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Abstract

Gain graphs are graphs where the edges are given some orientation and labeled with the elements
(called gains) from a group so that gains are inverted when we reverse the direction of the edges.
Generalizing the notion of gain graphs, skew gain graphs have the property that the gain of a
reversed edge is the image of edge gain under an anti-involution. In this paper, we study two
different types, Laplacian and g-Laplacian matrices for a skew gain graph where the skew gains
are taken from the multiplicative group F× of a field F of characteristic zero. Defining incidence
matrix, we also prove the matrix tree theorem for skew gain graphs in the case of the g-Laplacian
matrix.
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1. Introduction

Throughout this article, unless otherwise mentioned, by a graph we mean a finite, connected,
simple graph and any terms which are not mentioned here, the reader may refer to [8].

A gain graph is a graph with some orientation for the edges such that each edge has a gain, that
is a label from a group so that reversing the direction of edge inverts the gain [12]. Generalizing
the notion of gain graphs, the skew gain graphs are defined such that the gain of an edge (we call
it as skew gain) is related to the skew gain of the reverse edge by an anti-involution [6]. Let Γ
be an arbitrary group. A function f : Γ → Γ is an involution if f(f(x)) = x for all x ∈ Γ. A
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function f : Γ → Γ is called an anti-homomorphism if f(xy) = f(y)f(x) for all x, y ∈ Γ. For
an abelian group an anti-homomorphism is always a homomorphism. An involution f : Γ → Γ
which is an anti-homomorphism is called an anti-involution. We use Inv(Γ) to denote the set of all
anti-involutions on Γ. We define g : Γ→ Γ such that g(x) = xf(x) for all x ∈ Γ.

Definition 1.1 ([7]). Let G = (V,
−→
E ) be a graph, where V denotes the vertex set of G and

−→
E the

edge set of G with some prescribed orientation for the edges, and let Γ be an arbitrary group. If
f ∈ Inv(Γ) be an anti-involution then the skew-gain graph Φf = (G,Γ, ϕ, f) is such that the skew
gain function ϕ :

−→
E → Γ satisfies ϕ(−→vu) = f(ϕ(−→uv)).

The adjacency matrix of a skew gain graph is defined when the skew gains are taken from the
multiplicative group F× where F is a field of characteristic zero. Here f ∈ Inv(Γ) is an involutive
automorphism. We use the notation u ∼ v when the vertices u and v are adjacent and similar
notation for the incidence of an edge on a vertex.

Definition 1.2 ([11]). Given a skew gain graph Φf = (G,F×, ϕ, f) its adjacency matrix A(Φf ) =
(aij)n is defined as the square matrix of order n = |V (G)| where

aij =

{
ϕ(−−→vivj), if vi ∼ vj,
0, otherwise.

such that whenever aij 6= 0, aji = f(aij), which is the anti-involution.

The general expression for computing the coefficients of the characteristic polynomial of the
adjacency matrix of skew gain graphs are studied in [11]. The Laplacian matrix of a graph and
matrix tree theorem are well studied by many which can be referred to for instance from [9]. The
matrix tree theorem for signed graph can be seen in Zaslavsky [13] and on a more general setting
in Chaiken [3]. For more recent investigations on the spectrum of a graph and energy of a graph
one can refer to [4] and [5]. In this paper, we define Laplacian matrix and g-Laplacian matrix of
skew gain graphs by defining the corresponding degree and g-degree matrices and prove the matrix
tree theorem for skew gain graphs.

2. Laplacian matrix for skew gain graphs

Definition 2.1. Given a skew gain graph Φf = (G,F×, ϕ, f), the degree of the vertex vi in Φf is
denoted by d(vi), and it is obtained by adding the multiplicative identity of the field F×, di times,
where di is the degree of the vertex vi in the underlying graph G.
Degree matrix D(Φf ) can be defined as the diagonal matrix D(Φf ) = diag(d(vi)).

