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Abstract

In this paper, we explore the characteristic polynomials of degree sum adjacency matrix DSA(G)
of a simple undirected graph G. We state a relation between the structure of a graph and the
coefficients of its DSA polynomial. A walk generating function is expressed in terms of DSA

polynomial. Then, we obtain the degree sum adjacency polynomial for some standard graphs,
derived graphs and for graph operations.
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1. Introduction

Spectral graph theory focuses on the study of the eigenvalues and its relation to the structural
properties of a graph. Thus, for a given graph many matrices were defined in this field which
records the information about the vertices and the edges of a graph. To state a few, the most
explored and widely studied matrices are the adjacency matrix, the laplacian matrix, the signless
laplacian matrix, and many more.

In chemistry, many matrices are defined with respect to the distance, incidence and other fac-
tors. This motivated many researchers to explore different matrices [11, 13, 14] and study their
properties and energy [1, 10]. Zagreb index defined as the sum of the degrees of adjacent vertices
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have been studied intensively [4, 5, 6, 7, 15], which relates to the degree sum adjacency (DSA)
matrix. This motivated us to explore the DSA polynomial for a graph and its operations. In this
paper, we consider the degree sum adjacency matrix defined by Zaferani [14] and we discuss rela-
tion between the structure of a graph and the coefficients of DSA polynomial. Then we determine
the generating function for the number of walks of each length with respect to the degree sum adja-
cency matrix. Later we study the DSA polynomial of complementary graphs, some regular graphs,
derived graphs and graph operations in terms of its adjacency polynomial. The proof techniques
of the results in this paper are analogous to the results in [3].

Let G be a simple graph with n vertices and m edges. The adjacency matrix of a graph G is
defined as A(G) = [aij], where aij = 1, if vi is adjacent to vj and aij = 0 otherwise. The adjacency
eigenvalues are denoted as λ1 ≥ λ2 ≥ · · · ≥ λn and they satisfy all the basic relations [3]. The
adjacency polynomial of a graph G is denoted by,

ϕ (G : λ) = det(λI − A) = a0λ
n + a1λ

n−1 + · · ·+ an.

Let the vertices v1, v2, . . . , vn of G have the degrees d1, d2, . . . , dn. Then DSA(G) = [dsij] is
the degree sum adjacency matrix [14] of G whose elements are defined as,

dsij =

{
di + dj, if vi and vj are adjacent
0, otherwise.

(1)

b

b b

b b

v1

v2 v3

v4 v5

G:

Figure 1.

v1 v2 v3 v4 v5

DSA(G) =

v1
v2
v3
v4
v5


0 5 5 0 0
5 0 6 5 0
5 6 0 0 5
0 5 0 0 4
0 0 5 4 0


Graph and its DSA matrix

The degree sum adjacency polynomial of a graph G is defined as

PDSA(G)(β) = det(βI −DSA(G)) = βn + a1β
n−1 + a2β

n−2 + · · ·+ an. (2)

As DSA(G) is a real symmetric matrix, its eigenvalues must be real and can be arranged as
β1 ≥ β2 ≥ · · · ≥ βn.

Lemma 1.1. [2] The eigenvalues of matrix xI + yJ of order n × n are x + ny with multiplicity
one and x with multiplicity n− 1.
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2. Characteristic polynomial of degree sum adjacency matrix

In this section, first we obtain the explicit values of some coefficients of polynomial as defined
in Eq. (2). Then obtain the relation between the DSA characteristic polynomial of a graph and that
of its complement.

Some propositions relating the coefficients ai of PDSA(G)(β) to structural properties of G:
A degree sum adjacency matrix of any simple graph G is,

DSA(G) =


0 ds12 · · · ds1n

ds21 0 · · · ds2n
...

... . . . ...
dsn1 dsn2 · · · 0

 . (3)

Then the coefficients of DSA polynomial of G can be expressed using Sach’s theorem as follows.
Let G be a graph having n vertices and i be any positive number. Then Sach’s graphs Si are
the subgraphs of G with i vertices having disjoint union of K2 and/or Cn. Let the number of
components of s ∈ S and number of cycles of s ∈ S be P (s) and c(s) respectively. Then the
coefficient ai of βn−i in Eq. (2) is given by

ai =
∑
s∈Si

(−1)P (s)
(square of degree sum

along the edge

)
· 2c(s)

( product of degrees
along the edges of c(s)

)
.

Here we state first few coefficients of DSA polynomial.

a0 = 1

a1 = 0

a2 = −
∑
j<k

ds2jk

a3 = −2(multiplying sum of the degrees along the edges of the triangle )

a4 =

( ∑
i<j,k<l

ds2ij · ds2kl
where dsij and dskl

are the matching edges

)
− 2

(multiplying sum of degrees
along the edges of C4

)
a5 = 2

( multiplying sum of the degrees along
the edges of the triangle and disjoint edge

)
− 2

(multiplying sum of degrees
along the edges of C5

)
a6 = −

 ∑
i<j,k<l,
m<n

ds2ij · ds2kl · ds2mn
where dsij ,dskl and dsmn

are the matching edges

+ 2
(multiplying sum of degrees

along the edges of C4
and an disjoint edge

)
+4
(multiplying sum of degrees along

the edges of two disjoint triangles

)
− 2

(multiplying sum of degrees
along the edges of C6

)
.

