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Abstract

For simple connected graphs that are neither paths nor cycles, we define l(G) = max{m :
G has a divalent path of length m that is not both of length 2 and in a K3}, where a divalent path
is a path whose internal vertices have degree two in G. Let G be a graph and Ln(G) be its n-th
iterated line graph of G. We use κ′

e(G) and κ(G) for the essential edge connectivity and vertex
connectivity of G, respectively. Let G be a simple connected graph that is not a path, a cycle or
K1,3, with l(G) = l ≥ 1. We prove that (i) for integers s ≥ 1, κ′

e(L
l+s(G)) ≥ 2s + 2; (ii) for

integers s ≥ 2, κ(Ll+s(G)) ≥ 2s−1 + 2. The bounds are best possible.
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1. Introduction

We use [1] for terminology and notation not defined here, and consider finite and simple graphs
only. Let A,B be two vertex sets in a graph G, and [A,B] denote the set of edges with one end in A
and the other in B. In particular, κ(G) and κ′(G) represent the connectivity and edge-connectivity
of a graph G, respectively. A graph is trivial if it contains no edges. An edge cut Y of G is essential
if G − Y has at least two nontrivial components. For an integer k > 0, a graph G is essentially
k-edge-connected if G does not have an essential edge cut Y with |Y | < k. We use κ′

e(G) to

Received: 27 June 2020, Revised: 17 July 2022, Accepted: 28 August 2022.

565



www.ejgta.org

A bound on connectivity of iterated line graphs | Y. Shao

denote the essential edge connectivity of a graph G. A degree sum property follows immediately
from the definition of essential edge connectivity.

Proposition 1.1. (Shao, Proposition 2.1 of [4]) Let n ≥ 1 be an integer and G be a graph which
is not K1,n−1 or K3. Then the degree sum of any two adjacent vertices is at least κ′

e(G) + 2.

The line graph of a graph G, denoted by L(G) or L1(G), has E(G) as its vertex set, where
two vertices in L(G) are adjacent if and only if the corresponding two edges in G have a common
vertex. Iteratively, Ln(G) = L(Ln−1(G)) and L0(G) = G for integers n ≥ 1. The following
connectivity properties can be derived from the definitions.

Proposition 1.2. (Shao, Proposition 1.2 of [4]) Let n ≥ 1 be an integer and G be a graph which
is not K3 or K1,n−1. Then each of the following holds.

(i) κ′
e(G) ≥ κ′(G).

(ii) κ′
e(G) = κ(L(G)).

(iii) κ′
e(L(G)) ≥ κ′

e(G).
(iv) κ(L(G)) ≥ κ(G).

Proposition 1.2(ii) indicates that it is useful to investigate properties of essential edge connec-
tivity in order to obtain properties of vertex connectivity in line graphs. Here is a result on how
essential edge connectivity grows for iterated line graphs.

Theorem 1.1. (Shao, Theorem 1.3 of [4]) Let n ≥ 1 be an integer and G be a graph which is not
K1,n−1 or K3. If G does not contain degree two vertices, then κ′

e(L(G)) ≥ 2κ′
e(G)− 2.

For simple connected graphs that are neither paths nor cycles, we define l(G) = max{m :
G has a divalent path of length m that is not both of length 2 and in a K3}, where a divalent path
is a path whose internal vertices have degree two in G. We call l(G) the divalent length of G.

For the graph G depicted in Figure 1, κ′
e(L(G)) = κ′

e(G) = 3; the one in Figure 1, κ′
e(L(G)) =

κ′
e(G) = 1. In many cases as these graphs depicted in Figures 0 and 1, when G has a divalent path

with internal vertices of degree two, the connectivity of the line graphs stays the same. Since each
iteration will reduce the lengths of all divalent paths by one, after l(G)− 1 times of iterations, the
internal vertices of degree 2 either disappear or lie in a triangle, and the connectivity is likely to
increase.

Figure 1. An example for κ′
e(L(G)) = κ′

e(G).

A former result gives a bound on the essential edge connectivity of the (l + 1)-th iterated line
graphs.
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Proposition 1.3. (Zhang et al., Lemma 2.5 of [6]) Let G be a connected graph with l(G) = l.
Then κ′

e(L
l+1(G)) ≥ 4.

In this note, we obtain the bounds for essential edge connectivity and connectivity of iterated
line graphs.

Theorem 1.2. Let G be a simple connected graph that is not a path, a cycle or K1,3, with l(G) =
l ≥ 1. Then each of the following holds:
(i) For integers s ≥ 1, κ′

e(L
l+s(G)) ≥ 2s + 2. The bound is best possible.