Definition 2.2. Given a skew gain graph Φf = (G,F×, ϕ, f) its Laplacian matrix is defined as
L(Φf ) = D(Φf ) − A(Φf ). We define the Laplacian charactersitic polynomial of the skew gain
graph Φf as det(xI − L(Φf )). The Laplacian spectrum of a skew gain graph Φf refers to the
eigenvalues of the Laplacian matrix L(Φf ) and their multiplicities.

Lemma 2.1 ([1]). Let P = (pij) be an n×n matrix. Then the determinant of P has the expansion

det(P ) =
∑

sgn(π)p1π(1)p2π(2) . . . pnπ(n)
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where the summation is over all permutations π on the set {1,2,3, . . . , n} and sgn(π) is the sign
of the permutation π. If π is an even cycle, then sgn(π) = −1 and if π is an odd cycle, then
sgn(π) = +1. Thus the sign of an arbitrary permutation π is (−1)Ne , where Ne is the number of
even cycles in cyclic representation of π.

Let L(G) denotes the set of all elementary subgraphs L of G (of all orders) and Ke(L) denotes
the number of components in L having even order. Also letM(G) denotes the set of all match-
ings M in the graph G and K(M) denotes the number of edges in M. We denote the Laplacian
characteristic polynomial of skew gain graph by χ(Φf , x) = det(xI − L(Φf )).

Theorem 2.3. If Φf = (G,F×, ϕ, f) is a skew gain graph where G = (V,
−→
E ) is a graph of order

n, then

χ(Φf , x) =
∏

v∈V (G)

(x− d(v))+

∑
L∈L(G)

(−1)Ke(L)
∏
K2∈L

g(ϕ(~e))
∏
C∈L

(ϕ(C) + f(ϕ(C)))
∏

v/∈V (L)

(x− d(v)).

Proof. Let d(vi) denotes the degree of the vertex vi in Φf and let the adjacency matrix of skew

gain graph Φf be A(Φf ) =


0 a12 a13 . . . a1n

a21 0 a23 . . . a2n

. . .
an1 an2 an3 . . . 0

.

Then the Laplacian characteristic polynomial of skew gain graph Φf is

χ(Φf , x) = det(xI − L(Φf )) = det


x− d(v1) a12 a13 . . . a1n

a21 x− d(v2) a23 . . . a2n

. . .
an1 an2 an3 . . . x− d(vn)

 .

Using Lemma 2.1, corresponding to the identity permutation, we get the term
∏

v∈V (G)

(x − d(v)).

Now, for any non-identity permutation π, consider the term sgn(π)a1π(1)a2π(2) . . . anπ(n). Any
permutation π can be expressed as a product of disjoint cycles. Thus if π fixes the ith ele-
ment, aii = x − d(vi). Now a cycle (ij) of length two in π corresponds to aij.aji which cor-
responds to the edges −−→vivj and −−→vjvi in G. Any cycle (pqr . . . t) of length greater than 2 corre-
sponds to apqaqr . . . atp which gives a cycle vpvqvr . . . vtvp in G. Thus, corresponding to the non-
identity permutation π we get an elementay subgraph L of G and a1π(1)a2π(2) . . . anπ(n) becomes∏
K2∈L

g(ϕ(~e))
∏
C∈L

(ϕ(C) + f(ϕ(C))
∏

v/∈V (L)

(x− d(v)).

Now, sgn(π) = (−1)Ne , where Ne is the number of even cycles in π, which is same as the number
of components in L having even order.

When the underlying graph of Φf = (G,F×, ϕ, f) is a cycle or path, we call it as a skew gain
cycle or skew gain path respectively.
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Corollary 2.1. If Φf = (Pn, F
×, ϕ, f) is a skew gain path, then its Laplacian characteristic

polynomial is

χ(Φf , x) = (x− 2)n−2(x− 1)2 +
∑

M∈M(Pn)

(−1)K(M)
∏
~e∈M

g(ϕ(~e))
∏

v/∈V (M)

(x− d(v)).