Relation between DSA polynomial of a graph and its complement:
A walk of length k in a graph is any sequence of vertices v1, v2, . . . , vk+1 (not necessarily

different) such that there is an edge from vi to vi+1, for each i = 1, 2, . . . , k. To obtain the DSA

polynomial of a complement graph we first find the generating function to get the number of walks
of length k in G with respect to its DSA matrix.
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Theorem 2.1. Let G be the complement of G and let HDSA(G)(t) =
∑∞

k=0Nkt
k be the function

that generates the number Nk of walks of length k in G, (k = 0, 1, 2, . . .) with respect to its DSA

matrix. Then

HDSA(G)(t) =
1

2rt


(

r

n− r − 1

)n

(−1)nPDSA(G)

[
−
(
1 + 2rt

t

)(
n− r − 1

r

)]
PDSA(G)

(
1

t

)
 . (4)

Proof. The proof of this theorem is analogous to the proof obtained for adjacency matrix of a graph
G [3]. Let sum (A) denote the sum of all entries of matrix A.

|B + xJ | = |B|+ x sum (adj B) (5)
adjB = B−1|B| (6)

∞∑
k=0

aktk = 1 + at+ a2t2 + · · · = 1

1− at
. (7)

Nk =
∑
i.j

dskij = sum(DSA)
k, (8)

where B is any n ordered non singular matrix, J is a square matrix whose all entries are equal to
one, x is any arbitrary number and Nk is the number of all walks of length k in G with respect to
the DSA matrix.

Let HDSA(G)(t) =
∑∞

k=0 Nkt
k denote the generating function that gives the number of walks

Nk each of length k in G. Using Eq. (8), Eq. (7) and Eq. (6) we get.

∞∑
k=0

Nkt
k =

∞∑
k=0

sum(DSA)
ktk = sum

∞∑
k=0

(DSA)
ktk

= sum
1

(I − (DSA)t)
= sum (I −DSAt)

−1

=
sumadj(I −DSAt)

|I −DSAt|
. (9)

From Eq. (5) we have

sum adjB =
1

x
{|B + xJ | − |B|} .

Substituting B = I −DSAt, Eq. (9) reduces to

∞∑
k=0

Nkt
k =

1

x

{
|I −DSAt+ xJ | − |I −DSAt|

|I −DSAt|

}
. (10)

Substituting x = 2rt in the Eq.(10) we get
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∞∑
k=0

Nkt
k =

1

2rt

{
|I −DSAt+ 2rtJ | − |I −DSAt|

|I −DSAt|

}
. (11)

But
DSA = 2(n− r − 1) (J − I − A)

DSA = 2(n− r − 1)

(
J − I − DSA

2r

)
2r(DSA) = 2(n− r − 1) (−2rI + 2rJ −DSA) .

Multiplying both sides by t we get,

−DSAt+ 2rtJ =
rt(DSA)

n− r − 1
+ 2rtI.

Using the above result in Eq.(11) we get

∞∑
k=0

Nkt
k =

1

2rt


∣∣∣∣I + ( rDSA

n− r − 1
+ 2rI

)
t

∣∣∣∣
|I −DSAt|

− 1


=

1

2rt


∣∣∣∣(1 + 2rt

t

)
I +

rDSA

n− r − 1

∣∣∣∣∣∣∣∣It −DSA

∣∣∣∣ − 1


=

1

2rt


(−1)n

(
r

n− r − 1

)n

PDSA(G)

[
−
(
1 + 2rt

t

)(
n− r − 1

r

)]
PDSA(G)

(
1

t

) − 1

 .

Hence we get the required generating function.

Theorem 2.2. If G is a regular graph with degree r and n vertices, then DSA polynomial of the
complememt G is

PDSA(G)(β) = (−1)n
(
n− r − 1

r

)n [
β − 2(n− r − 1)2

β + (n− r − 1)(2r + 2)

]
PDSA(G)

(
−rβ − 2r(n− r − 1)

n− r − 1

)
.

(12)

Proof. Since G is a r regular graph, a walk can begin at any one vertex of G and may continue in
r ways. Therefore, number of walks of length k in G is Nk = nrk.
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Thus, for DSA(G) we have Nk

(2r)k
= nrk.