(ii) For integers s ≥ 2, κ(Ll+s(G)) ≥ 2s−1 + 2. The bound is best possible.

Note that (i) does not hold for s = 0 and (ii) does not hold for s = 1 as there exist graphs
with κ′

e(L
l(G)) = κ(Ll+1(G)) = 2. As shown in Figure 2(a), l(G) = 2 and in Figure 2(c),

κ′
e(L

2(G)) = 2. By Proposition 1.2(ii), κ(L3(G)) = κ′
e(L

2(G)) = 2.

Figure 2. An example to show (i) does not hold for s = 0.

2. Previous Results

For a graph G and a vertex v ∈ V (G), define

NG(v) = {u ∈ V (G) : u is adjacent to v in G}

and
EG(v) = {e ∈ E(G) : e is incident with v in G}.

Let L(G) be the line graph of G, and

X be a minimal essential edge cut of L(G). (1)

By (1), L(G)−X has exactly two nontrivial components, so we assume

L1, L2 are the only two nontrivial components of L(G)−X . (2)

By (2), V (L(G)) is a disjoint union of V (L1) and V (L2). By the definition of line graphs, E(G)
is a disjoint union of two edge sets corresponding to V (L1) and V (L2). For each edge e ∈ E(G),
let ve ∈ V (L(G)) denote its corresponding vertex in the line graph L(G). Let f : E(G) 7→ {1, 2}
be a 2-edge-coloring of G such that

f(e) = i if and only if ve ∈ V (Li) for i = 1, 2.
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Proposition 2.1. (Shao, [3]) Let G be a graph, e1, e2 ∈ E(G) and ve1 , ve2 ∈ V (L(G)) be their
corresponding vertices in the line graph L(G). Then each of the following holds:

(i) For i = 1, 2, |{e ∈ E(G) : f(e) = i}| = |V (Li)| ≥ 2.
(ii) ve1ve2 ∈ X if and only if e1, e2 share a common vertex and f(e1) ̸= f(e2).

A vertex of a graph G is mono-colored if all incident edges have the same color in G, and a
vertex is bi-colored if the incident edges have two different colors.

Proposition 2.2. (Shao, [3]) Let G be a graph, V12 the set of all bi-colored vertices of G, or
equivalently,

V12 = {v ∈ V (G) : there exist e1, e2 ∈ EG(v) such that f(e1) = 1 and f(e2) = 2}. (3)

Then each of the following holds.
(i) dG(v) ≥ 2 for each v ∈ V12.
(ii) Each vertex of G − V12 is mono-colored in G, and moreover, for each component H of

G− V12, all edges with at least one end in H have the same color as the edges of H .
(iii) If 1 ≤ |V12| ≤ 3 and V12 is not a vertex cut, then the subgraph of G induced by V12, G[V12],

is connected.
(iv) If |V12| = 1 or 2, then V12 is a vertex cut of G.

Let u ∈ V (G) and

Ei(u) = {e ∈ EG(u) : f(e) = i} for i = 1, 2. (4)

Proposition 2.3. (Shao, Proposition 2.4 of [4]) Each of the following holds:
(i) |X| =

∑
u∈V12

|E1(u)| · |E2(u)|.
(ii) For each u ∈ V12 and i = 1, 2, |E1(u)| · |E2(u)| ≥ dG(u)− 1.
(iii) If for each u ∈ V12 and i = 1, 2, |Ei(u)| ≥ 2, then |E1(u)| · |E2(u)| ≥ 2(dG(u)− 2).

A graph G is k-triangular if each edge of G lies in at least k triangles and G is triangular if
it is 1-triangular. We summarize some properties of iterated line graphs of G in terms of l(G) as
follows.

Proposition 2.4. (Zhang, Eschen, Lai and Shao, Lemma 3.2 of [5]) Let G be a simple connected
graph that is not a path, a cycle or K1,3, with l(G) = l ≥ 1. Then each of the following holds:
(i) For an integer m ≥ 0,

l(Lm(G)) =

{
l −m, if 0 ≤ m < l,

1, if m ≥ l.

(ii) For integers k ≥ 0,

δ(Ll+k(G)) ≥
{

2, if k = 0 or k = 1,
2k−2 + 2, if k ≥ 2.

(iii) Ll(G), Ll+1(G) and Ll+2(G) are triangular. Moreover, Ll+k(G) is 2k−3-triangular when
k ≥ 3.
(iv) For an integer k ≥ 0, κ(Ll+k(G)) ≥ k + 1.