Corollary 2.2. If Φf = (Cn, F
×, ϕ, f) is a skew gain cycle, then its Laplacian characteristic

polynomial is

χ(Φf , x) = (x− 2)n + (−1)n−1(ϕ(Cn) + f(ϕ(Cn)))+∑
M∈M(Cn)

(−1)K(M)
∏
~e∈M

g(ϕ(~e))
∏

v/∈V (M)

(x− d(v)).

Proof. The only elementary subgraph L ∈ L(Cn) containing cycle as a component is Cn itself. If
n is even then (−1)Ke(L) = −1 = (−1)n−1 and if n is odd (−1)Ke(L) = (−1)0 = 1 = (−1)n−1.
All other elementary subgraphs contains K2 as components which can be considered as matchings
in Cn and hence using theorem 2.3 we get

χ(Φf , x) = (x− 2)n + (−1)n−1(ϕ(Cn) + f(ϕ(Cn)))+∑
M∈M(Cn)

(−1)K(M)
∏
~e∈M

g(ϕ(~e))
∏

v/∈V (M)

(x− d(v)).

Corollary 2.3. If Φf = (K1,n, F
×, ϕ, f) is a skew gain graph with underlying graph as the star

K1,n, then its Laplacian characteristic polynomial is

χ(Φf , x) = (x− 1)n(x− n)− (x− 1)(n−1)
∑

~e∈E(K1,n)

g(ϕ(~e)).

Now we move to the Laplacian spectrum of some particular classes of skew gain graphs. First
of all, it is worthwhile to point out that if Φf = (G,F×, ϕ, f) is a skew gain graph where G
is d-regular, then the Laplacian eigenvalues of L(Φf ) are d − λ where λ is an eigenvalue of its
adjacency matrix A(Φf ).

To find the spectrum of bipartite skew gain graphs, we define for a matrix B = (aij) ∈

Mm×n(F ), Bf = (bij) ∈Mm×n(F ) where f ∈ Inv(F×) as bij =

{
f(aij), if aij 6= 0,
0, otherwise.

Theorem 2.4. Let Φf = (G,F×, ϕ, f) be a skew gain graph where G = Km,m is a complete
bipartite graph. Then the eigenvalues of L(Φf ) arem−λ such that λ2 is an eigenvalue ofB(Bf )T .

Proof. The adjacency eigenvalues of Φf = (G,F×, ϕ, f),whereG = Km,m is a complete bipartite
graph, are λ such that λ2 is an eigenvalue of B(Bf )T [11]. Hence , as Φf is regular with degree m,
we get the eigenvalues of L(Φf ) are m− λ such that λ2 is an eigenvalue of B(Bf )T .
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Theorem 2.5. Let Φf = (G,F×, ϕ, f) be a skew gain graph where G = K1,n is a star of order
n+ 1. Then det(L(Φf )) = n−

∑
~e∈E(G)

g(ϕ(~e)).

Proof. When we put x = 0 in the characteristic polynomial of L(Φf ) in Corollary 2.3, we get the
constant term in the polynomial as (−1)n−1

(
n−

∑
~e∈E(G)

g(ϕ(~e))
)
,which is equal to (−1)n+1 det(L(Φf )).

Hence det(L(Φf )) = n−
∑

~e∈E(G)

g(ϕ(~e)).

Theorem 2.6. If Φf = (G,F×, ϕ, f) is a skew gain graph whereG = K1,n is a star of order n+1,

then the Laplacian spectrum of Φf is

(
n+1+
√

(n+1)2−4 det(L(Φf ))

2

n+1−
√

(n+1)2−4 det(L(Φf ))

2
1

1 1 n− 1

)
.

Proof. By Corollary 2.3, Laplacian characteristic polynomial of Φf is

χ(Φf , x) = (x− 1)n−1
(
(x− n)(x− 1)−

∑
~e∈E(G)

g(ϕ(~e))
)

= (x− 1)n−1
(
(x2 − (n+ 1)x+ n−

∑
~e∈E(G)

g(ϕ(~e))
)

From this the Laplacian spectrum of Φf becomes(
n+1+
√

(n+1)2−4 det(L(Φf ))

2

n+1−
√

(n+1)2−4 det(L(Φf ))

2
1

1 1 n− 1

)
.