Hence for the generating function HG(t) we have,

HDSA(G)(t) =
∞∑
k=0

Nkt
k =

∞∑
k=0

(DSA)
ktk

=
∞∑
k=0

n.rk.(2r)ktk =
∞∑
k=0

n(2r2t)k

=
n

1− 2r2t
. (13)

Using Eq.(4) we get

1

2rt


(

r

n− r − 1

)n

(−1)nPDSA(G)

[
−
(
1 + 2rt

t

)(
n− r − 1

r

)]
PDSA(G)

(
1

t

)
 =

n

1− 2r2t
. (14)

Substituting −
(
1 + 2rt

t

)(
n− r − 1

r

)
= β in Eq.(14) we get


(−1)n

(
r

n− r − 1

)n

PDSA(G)(β)

PDSA(G)

[
−rβ − 2r(n− r − 1)

n− r − 1

] − 1

 =
−n

1 +
2r(n− r − 1)

β + 2(n− r − 1)

.
2(n− r − 1)

β + 2(n− r − 1)

=
−2n(n− r − 1)

β + (n− r − 1)(2r + 2)

(−1)n
(

r

n− r − 1

)n

PDSA(G)(β)

PDSA(G)

[
−rβ − 2r(n− r − 1)

n− r − 1

] =
−2n(n− r − 1)

β + (n− r − 1)(2r + 2)
+ 1

=
β + (n− r − 1)[−2n+ 2r + 2]

β + (n− r − 1)(2r + 2)
.

Simplifying we get the required DSA polynomial for G in terms of DSA polynomial of G.

3. DSA polynomials and spectra of some regular graphs

Theorem 3.1. [14] The degree sum adjacency polynomial of a complete graph Kn with n vertices
is

PDSA(Kn)(β) = [β + 2(n− 1)]n−1 [β − 2(n− 1)2
]
. (15)

This result can also be obtained by using lemma (1.1).
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Theorem 3.2. The DSA-polynomial for a 1-regular graph G with k vertices is

PDSA(K2)(β) = (β2 − 4)k. (16)

Proof. As each component of a 1-regular graph is isomorphic to K2, by substituting n = 2 in Eq.
(15) we obtain

PDSA(K2)(β) = (β − 2)(β + 2) = (β2 − 4)k.

A cocktail-party graph is a complementary graph of 1-regular graph.

Corollary 3.1. The DSA- polynomial of the cocktail-party graph with 2k vertices is

PDSA(CP (k))(β) = βk[β − 2(2k − 2)2][β + 4(2k − 2)]k−1. (17)

Proof. Let G be a 1-regular graph, then PDSA(G) = PDSA(CP (k)). To obtain DSA polynomial for
cocktail-party graph, substitute n = 2k and r = 1 in Eq. (12)

PDSA(CP (k))(β) = (−1)2k(2k − 2)2k
[
β − 2(2k − 2)2

β + (2k − 2)4

]
PDSA(G)

[
−β − 2(2k − 2)

2k − 2

]
= (2k − 2)2k

[
β − 2(2k − 2)2

β + (2k − 2)4

]{[
−β − 2(2k − 2)

2k − 2

]2
− 4

}k

= βk[β − 2(2k − 2)2][β + 4(2k − 2)]k−1.

Theorem 3.3. If Cn is a cycle with n vertices, then eigenvalues of degree sum matrix of Cn are

βk = 8cos

(
2πk

n

)
k = 0, 1, . . . , n− 1. (18)

Proof. The eigenvalues of A(Cn) are λk = 2cos
2πk

n
where k = 0, 1, . . . , n − 1. As DSA(G) =

4A(G), the eigenvalues of DSA(Cn) are βk = 8cos
2πk

n
where k = 0, 1, . . . , n− 1.

A crown graph S0
n is obtained from the complete bipartite graph Kn,n by deleting the perfect

matching edges.

Theorem 3.4. The DSA-polynomial of a 2n-vertex crown graph S0
n is

PDSA(S0
n)
(β) =

[
β2 − 4(n− 1)2

]n−1 [
β2 − 4(n− 1)4

]
(19)

Proof. The DSA-matrix of crown graph will be of the form
[
X Y
Y X

]
. The DSA matrix can be

reduced to the form (X − Y )(X + Y ), where X is a matrix of all zeros and Y is a matrix with
all non diagonal entries as 2(n − 1) and the diagonl entries as zero. The matrix Y is of the form
2(n− 1)J − 2(n− 1)I . Separately evaluating (X −Y ) and (X +Y ) by applying lemma (1.1) and
then multiplying, we get the required result.
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4. DSA polynomial of some graph operations

Line Graph L(G) of a graph G is the graph which has one-to-one correspondence between the
vertex set and the set of edges of the graph G, with two vertices of L(G) being adjacent iff the
corresponding edges are adjacent in G [8].

