an observation
that the case d = 3 is impossible. If we have such a graph G with vertex x1 of degree l where
3  l  4, all other vertices of degree 5, inner faces triangular, and d = 3, then the outerface is
also a triangle. But then the dual graph G

D is a 2-connected, cubic graph with one face of degree
l 6= 5, and all remaining faces of degree 5, which is impossible by Theorem 1.1.

If l = 2, then the path x3, x1, x2 is weakly saturated, and we must have the edge x2x3 complet-
ing the boundary of the inner triangular face. But then the remaining neighbors of x2 and x3 are
outside of the cycle x1, x2, x3, that is, within the outerface, which is impossible.

We use the same notation as in the previous proof, with the exception that for i = 1, 2, . . . , d
the two inner faces containing xi but not sharing an edge with the outerface will be denoted by gi

and hi (see Figure 5).
The case l = 2 is essentially the same as for the (4, 3, d)-endblock B(4, 2) and we omit it.
When l = 3, the graphs B(5, 3) and its dual graph are shown in Figures 5 and 6, respectively.

After splitting vertex f the outerface of D0 is f 0
, f3, g4, h4, f4, f

1
, . . . , f1 of length at least six.

When fq is of degree zero, the boundary is f
0
, f3, g4, h4, f4, f

1
, . . . , f

q�1
, fd, f1 and we have

a 2-connected, 3-vertex regular nearly Platonic graph with one face of size at least 7 and all
other faces of size 5, and such a graph does not exist by Theorem 1.1. When f

q is of degree
one, by omitting f

q, the boundary is f
0
, f3, g4, h4, f4, f

1
, . . . , gd, hd, fd, f1 and deg(fd) = 2,

then the outer boundary is of length at least 6, and when f
q is of degree two, the boundary is

f
0
, f3, g4, h4, f4, f

1
, . . . , fd�1, f

q
, fd, f1 and deg(f q) = 2, then the outer boundary is of length
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xd�1
xd

x1

x2
x3

f1

f2

fd

fd�1
g2
h2 g3

h3

hd
gd

B(5, 3)

Figure 5: l = 3

hd�1
fd�1

gd
hd

fd

f

f1

g2
h2

f2

g3

D

Figure 6: The dual graph of B(5, 3)

at least 7. In the both cases, we have a (5, 3, d0)-endblock B(5, 3), which does not exist by
Lemma 3.2.

When l = 4, then the outerface in D
0 is f 0

, f3, g4, h4, f4, f
1
, . . . , g1, f1 of length at least seven.

hd�2

fd�1

gd�1hd�1

fd�1

gd hd

fd

g1

f1

g2 h2

f2

g3 h3

f3

g4

f
q�1

f
0f

q

q � 2, r = 2

Figure 7: D0

Now similarly as in the previous proof, when fq is of degree zero, the boundary is f 0
, f3, g4, h4,

f4, f
1
, . . . , f

q
, fd, g1, f1 and we have a 2-connected, 3-vertex regular nearly Platonic graph with one

face of size at least 8 and all other faces of size 5, and such a graph does not exist by Theorem 1.1.
When f

q is of degree one, by omitting f
q, the boundary is f 0

, f3, g4, h4, f4, f
1
, . . . , gd, hd, fd, g1, f1

and deg(fd) = 2, then the outer boundary is of length at least 7, and when f
q is of degree two,

the boundary is f 0
, f3, g4, h4, f4, f

1
, . . . , f

q
, fd, g1, f1 and deg(f q) = 2, then the outer boundary is

of length at least 9 (see Figure 7). In the both cases, we have a (5, 4, d0)-endblock B(5, 4), which
does not exist by Lemma 3.2.

6. Main result

Now we are ready to prove our main result.

Theorem 6.1. There is no (k, d1, d)-endblock for any admissible triple (k, d1, d).
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Proof. Follows directly from Lemmas 3.1–3.3, 4.1, and 5.1.

An alternative proof of the result presented by Deza and Dutour Sikirič in [1] now follows
immediately.

Theorem 1.2. There is no finite, planar, regular graph with connectivity one that has all but one

face of one degree and a single face of a different degree.

Proof. It is well known that every graph with connectivity one and minimum degree at least three
has at least two endblocks, that is, 2-connected graphs with minimum degree at least two. If
there was a graph defined in the Theorem, it would have to contain a (k, d1, d)-endblock for some
admissible triple (k, d1, d). However, such an endblock does not exist by Theorem 6.1. This proves
the claim.
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