3. g-Laplacian matrix for skew gain graphs

In this section, we take ordered fields F and for a ∈ F×,
√
a is the principal square root of a

which belongs to the algebraic closure of the field F . Now we define the g-Laplacian matrix of a
skew gain graph as follows. For an oriented edge ~ej = −−→vivk we take vi as the tail of that edge and
vk as its head and we write t(~ej) = vi and h(~ej) = vk.

Definition 3.1. Given a skew gain graph Φf = (G,F×, ϕ, f) its g-Laplacian matrix is defined as

Lg(Φf ) = Dg(Φf ) − A(Φf ) where the diagonal matrix Dg(Φf ) is diag
( ∑
~e:vi∼~e

√
g(ϕ(~e)

)
where

√
a for a ∈ F belongs to the algebraic closure of the field F . The matrix Dg(Φf ) is the g-degree

matrix of Φf .

The incidence matrix for a skew gain graph Φf can be defined as follows

Definition 3.2. Given a skew gain graph Φf = (G,F×, ϕ, f) its (oriented) incidence matrix is
defined as H(Φf ) = (bij) where

bij =


g(ϕ(~ej)), if t(~ej) = vi,

−f(ϕ(~ej))
√
g(ϕ(~ej)), if h(~ej) = vi,

0, otherwise.
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The definitions of Laplacian, g-Laplacian and incidence matrix of a skew gain graph coincide
with the corresponding definitions for ordinary graphs, signed graphs and gain graphs which are
extensively studied in [1, 9, 10, 13]. Now we define a matrix operation for the incidence matrix
H(Φf ) as follows:
H# is the transpose of the matrix obtained by replacing each column element as under:
(i) g(ϕ(~ej)) replaced by (

√
g(ϕ(~ej)))

−1 and
(ii) −f(ϕ(~ej))

√
g(ϕ(~ej)) replaced by −(f(ϕ(~ej)))

−1

Theorem 3.3. For a skew gain graph Φf = (G,F×, ϕ, f), Lg(Φf ) = H(Φf )H
#(Φf ).

Proof. Let v1, v2, . . . , vn and ~e1, ~e2, . . . , ~em be the vertices and edges in G, respectively. Denoting
H(Φf ) by (ηvi ~ej) and H#(Φf ) by (η′~eivj), let the ith row vector of H(Φf ) be (ηvi ~e1 , ηvi ~e2 , . . . , ηvi ~em)

and jth column of H#(Φf ) be (η′~e1vj , η
′
~e2vj

, . . . , η′~emvj)
T .

Now, the (i, j)th entry of HH# is
m∑
k=1

ηvi ~ekη
′
~ekvj

.

For i = j, ηvi ~ekη
′
~ekvj
6= 0 if and only if ~ek is incident to vi. If t(~ek) = vi then ηvi ~ek =

g(ϕ(~ek)) in H(Φf ) and hence η′~ekvj =
√
g(ϕ(~ek))−1 in H#(Φf ) so that ηvi ~ekη

′
~ekvj

=
√
g(ϕ(~ek) in

H(Φf )H
#(Φf ). If h(~ek) = vi then ηvi ~ek = −f(ϕ(~ek))

√
g(ϕ(~ek)) and hence η′~ekvj = −f(ϕ(~ek))

−1

so that ηvi ~ekη
′
~ekvj

=
√
g(ϕ(~ek). Thus, the diagonal entries in H(Φf )H

#(Φf ) is
∑
~e:vi∼~e

√
(g(ϕ(~e)).