Theorem 4.1. If G is a r regular graph having n vertices and m = 1
2
nr edges and L(G) is a line

graph, then DSA polynomial of L(G) in terms of DSA polynomial of G is

PDSA(L(G))(β) = (β + 8r − 8)m−n

(
2r − 2

r

)n

PDSA(G)

[
r

2r − 2

(
β − 4r2 + 12r − 8

)]
. (20)

Proof. Let A be an adjacency matrix of graph G, B be an adjacency matrix of graph L(G) and R
be the incidence matrix of G with D as the degree matrix. Then for G, we have

RRT = A+D =
DSA(G)

2r
+D and RTR = B + 2I =

DSAL(G)

4r − 4
+ 2I

Taking r′ = 4r − 4 we have,

βmPRRT (β) = βnPRTR(β)

βm−n
∣∣βI −RRT

∣∣ =
∣∣βI −RTR

∣∣
βm−n

∣∣∣∣β − DSA(G)

2r
−D

∣∣∣∣ =

∣∣∣∣βI − DSAL(G)

r′
− 2I

∣∣∣∣
βm−n

∣∣∣∣(β − r)I − DSA(G)

2r

∣∣∣∣ =

∣∣∣∣(β − 2)I − DSAL(G)

r′

∣∣∣∣
βm−n

(2r)n
· (r′)mPDSA(G)[2r(β − r)] = PDSA(L(G))[r

′(β − 2)]

substituting r′(β − 2) = β and r′ = 4r − 4 we get the required result as shown in Eq. (20).

Subdivision graph s(G) of a simple graph G is the graph which is obtained by adding (insert-
ing) a new vertex onto every edge of G [8].

Theorem 4.2. If G is a regular graph of degree r with n vertices and m
(
=

nr

2

)
edges and s(G) is

a subdivision graph, then DSA polynomial PDSA(s(G)) of s(G) in terms of its adjacency polynomial
ϕ(G) is,

PDSA(s(G))(β) = βm−n(r + 2)2nϕ

(
G :

[
β2

(r + 2)2
− r

])
. (21)

Proof. For a r−regular graph G having n vertices, its degree sum adjacency matrix of subdivision
graph s(G) of graph G is DSA(s(G)). As vertex set of s(G) is partitioned into two sets, one with
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n vertices of degree r and the other with m vertices of degree 2, the characteristic polynomial of
DE(s(G)) is obtained as follows.

PDSA(s(G))(β) =

∣∣∣∣ βIm −(r + 2)RT

−(r + 2)R βIn

∣∣∣∣
= βm−n

∣∣β2In −RRT (r + 2)2
∣∣

= βm−n
∣∣β2In − (r + 2)2(A+ rIn)

∣∣
= βm−n(r + 2)2n

∣∣∣∣( β2

(r + 2)2
− r

)
In − A

∣∣∣∣
= βm−n(r + 2)2nϕ

(
G :

[
β2

(r + 2)2
− r

])
.

Semi total point graph T1(G) is a graph which is derived from graph G by inserting (adding)
a new vertex into every edge of G and each new inserted vertex is then joined to the end points of
the corresponding edge [3].

Theorem 4.3. The DSA polynomial PDSA(T1(G)) of semi total point graph T1(G) of a n ordered
r-regular graph G in terms of its adjacency polynomial ϕ(G) is

PDSA(T1(G))(β) = βm−n
[
4rβ + (2r + 2)2

]n
ϕ

(
G :

[
β2 − r(2r + 2)2

4rβ + (2r + 2)2

])
. (22)

Proof. Let G be a r-regular graph with n vertices, where m = nr/2 new vertices are added
to construct a T1(G) graph. Then the DSA polynomial of T1(G) is DSA(T1(G)) = det(βI −
DSA(T1(G))).

PT1(G)(β) =

∣∣∣∣ βIm −(2r + 2)RT

−R(2r + 2) βIn − 4rA

∣∣∣∣
= βm

∣∣∣∣βIn − 4rA− (2r + 2)2RRT Im
β

∣∣∣∣
= βm−n

∣∣β2In − 4rAβ − (2r + 2)2(A+ rI)
∣∣

= βm−n
∣∣(β2 − r(2r + 2)2

)
In −

[
4rβ + (2r + 2)2

]
A
∣∣

= βm−n
[
4rβ + (2r + 2)2

]n ∣∣∣∣(β2 − r(2r + 2)2) In
[4rβ + (2r + 2)2]

− A

∣∣∣∣
= βm−n

[
4rβ + (2r + 2)2

]n
ϕ

(
G :

[
β2 − r(2r + 2)2

4rβ + (2r + 2)2

])
.

Semi total line graph T2(G) of a graph G, is the graph with vertex set V (T2(G)) = V (G) ∪
E(G) in which two vertices are adjacent if they are on adjacent edges of G or one is a vertex of G
and the other is an edge of G, incident to it [3].
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Theorem 4.4. Let G be a r-regular graph having n vertices and m edges and let T2(G) be a semi
total line graph of G. Then the DSA polynomial PDSA(T2(G)) of semi total line graph T2(G) of a
graph G in terms of its adjacency polynomial of line graph ϕ(L(G)) is

PDSA(T2(G))(β) = βn−m(4rβ + 9r2)mϕ

(
L(G) :

[
β2 − 18r2

4rβ + 9r2

])
. (23)

Proof. For a r-regular graph G, the DSA polynomial of T2(G) is

PDSA(T2(G))(β) =

∣∣∣∣ βIn 3rR
3rRT βIm − 4rB

∣∣∣∣
= βn−m

∣∣(βIm − 4rB)β − 9r2RTR
∣∣

= βn−m
∣∣(βIm − 4rB)β − 9r2(B + 2I)

∣∣
= βn−m

∣∣(β2 − 18r2)Im − (4rβ + 9r2)B
∣∣

= βn−m(4rβ + 9r2)mϕ

(
L(G) :

[
β2 − 18r2

4rβ + 9r2

])
.