568



www.ejgta.org

A bound on connectivity of iterated line graphs | Y. Shao

3. Proof of Theorem 1.2

In this section, we first prove Proposition 3.1, then apply induction on s to prove Theorem 1.2.
Following the definitions of X, V12 and Ei(u) (see (1), (3) and (4)) in Section 2, let X be a minimal
essential edge cut of Ll+2(G) and V12 the set of bi-colored vertices in Ll+1(G). And Ei(u) denotes
the set of edges incident with u in Ll+1(G) with color i. We use d(v) for dLl+1(G)(v). Now we
prove Theorem 1.2(i) holds for s = 2.

Proposition 3.1. Let G be a simple connected graph that is not a path, a cycle or K1,3, with
l(G) = l. Then κ′

e(L
l+2(G)) ≥ 6.

Proof. If δ(Ll+1(G)) ≥ 3, then by Theorem 1.1 and Proposition 1.3, κ′
e(L

l+2(G)) ≥ 2κ′
e(L

l+1(G))−
2 = 2 · 4− 2 = 6. Then Proposition 3.1 is proved.

Also, by Proposition 2.4(ii),
δ(Ll+1(G)) ≥ 2. (5)

So we may assume that δ(Ll+1(G)) = 2.
By Proposition 2.4(iv), κ(Ll+1(G)) ≥ 2. By Proposition 2.2(iv), if |V12| = 1, then V12 is a

vertex cut of size one in Ll+1(G), a contradiction. So |V12| ≥ 2.
Claim 1. If |V12| = 2, then |X| ≥ 6.
Proof of Claim 1. Let V12 = {v1, v2}. If v1v2 /∈ E(Ll+1(G)), then as Ll+1(G) is triangular
(Proposition 2.4(iii)), and vi is bi-colored, |Ei(v1)| ≥ 2 for i = 1, 2 by Proposition 2.2(ii). By
Proposition 2.3(i) and (iii), |X| ≥

∑|V12|
i=1 2(d(vi)− 2) ≥ 2 · 2 + 2 · 2 = 8.

So we may assume v1v2 ∈ E(Ll+1(G)). By Proposition 2.2(iv), V12 is a vertex cut of Ll+1(G).
So we will finish the proof of Claim 1 by the following three cases.

Case 1 of Claim 1. Ll+1(G)− V12 has at least two nontrivial components.
Proof of Case 1. Let G1, G2 be two nontrivial components of Ll+1(G) − V12. By Proposi-

tion 1.3, κ′
e(L

l+1(G)) ≥ 4. Then |[V (Gi), V12]| ≥ 4 for i = 1, 2, which implies d(v1) + d(v2) ≥
4+4+2 = 10. By Proposition 2.3(i) and (ii), |X| ≥ (d(v1)−1)+(d(v2)−1) = d(v1)+d(v2)−2 ≥
10− 2 = 8.

Case 2 of Claim 1. Ll+1(G)− V12 has at most one nontrivial component.
Proof of Case 2. Let G1 be the nontrivial component and G2 be a single vertex compo-

nent (say u) of Ll+1(G) − V12. Since κ′
e(L

l+1(G)) ≥ 4 (Proposition 1.3), |[V (G1), V12]| ≥ 4.
Since u is a single vertex component of Ll+1(G) − V12, by (5), we have uv1 ∈ E(Ll+1(G))
and uv2 ∈ E(Ll+1(G)). So d(v1) + d(v2) ≥ 4 + 2 + 2 = 8. By Proposition 2.3(i) and (ii),
|X| ≥ (d(v1)− 1) + (d(v2)− 1) = d(v1) + d(v2)− 2 ≥ 8− 2 = 6.

Case 3 of Claim 1. Every component of Ll+1(G)− V12 is trivial.
Then Ll+1(G) is isomorphic to K2,n−2 with an edge joining the two vertices of degree two,

where n is the number of vertices of Ll+1(G). If n = 4, then it has an essential 3-edge-cut,
contrary to Proposition 1.3; if n ≥ 4, then it contains an induced claw, contrary to the fact that line
graphs are claw-free (see [2]).
Claim 2. If |V12| ≥ 6, then |X| ≥ 6.
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Proof of Claim 2. If |V12| ≥ 6, then by (5) and Proposition 2.3(i) and (ii), |X| ≥
∑|V12|

i=1 (d(vi)−1) ≥
(2− 1)|V12| = 6.