For i 6= j, ηvi ~ekη
′
~ekvj
6= 0 if and only if ~ek is an edge joining vi and vj . If ~ek = −−→vivj then

ηvi ~ekη
′
~ekvj

= g(ϕ(~ek)).(−f(ϕ(~ek))
−1) = −ϕ(~ek) and if ~ek = −−→vjvi then

ηvi ~ekη
′
~ekvj

= −f(ϕ(~ek))
√
g(ϕ(~ek)).

√
g(ϕ(~ek))−1 = −f(ϕ(~ek))

.
In both cases, the (i, j)th entry of H(Φf )H

#(Φf ) coincides with the (i, j)th entry of Lg(Φf )
and hence the proof.

From Definition 3.2, we will have the following deductions:
(i) In the case of real weighted graphs where f(x) = x so that g(x) = x2 ( which is a particular
skew gain graphs which we can be used to deal with weighted signed graphs also), the incidence
matrix H = (bij) has

bij =


w(~ej)

2, if t(~ej) = vi,

−w(~ej)
2, if h(~ej) = vi,

0, otherwise.

(ii) In the case of complex skew gain graph with f(z) = z, so that g(z) = |z|2, the incidence
matrix H = (bij) has

bij =


|w(~ej)|2, if t(~ej) = vi,

−w(~ej)|w(~ej)|, if h(~ej) = vi,

0, otherwise.
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Lemma 3.1 ([2]). Let A be an m × n matrix and B be an n × k matrix. Then rank(AB) ≤
min{rank(A), rank(B)}. Also rank(A) ≤ min{m,n}.

Lemma 3.2 ([2]). If A ∈Mn(F ) is a block triangular matrix of the form

A =


A11 A12 . . . A1k

0 A22 . . . A2k

. . . . . . . . .
0 0 . . . Akk

, where each Aii is a square matrix and the 0’s are zero matrices of

appropriate size, then det(A) =
k∏
i=1

det(Aii).

Theorem 3.4. If Φf = (G,F×, ϕ, f) is a skew gain graph, where G is a tree of order n, then
detLg(Φf ) = 0.

Proof. A connected tree on n vertices have n − 1 edges. Thus the incidence matrix H(Φf ) has
order n × n − 1. Now, by Lemma 3.1, rank(H(Φf )H

#(Φf )) is less than or equal to n − 1 which
implies det(H(Φf )H

#(Φf )) = 0. Thus by Theorem 3.3,

det(Lg(Φf )) = det(H(Φf )H
#(Φf )) = 0.

Theorem 3.5. If Φf = (Cn, F
×, ϕ, f) is a skew gain cycle then

detLg(Φf ) = 2

√ ∏
~e∈E(Cn)

g(ϕ(~e))− [ϕ(Cn) + f(ϕ(Cn))].

Proof. Let the skew gain cycle beCn = v1~e1v2~e2v3~e3 . . . vn−1 ~en−1vn ~env1. Its incidence matrix H is
g(ϕ(~e1)) 0 . . . 0 −f(ϕ(~en))

√
g(ϕ(~en))

−f(ϕ(~e1))
√
g(ϕ(~e1)) g(ϕ(~e2)) . . . 0 0

. . . . . . . . . . . . . . .
0 0 . . . g(ϕ( ~en−1)) 0

0 0 . . . −f(ϕ( ~en−1))
√
g(ϕ( ~en−1)) g(ϕ(~en))

.

Expanding along the first row to find the determinant of H, we get
det(H) = g(ϕ(~e1))M1,1 + (−1)nf(ϕ(~en))

√
g(ϕ(~en))M1,n, where

M1,1 = det


g(ϕ(~e2)) . . . 0 0
. . .
0 . . . g(ϕ( ~en−1)) 0

0 . . . −f(ϕ( ~en−1))
√
g(ϕ( ~en−1)) g(ϕ(~en))


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M1,n = det


−f(ϕ(~e1))

√
g(ϕ(~e1)) g(ϕ(~e2)) . . . 0

. . .
0 0 . . . g(ϕ( ~en−1))

0 0 . . . −f(ϕ( ~en−1))
√
g(ϕ( ~en−1))


Clearly, M1,1 and M1,n are determinant of triangular matrices and hence it is the product of the

diagonal entries. Thus
M1,1 = g(ϕ(~e2))g(ϕ(~e3)) . . . g(ϕ(~en)) and
M1,n = (−1)n−1f(ϕ(~e1))

√
g(ϕ(~e1))f(ϕ(~e2))

√
g(ϕ(~e2)) . . . f(ϕ( ~en−1))

√
g(ϕ( ~en−1)).