.

Thorn graph G+k is a graph which is obtained from graph G by attaching k pendent vertices
to every edge of G. If G is a graph with n vertices and m edges, then G+k has n+ nk vertices and
m+ nk edges.

Theorem 4.5. The DSA polynomial PDSA(G+k) of Thorn graph G+k of a n ordered r-regular graph
G in terms of its adjacency polynomial ϕ(G) is

PDSA(G+k)(β) = βnk[2(r + k)]nϕ

(
G :

[
β

2(r + k)
− k(r + k + 1)2

2(r + k)β

])
. (24)

Proof. The DSA polynomial of Thorn graph can be written as,

PDSA(G+k)(β) =

∣∣∣∣∣∣∣∣∣∣∣

βIn − 2(r + k)A −(r + k + 1)J −(r + k + 1)J · · · −(r + k + 1)J
−(r + k + 1)J ′ βIk 0 · · · 0
−(r + k + 1)J ′ 0 βIk · · · 0

...
...

... . . . ...
−(r + k + 1)J ′ 0 0 · · · βIk

∣∣∣∣∣∣∣∣∣∣∣
where A is the adjacency matrix of G, I is the unit matrix and J is a block matrix of order (n, k).

For β ̸= 0, multiply the rows (consisting of block matrices) numbered 2, 3, . . . , k+1 by
1

β
(r+k+1)
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and add the resulting rows to the first row. This reduces the determinant as follows.

PG+k(β) =

∣∣∣∣∣∣∣∣∣∣∣∣

[βIn − 2(r + k)A]− k(r + k + 1)2

β
0 0 · · · 0

−(r + k + 1)J ′ βIk 0 · · · 0
−(r + k + 1)J ′ 0 βIk · · · 0

...
...

... . . . ...
−(r + k + 1)J ′ 0 0 · · · βIk

∣∣∣∣∣∣∣∣∣∣∣∣
= βnk

∣∣∣∣(β − k(r + k + 1)2

β

)
In − 2(r + k)A

∣∣∣∣
= βnk[2(r + k)]nϕ

(
G :

[
β

2(r + k)
− k(r + k + 1)2

2(r + k)β

])
.

Hence the result.

Total graph T (G) of G is a graph with vertex set V (T (G)) = V (G)∪E(G), with two vertices
of T (G) being adjacent if and only if the corresponding elements of G are adjacent or incident [8].

Theorem 4.6. If G is a regular graph of degree r having n vertices and m edges, then the Total
graph T (G) has (m − n) DSA eigenvalues equal to −8r and the other 2n eigenvalues are given
by,

1

2

(
4r2 − 8r + 8rλi

)
± 4r

√
r2 + 4 + 4λi

where λi (i = 1, 2, . . . , n) being the adjacency eigenvalues of G.

Proof. Let G be a r regular graph with n vertices and m edges. As DSA(T (G)) can be expressed
in terms of its adjacency matrix A, adjacency matrix of line graph B and the incidence matrix R
of a graph G, we get

DSA(T (G)) =

(
4rA 4rR
4rRT 4rB

)
.

Its DSA polynomial can be expressed as

PDSA(T (G))(β) =

∣∣∣∣ βI − 4rA −4rR
−4rRT βI − 4rB

∣∣∣∣ .
As A+D = RRT and B + 2I = RTR
−4rA = 4r2I − 4rRRT and −4rB = 8rI − 4rRTR

PDSA(T (G))(β) =

∣∣∣∣ βI + 4r2I − 4rRRT −4rR
−4rRT βI + 8rI − 4rRTR

∣∣∣∣ .
Applying series of elementary transformation,

• Second row = second row - RT first row
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• First row = First row +
4rR

β + 8r
second row

the determinant can be expressed as follows.