By Claims 1 and 2, we may assume that

3 ≤ |V12| ≤ 5. (6)

Claim 3. If the induced graph of V12 in Ll+1(G) contains at least two independent edges, then
|X| ≥ 8.
Proof of Claim 3. We assume that v1, v2, v3, v4 ∈ V12 such that v1v2 ∈ E(Ll+1(G)) and v3v4 ∈
E(Ll+1(G)). By Proposition 1.1, d(v1)+d(v2) ≥ κ′

e(L
l+1(G))+2 and d(v3)+d(v4) ≥ κ′

e(L
l+1(G))+

2. By Proposition 2.3(i), (ii) and Proposition 1.3, |X| ≥
∑4

i=1(d(vi) − 1) =
∑4

i=1 d(vi) − 4 ≥
2(κ′

e(L
l+1(G)) + 2)− 4 = 2 · (4 + 2)− 4 = 8. This completes the proof of Claim 3.

By Claim 3, we may assume that

the matching number of the induced graph of V12 in Ll+1(G) is at most one. (7)

Claim 4. If the induced graph of V12 in Ll+1(G) has an isolated vertex, then |X| ≥ 6.
Proof of Claim 4. Without loss of generality, we assume v1 is an isolated vertex in the induced
graph of V12 in Ll+1(G). Since Ll+1(G) is triangular (Proposition 2.4(iii)), and v1 is bi-colored,
|Ei(v1)| ≥ 2 for i = 1, 2 by Proposition 2.2(ii). By (6), |V12| ≥ 3. Together with Proposition 2.3(i),
(ii), (iii) and (5), we have |X| =

∑
u∈V12

|E1(u)| · |E2(u)| ≥ 2(d(v1)− 2)+ (2− 1) · (|V12| − 1) ≥
2 · 2 + (3− 1) = 6.

By Claim 4, we may assume

the induced graph of V12 in Ll+1(G) has no isolated vertices. (8)

Claim 5. The induced graph of V12 in Ll+1(G) is isomorphic to K3 or K1,2.
Proof of Claim 5. By (7) and (8), the induced graph of V12 in Ll+1(G) is isomorphic to K3 or
K1,|V12|−1. If 4 ≤ |V12| ≤ 5, then K1,|V12|−1 contains a claw, contrary to the fact that Ll+1(G)
is claw-free. So by (6), |V12| = 3 and by (7) and (8), the induced graph of V12 in Ll+1(G) is
isomorphic to K3 or K1,2.
Claim 6. If each vertex in the induced graph of V12 in Ll+1(G) has degree at least three, then
|X| ≥ 6.
Proof of Claim 6. Let V12 = {v1, v2, v3} and assume d(vi) ≥ 3 for i = 1, 2, 3. By Proposition
2.3(i), (ii) and (6), |X| ≥

∑3
i=1(d(vi)− 1) ≥ (3− 1)|V12| ≥ 6.

By Claim 6, we assume

at least one vertex in the induced graph of V12 in Ll+1(G) has degree two. (9)

Now we will finish the proof of Theorem 1.2 by the following two cases.
Case 1. Ll+1(G)− V12 is connected.
Proof of Case 1. Let G′ be the graph induced by Ll+1(G) − V12. By Proposition 2.2(ii),

we assume all edges in [V (G′), V12] have color 1. As v1, v2, v3 are bi-colored, if the induced
graph of V12 in Ll+1(G) is K1,2, then both edges of K1,2 must have color 2; if the induced graph
of V12 in Ll+1(G) is K3, then by Proposition 2.1(i), at least two edges of K3 have color 2. In
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either case, without loss of generality we may assume that both v1v2 and v2v3 have color 2, which
means |E2(v2)| ≥ 2. Since v2 is bi-colored, there is an edge in [V (G′), {v2}] with color 1, which
implies that the degree of v2 is at least three. By (9), we may assume d(v1) = 2, then d(v2) ≥ 4
by Propositions 1.1 and 1.3. Then |[V (G′), {v2}]| ≥ 2 and so |E1(v2)| ≥ 2. Together with
|E2(v2)| ≥ 2, by Proposition 2.3(i), (ii) and (iii), |X| ≥ 2(d(v2)−2)+(d(v1)−1)+(d(v3)−1) ≥
2 · 2 + (2− 1) + (2− 1) = 6.

Case 2. Ll+1(G)− V12 is disconnected.
By Claim 5, we only need to prove Case 2 by the following two cases.
Case 2.1. The induced graph of V12 in Ll+1(G) is isomorphic to K3.
Proof of Case 2.1. By (9), without loss of generality, we assume that d(v2) = 2, then by

Propositions 1.1 and 1.3, d(v1) ≥ 4 and d(v3) ≥ 4. By Proposition 2.3(i) and (ii), |X| ≥ (d(v1)−
1) + (d(v2)− 1) + (d(v3)− 1) ≥ (4− 1) + (2− 1) + (4− 1) = 7.