Hence det(H) =
∏

~e∈E(Cn)

g(ϕ(~e))− f(ϕ(Cn))

√ ∏
~e∈E(Cn)

g(ϕ(~e)).

Now, considering the matrix H#,

H# =



√
g(ϕ(~e1))

−1
0 . . . 0 −f(ϕ(~en))−1

−f(ϕ(~e1))−1
√
g(ϕ(~e2))

−1
. . . 0 0

. . .

0 0 . . .
√
g(ϕ( ~en−1))

−1
0

0 0 . . . −f(ϕ( ~en−1))−1
√
g(ϕ(~en))

−1



T

.

Finding its determinant in a similiar way, we get

det(H#) =
∏

~e∈E(Cn)

√
g(ϕ(~e))

−1
− f(ϕ(Cn))−1

=

√ ∏
~e∈E(Cn)

g(ϕ(~e))
−1

− f(ϕ(Cn))−1.

Now from Theorem 3.3, Lg = HH# which gives det(Lg) = det(H) det H#.

Thus, detLg(Φf ) = 2

√ ∏
~e∈E(Cn)

g(ϕ(~e))− [ϕ(Cn) + f(ϕ(Cn))].

Theorem 3.6. If Φf = (G,F×, ϕ, f) is a skew gain graph of order n where G is a unicyclic graph
with unique cycle C then

detLg(Φf ) =

√ ∏
~e/∈E(C)

g(ϕ(~e))
(

2

√ ∏
~e∈E(C)

g(ϕ(~e))− [ϕ(C) + f(ϕ(C))]
)
.

Proof. Let C = v1~e1v2~e2 . . . vp~epv1 be the unique cycle and define the orientation of edges as for
i < j the edge −→ei,j has tail t(−→ei,j) = vi and head h(−→ei,j) = vj . We get the incidence matrix H(Φf )
as an upper triangular block martix with diagonal blocks A1, A2, . . . , Ak, k = n − p + 1, where
A1 corresponds to the vertices and edges in the cycle C and Ai, i = 2, 3, . . . n − p + 1 are one
element matrices [−f(ϕ(~e))

√
g(ϕ(~e))] corresponding to the edges ~e not in C. Then, by Lemma
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3.2, det(H(Φf )) =
∏

det(Ai). Now using Theorem 3.5,

det(H) =
∏

~e/∈E(C)

(−f(ϕ(~e))(
√
g(ϕ(~e)))

( ∏
~e∈E(C)

g(ϕ(~e))− f(ϕ(C))

√ ∏
~e∈E(C)

g(ϕ(~e))
)
.

Similiarly we get

det(H#) =
∏

~e/∈E(C)

(−f(ϕ(~e))−1)
(√ ∏

~e∈E(C)

g(ϕ(~e))
−1

− f(ϕ(C))−1
)
.

Since detLg(Φf ) = det HH# we get,

detLg(Φf ) =

√ ∏
~e/∈E(C)

g(ϕ(~e))
(

2

√ ∏
~e∈E(C)

g(ϕ(~e))− [ϕ(C) + f(ϕ(C))]
)
.

A 1-tree is a connected unicyclic graph and a 1-forest is a disjoint union of 1-trees. A spanning
subgraph of G which is a 1-forest is called as an essential spanning subgraph of G. We denote the
collection of all essential spanning subgraphs of G by E(G)

Theorem 3.7. If Φf = (G,F×, ϕ, f) is a skew gain graph where G is a 1-forest, then

detLg(Φf ) =
∏
Ψ∈G

√∏
~e/∈CΨ

g(ϕ(~e))
(

2

√∏
~e∈CΨ

g(ϕ(~e))− [ϕ(CΨ) + f(ϕ(CΨ))]
)

where the product runs over all component 1-trees Ψ having unique cycle CΨ.