PDSA(T (G))(β) =

∣∣∣∣ (β + 4r2)I − 4rRRT −4rR
−4rRT − (β + 4r2)IRT − 4rRTRRT (β + 8r)I

∣∣∣∣
=

∣∣∣∣ βI − 4rA −4rR
−(β + 4r2 + 4r)RT + 4rRTRRT (β + 8r)I

∣∣∣∣
=

∣∣∣∣(β + 8r)Im

{
(βI − 4rA) +

[
−(β + 4r2 + 4r) + 4rRRT

] 4rR

β + 8r

}∣∣∣∣
= (βI + 8r)m−n

∣∣(βI − 4rA)(β + 8r) + [−(β + 4r2 + 4r) + 4rRRT ]4rRRT
∣∣

= (βI + 8r)m−n
∣∣(βI − 4rA)(β + 8r) + [4rA− (β + 4r)I](4rA+ 4r2I)

∣∣
= (βI + 8r)m−n

∣∣16r2A2 + (16r3 − 48r2 − 8rβ)A+ (β2 + 8rβ − 4r2β − 16r3)
∣∣

= (βI + 8r)m−n ×

×
n∏

i=1

{
β2 − β(4r2 − 8r + 8rλi) +

[
16r2λ2

i + λi(16r
3 − 48r2)− 16r3

]}
where λi (i = 1, 2, . . . , n) are the eigenvalues of A. Thus we have proved that there are exactly
(m− n) DSA eigenvalues of T (G) equal to β = −8r.
Using b2 − 4ac, we find that the roots of the polynomial aβ2 + bβ + c where a = 1, b = −(4r2 −
8r + 8rλi) and c = 16r2λ2

i + λi(16r
3 − 48r2)− 16r3.

On solving we get 2n eigenvalues of T (G) as

1

2

{
(4r2 − 8r + 8rλi)± 4r

√
r2 + 4 + 4λi

}
.

The join G1∇G2 of (disjoint) graphs G1 and G2 is the graph that is obtained from G1 ∪ G2,
by joining every vertex of G1 to all vertices of G2.

Theorem 4.7. Let G1 and G2 be two regular graphs with regularity r1 and r2 and with orders n1

and n2 respectively. Then the DSA-polynomial of G1∇G2 is given by the relation,

PDSA(G1∇G2)(β) =

PG1

(
r1β

r1 + n2

)
PG2

(
r2β

r2 + n2

)
[β − 2r1(r1 + n2)][β − 2r2(r2 + n1)]

{[β − 2r1(r1 + n2)]

[β − 2r2(r2 + n1)]− n1n2x
2}.

(25)

where x = n1 + n2 + r1 + r2.
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Proof. The DSA-polynomial of G1∇G2 is obtained as

PDSA(G1∇G2)(β) = det(βI −DSA(G1∇G2))

=

∣∣∣∣∣∣∣∣
βIn1 −

(
r1 + n2

r1

)
DSA(G1) −xJn1×n2

−xJn2×n1 βIn2 −
(
r2 + n1

r2

)
DSA(G2)

∣∣∣∣∣∣∣∣
where x = n1 + n2 + r1 + r2 and J is a matrix whose all entries are equal to unity. The above
determinant can be written as,∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β −ds12 · · · −ds1n1 −x −x · · · −x
−ds21 β · · · −ds2n1 −x −x · · · −x

...
...

...
−dsn11 −dsn12 · · · β −x −x · · · −x
−x −x · · · −x β −ds′12 · · · −ds′1n2

−x −x · · · −x −ds′21 β · · · −ds′2n2
...

...
...

−x −x · · · −x −ds′n21
−ds′n22

· · · β

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (26)

Where dsij is the ijth entry DSA matrix of G1 and ds′ij is the ijth entry DSA matrix of G2. In G1

each vertex is adjacent to all vertices of G2, so its new vertex degree is r1 + n2 and as there are r1
vertices adjacent to a vertex vi in G1, therefore

n1∑
j=1

dsij = 2r1(r1 + n2) for i = 1, 2, . . . , n1. (27)

Similarly for G2

n2∑
j=1

ds′ij = 2r2(r2 + n1) for i = 1, 2, . . . , n2. (28)

We carry out a series of elementary transformations so that the determinant remains unchanged.
Subtracting (n1 + 1)th row from the rows (n1 + 2), (n1 + 3), . . . , (n1 + n2) of determinant (26),
we get

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β −ds12 · · · −ds1n1 −x −x · · · −x
−ds21 β · · · −ds2n1 −x −x · · · −x

...
...

...
−dsn11 −dsn12 · · · β −x −x · · · −x
−x −x · · · −x β −ds′12 · · · −ds′1n2

0 0 · · · 0 −ds′21 − β β + ds′12 · · · −ds′2n2
+ ds′1n2

...
...

...
0 0 · · · 0 −ds′n21

− β −ds′n22
+ ds′12 · · · β + ds′1n2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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Add the columns (n1 + 2), (n1 + 3), . . . , (n1 + n2) to the (n1 + 1)th column, using Eq. (28), and
also taking into consideration ds′ij = ds′ji we arrive at the following determinant,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β −ds12 · · · −ds1n1 −n2 −x · · · −x
−ds21 β · · · −ds2n1 −n2x −x · · · −x

...
...

...
−dsn11 −dsn12 · · · β −n2x −x · · · −x
−x −x · · · −x β − 2r2(r2 + n1) −ds′12 · · · −ds′1n2

0 0 · · · 0 0 β + ds′12 · · · −ds′2n2
+ ds′1n2

...
...