Case 2.2. The induced graph of V12 in Ll+1(G) is isomorphic to K1,2.
Proof of Case 2.2. Assume v1v2 ∈ E(Ll+1(G)) and v2v3 ∈ E(Ll+1(G)). If d(v2) = 2, then by

Propositions 1.1 and 1.3, d(v1) ≥ 4 and d(v3) ≥ 4. Using a similar argument to Case 2.1, we have
|X| ≥ 7.

By (9), we may assume that d(v1) = 2.
Then by Propositions 1.1 and 1.3 again, d(v2) ≥ 4. If d(v3) ≥ 3, then |X| ≥ (d(v1) − 1) +

(d(v2)− 1) + (d(v3)− 1) ≥ (2− 1) + (4− 1) + (3− 1) = 6. So we assume d(v3) = 2.
If d(v2) ≥ 5, then |X| ≥ (d(v1)−1)+(d(v2)−1)+(d(v3)−1) ≥ (2−1)+(5−1)+(2−1) = 6.

So we assume d(v2) = 4.
Now we have d(v1) = d(v3) = 2 and d(v2) = 4. Since Ll+1(G) is triangular, we assume

v1v2, v2v3 lie in triangles T1, T2, respectively. If T1, T2 share a common edge, then Ll+1(G) must
be the graph depicted in Figure 3(a), where H represents a connected subgraph containing the
edge u1u2; if T1, T2 do not share a common edge, then Ll+1(G) must be the graphs depicted in
Figure 3(b) and 3(c), where H in 2(b) represents a connected subgraph containing the vertices
u1, u2 and two circles in 2(c) represent either two isolated vertices u1, u2 or two disjoint connected
subgraphs containing u1, u2, respectively. In Figure 3(a) and 3(b), since H is a connected subgraph,
Ll+1(G)− V12 is connected, contrary to the assumption of Case 2; in Figure 3(c), Ll+1(G) has an
essential 2-edge-cut, contrary to Proposition 1.3.

Figure 3. Iterated Line graph Ll+1(G).

This completes Case 2.2.
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Hence, Proposition 3.1 is established.
Next we will use Proposition 3.1 to prove Theorem 1.2.

Proof of Theorem 1.2(i). The case s = 1 is implied by Proposition 1.3 and the case s = 2 is implied
by Proposition 3.1. We assume s ≥ 3.

By Proposition 2.4(ii), for s ≥ 3, δ(Ll+s−1(G)) ≥ 3. Now we prove (i) by induction. Assume
that κ′

e(L
l+s−1(G)) ≥ 2s−1+2. By Theorem 1.1, κ′

e(L
l+s(G)) ≥ 2κ′

e(L
l+s−1(G))− 2 ≥ 2(2s−1+

2)− 2 = 2s + 2. Then (i) is proved.
Proof of Theorem 1.2(ii). By (i) and Proposition 1.2(ii), for s ≥ 2, κ(Ll+s(G)) = κ′

e(L
l+s−1(G)) ≥

2s−1 + 2.
Next we give an example to show that both bounds in Theorem 1.2 are best possible. Let G

be the graph depicted in Figure 4(a). Then l(G) = 2. The first three iterated line graphs of G are
depicted in Figure 4(b)-(d). Note that L3(G) has a 4-cycle in which every vertex has degree equal
to 3. By the definition of line graphs, a 4-cycle of a graph generates a 4-cycle in its line graph, and
the degree of a vertex in a line graph is the degree sum of the end vertices of the corresponding
edge in the original graph minus 2. So L4(G) has a 4-cycle in which every vertex has degree equal
to 2 · 3 − 2 = 4. In general, for s ≥ 2, Ll+s(G) has a 4-cycle in which every vertex has degree
equal to 2s−1 + 2. Let uv ∈ E(Ll+s(G)) be an edge on the 4-cycle such that both u and v have
degree equal to 2s−1 + 2. Then ELl+s(G)(u) ∪ ELl+s(G)(v) − {uv} is an essential edge cut of size
2 · (2s−1+2)−2 = 2s+2. Note that κ′

e(L
l+1(G)) = κ′

e(L
3(G)) = 4. Hence κ′

e(L
l+s(G)) = 2s+2

for s ≥ 1. By Proposition 1.2(ii), κ(Ll+s(G)) = κ′
e(L

l+s−1(G)) = 2s−1 + 2 for s ≥ 2.

Figure 4. An example for the sharpness of the bounds.
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