Proof. By suitable reordering of vertices and edges, if necessary, we can make the matrix Lg(Φf )
as a block diagonal matrix where the blocks corresponds to the 1-tree components of the 1-forest.
Then, by Lemma 3.2, determinant det(Lg(Φf )) =

∏
Ψ∈E(G)

det(Lg(Ψ)). Now by applying Theorem

3.6, we get the required expansion.

Now we can prove the matrix - tree theorem for skew gain graphs.

Lemma 3.3. Let Φf = (G,F×, ϕ, f) be a skew gain graph on n vertices and Ψ be a spanning
subgraph of Φf having exactly n edges. Then det(Lg(Ψ)) 6= 0 implies Ψ is an essential spanning
subgraph of Φf .

Proof. Let Ψ be a spanning subgraph of Φf having exactly n edges and let det(Lg(Ψ)) 6= 0. We
have to prove Ψ is an essential spanning subgraph of Φf . That is, we have to prove that the com-
ponents of Ψ are 1-trees.
By suitable ordering of vertices and edges, we can make the matrix Lg(Ψ) as a block diagonal
matrix diag(Ai) where the blocks Ai corresponds to the components of Ψ. Thus, det(Lg(Ψ)) =∏
Ai∈Ψ

det(Lg(Ai)).

If Ψ contains an isolated vertex, then the matrix Lg(Ψ) has a zero row which implies det(Lg(Ψ)) =
0, a contradiction.
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IfAi is a tree for some i, then by Theorem 3.4 we get det(Lg(Ai)) = 0 which implies det(Lg(Ψ)) =
0, again a contradiction.
Claim: If Ak is a component of Ψ then Ak have same number of edges and vertices.
Suppose Ak, for some k, has p vertices and p + t edges where t ≥ 1. Then the n− p vertices and
n− p− t edges not in Ak forms either a tree or a disconnected graph having trees as components.
Both cases leads to det(Lg(Ψ)) = 0, a contradiction. Hence our claim.
Now all the components of Ψ have same number of edges and vertices implies the components
of Ψ are 1-trees. Hence Ψ is a spanning 1-forest. That is Ψ is an essential spanning subgraph of
Φf .

Theorem 3.8. If Φf = (G,F×, ϕ, f) is a skew gain graph on n vertices, then

det(Lg(Φf ) =
∑

Ψ∈E(G)

∏
ψ∈Ψ

√∏
~e/∈Cψ

g(ϕ(~e))
(

2

√∏
~e∈Cψ

g(ϕ(~e))− [ϕ(Cψ) + f(ϕ(Cψ))]
)

where the summation runs over all essential spanning subgraphs Ψ of Φf and ψ ∈ Ψ denotes the
component 1-trees ψ in the spanning 1-forest Ψ.

Proof. Since Lg(Φf ) = H(Φf )H
#(Φf ), by the Binet-Cauchy theorem [2] we get,

det(Lg(Φf )) =
∑
J

det(H(J)) det(H#(J)) =
∑
J

detLg(J)

where J is a spanning subgraph ofGwith exactly n edges. Then, by Lemma 3.3, we get det(Lg(Φf )) =∑
Ψ∈E(G)

detLg(Ψ), where the summation runs over all essential spanning subgraphs of Φf . Hence

by Theorem 3.7, we get required the expansion.

Conclusion

In this paper, we dealt with two types of Laplacian matrices for skew gain graphs. An expres-
sion for finding the Laplacian characteristic polynomial is given in Theorem 2.3. The Laplacian
spectrum of some classes of skew gain graphs are also studied. By defining the g-Laplacian matix
and the incidence matrix for skew gain graphs, we have proved the matrix - tree theorem for skew
gain graphs.
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