...
0 0 · · · 0 0 −ds′n22

+ ds′12 · · · β + ds′1n2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

On simplifying, the determinant reduces to

∣∣∣∣∣∣∣∣∣∣∣

β −ds12 · · · −ds1n1 −n2x
−ds21 β · · · −ds2n1 −n2x

...
...

−dsn11 −dsn12 · · · β −n2x
−x −x · · · −x β − 2r2(r2 + n1)

∣∣∣∣∣∣∣∣∣∣∣
|X|, (29)

where

|X| =

∣∣∣∣∣∣∣∣∣
β + ds′12 −ds′23 + ds′13 · · · −ds′2n2

+ ds′1n2

−ds′32 + ds′12 β + ds′13 · · · −ds′3n2
+ ds′1n2

...
...

−ds′n22
+ ds′12 −ds′n23

+ ds′13 · · · β + ds′1n2

∣∣∣∣∣∣∣∣∣ . (30)

Subtracting first rows of determinant (29) from all other rows, we get∣∣∣∣∣∣∣∣∣∣∣

β −ds12 · · · −ds1n1 −n2x
−ds21 − β β + ds12 · · · −ds2n1 + ds1n1 0

...
...

−dsn11 − β −dsn12 + ds12 · · · β + ds1n1 0
−1 −1 . . . −1 β − 2r2(r2 + n1)

∣∣∣∣∣∣∣∣∣∣∣
|X| . (31)

Adding columns 2, 3, . . . , n1 to the first column and using Eq. (27) we get∣∣∣∣∣∣∣∣∣∣∣

β − 2r1(r1 + n2) −ds12 · · · −ds1n1 −n2x
0 β + ds12 · · · −ds2n1 + ds1n1 0
...

...
0 −dsn12 + ds12 · · · β + ds1n1 0

−n1x −x · · · −x β − 2r2(r2 + n1)

∣∣∣∣∣∣∣∣∣∣∣
|X|.
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Expanding the determinant along its first column we get

{[β − 2r1(r1 + n2)]∆1 − (−1)n1n1∆2} |X|. (32)

Where

∆1 =

∣∣∣∣∣∣∣∣∣∣∣

β + ds12 −ds23 + ds13 · · · −ds2n1 + ds1n1 0
−ds32 + ds12 β + ds13 · · · −ds3n1 + ds1n1 0

...
...

−dsn12 + ds12 −dsn13 + ds13 · · · β + ds1n1 0
−x −x · · · −x β − 2r2(r2 + n1)

∣∣∣∣∣∣∣∣∣∣∣
and

∆2 =

∣∣∣∣∣∣∣∣∣∣∣

−ds12 −ds13 · · · −ds1n1 −n2x
β + ds12 −ds23 + ds13 · · · −ds2n1 + ds1n1 0

−ds32 + ds12 β + ds13 · · · −ds3n1 + ds1n1 0
...

...
−dsn12 + ds12 −dsn13 + ds13 · · · β + ds1n1 0

∣∣∣∣∣∣∣∣∣∣∣
.

The expression in (32) can be rewritten as

{[β − 2r1(r1 + n2)][β − 2r2(r2 + n1)]|Y | − n1n2|Y |}|X|
= |X||Y |{[β − 2r1(r1 + n2)][β − 2r2(r2 + n1)]− n1n2} (33)

where

|Y | =

∣∣∣∣∣∣∣∣∣
β + ds12 −ds23 + ds13 · · · −ds2n1 + ds1n1

−ds32 + ds12 β + ds13 · · · −ds3n1 + ds1n1

...
...

−dsn12 + ds12 −dsn13 + ds13 · · · β + ds1n1

∣∣∣∣∣∣∣∣∣ .
The above determinant can be written as

|Y | =
1

[β − 2r1(r1 + n2)]
×

∣∣∣∣∣∣∣∣∣∣∣

β − 2r1(r1 + n2) −ds12 −ds13 · · · −ds1n1

0 β + ds12 −ds23 + ds13 · · · −ds2n1 + ds1n1

0 −d32 + d12 µ+ d13 . . . −d3n1 + d1n1

...
...

0 −dsn12 + ds12 −dsn13 + ds13 · · · β + ds1n1

∣∣∣∣∣∣∣∣∣∣∣
.

Using Eq. (27), the sum of the i-th row in the above determinant is β + dsi1 for i = 2, 3, . . . , n1.
Therefore, by subtracting the columns 2, 3, . . . , n1 of above determinant from the first column, we
obtain
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|Y | =
1

[β − 2r1(r1 + n2)]
×

∣∣∣∣∣∣∣∣∣∣∣

β −ds12 −ds13 · · · −ds1n1

−β − ds21 β + ds12 −ds23 + ds13 · · · −ds2n1 + ds1n1

−β − ds31 −ds32 + ds12 β + ds13 · · · −ds3n1 + ds1n1

...
...

−β − dsn11 −dsn12 + ds12 −dsn13 + ds13 · · · β + ds1n1

∣∣∣∣∣∣∣∣∣∣∣
.

Adding first row to all other rows of the determinant, we get

|Y | =
1

[β − 2r1(r1 + n2)]

∣∣∣∣∣∣∣∣∣∣∣

β −ds12 −ds13 · · · −ds1n1

−ds21 β −ds23 · · · −ds2n1

−ds31 −ds32 β · · · −ds3n1

...
...

−dsn11 −dsn12 −dsn13 · · · β

∣∣∣∣∣∣∣∣∣∣∣
=

1

[β − 2r1(r1 + n2)]
PG1(β) . (34)

Similarly, we can show that from Eq. (30) we get

|X| = 1

[β − 2r2(r2 + n1)]
PG2(β) . (35)

Substituting Eq. (34) and Eq. (35) into Eq. (33) results to Eq. (25).

Let G be a graph with n1 vertices and let H be a graph with n2 vertices. Then the corona G◦H
is the graph with n1 + n1n2 vertices, which is obtained by taking graph G and n copies of graph
H and by joining ith vertex of G to each vertex in the i-copy of H (i = 1, · · · , n1).

Theorem 4.8. Let G and H be regular graphs with n1 and n2 vertices respectively. Then the DSA

polynomial PDSA(G◦H) of the corona G ◦H in terms of its adjacency polynomials ϕ(G) and ϕ(H)
is

PDSA(G◦H)(β) =2n1n2+n1(r1 + n2)
n1(r2 + 1)n1n2

{
ϕ

(
H :

[
β

2(r2 + 1)

])}n1

ϕ

(
G :

[
β

2(r1 + n2)
− m(r1 + r2 + n2 + 1)2

2(r1 + n2)(β − 2(r2 + 1))

])
.

(36)
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Proof. Let A be adjacency matrix of the r1 regular graph G with n1 vertices and let B be the
adjacency matrix of the r2 regular graph H with n2 vertices. Its DSA polynomial can be obtained
as follows,

PDSA(G◦H) =

∣∣∣∣∣∣∣∣∣
βI − 2(r1 + n2)A −(r1 + r2 + 1 + n2)J · · · −(r1 + r2 + 1 + n2)J

−(r1 + r2 + 1 + n2)J
T βI − 2(r2 + 1)B · · · 0

...
... . . . ...

−(r1 + r2 + 1 + n2)J
T 0 · · · βI − 2(r2 + 1)B

∣∣∣∣∣∣∣∣∣ .

Multiply the rows (consisting of block matrices) numbered 2, 3, . . . , n1 by
(r1 + r2 + 1 + n2)

βI − 2(r2 + 1)
,

then the sum of rows of the block matrices to the respective row of the first block matrix. This
reduces the determinant to

PDSA(G◦H)(β) =∣∣∣∣∣∣∣∣∣∣∣
βI − m(r1 + r2 + 1 + n2)

2

βI − 2(r2 + 1)
− 2(r1 + n2)A 0 · · · 0

−(r1 + r2 + 1 + n2)J
T βI − 2(r2 + 1)B · · · 0

...
... . . . ...

−(r1 + r2 + 1 + n2)J
T 0 · · · βI − 2(r2 + 1)B

∣∣∣∣∣∣∣∣∣∣∣
.

On simplifying the determinant, we get

PDSA(G◦H)(β) = |βI − 2(r2 + 1)B|n1

∣∣∣∣(β − m(r1 + r2 + 1 + n2)
2

βI − 2(r2 + 1)

)
I − 2(r1 + n2)A

∣∣∣∣
= 2n1n2(r2 + 1)n1n2

∣∣∣∣ β

2(r2 + 1)
I −B

∣∣∣∣n1

2n1(r1 + n2)
n1∣∣∣∣( β

2(r1 + n2)
− m(r1 + r2 + 1 + n2)

2

(r1 + n2)βI − 2(r2 + 1)

)
I − A

∣∣∣∣
= 2n1n2+n1(r2 + 1)n1n2(r1 + n2)

n1

{
ϕ

(
H :

[
β

2(r2 + 1)

])}n1

ϕ

(
G :

[
β

2(r1 + n2)
− m(r1 + r2 + 1 + n2)

2

(r1 + n2)βI − 2(r2 + 1)

])
.

Theorem 4.9. The DSA-polynomial of cartesian product of complete graphs K2 and Kn, K2�Kn

is

PDSA(K2�Kn)(β) =

(
β − 2n2

β + 2n2

)[
(β + 2n)2 − 4n2

]n−1 [
(β + 2n)2 − 4n2(n− 1)2

]
(37)

Proof. As complement of 2n-vertex crown graph S0
n is the cartesian product of K2 and Kn,

K2�Kn. Applying the result of Theorem (3.4) in Eq. (12) of Theorem(2.2) we get the required
result.
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