
www.ejgta.org

Electronic Journal of Graph Theory and Applications 10 (1) (2022), 213–226

Interlace polynomials of lollipop and tadpole
graphs
Christina Eubanks-Turner∗a, Kathryn Coleb, Megan Leec

aDepartment of Mathematics,
Loyola Marymount University, Los Angeles, CA, USA
bDepartment of Mathematics, University of Kansas, Lawrence, KS, USA
cLos Angeles, CA, USA

ceturner@lmu.edu, kathryncole@ku.edu, leemeganh@gmail.com

∗corresponding author

Abstract

In this paper, we examine interlace polynomials of lollipop and tadpole graphs. The lollipop and
tadpole graphs are similar in that they both include a path attached to a graph by a single vertex. In
this paper we give both explicit and recursive formulas for each graph, which extends the work of
Arratia, Bollóbas and Sorkin [4],[5], among others. We also give special values, examine adjacency
matrices and behavior of coefficients of these polynomials.
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1. Introduction

The interlace polynomial of a graph was introduced by Arratia, Bollóbas, and Sorkin, and it
is a polynomial that contains and represents the information gained from performing the toggling
process on the graph, see [4]. Interlace polynomials share similarities with other graph polynomi-
als, such as Tutte and Martin polynomials as they are utilized in applications to science and other
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fields, [6, 8, 10, 15]. More recently, researchers have studied different types of graph polynomi-
als, such as Hosoya and M-polynomials, which give information about distance-based invariants
related to chemical graphs,[1, 12, 9].

Interlace polynomials give important information about the graph, such as, the number of k-
component circuit partitions, for k ∈ N. In [5], interlace polynomials for some simple graphs
like paths, cycles, and complete graphs are given, although not all of the formulas are easy to
use. Li, Wu and Nomani give recursive formulas for interlace polynomials of ladder and n-Claw
graphs, see [13, 16]. In addition, Eubanks-Turner and Li give recursive and explicit formulas
for friendship graphs, see [11]. Also, work has been done in utilizing bivariate and multi-variate
interlace polynomials, see [3, 5, 18]. Here, we focus our attention on establishing the interlace
polynomials of lollipop and tadpole graphs. Both graphs have the structure that each has a well-
known subgraph which is connected to a path by a single vertex.

A lollipop graph is a simple graph that consists of a complete graph being joined to a path with
a bridge. Lollipop graphs have applications to stochastic processes and spectral graph theory [14,
19]. In particular, lollipop graphs have maximum possible hitting time, cover time and commute
time [17]. In this work we consider the interlace polynomial of the lollipop graph. We give both
the recursive and explicit formulas for the interlace polynomials of lollipop graphs. As Eubanks-
Turner and Li did in [11], we consider natural questions regarding interlace polynomials of the
lollipop graph, such as:

1. What are the general forms of the coefficients of the interlace polynomial of a lollipop graph?
2. What are the evaluations of the interlace polynomial of a lollipop graph at certain values and

what does it describe about related graph properties?

We further consider graphs related to lollipop graphs called tadpole graphs. Tadpole graphs are
simple graphs obtained by joining a cycle to a path via a bridge, [9]. Although the recursive and
explicit formulas for interlace polynomials of tadpole graphs are given in [2], we give a different
explicit formula and further results about interlace polynomials of tadpole graphs related to the
latter mentioned questions.

For a simple graph G, to construct the interlace polynomial we first need the following defini-
tion. Note, ∀a ∈ V (G), N(a) = {neighbors of a}.

Definition 1.1. (Pivot) Let G = (V (G), E(G)) be any undirected graph without a loop and a, b ∈
V (G) with ab ∈ E(G). We first partition the neighbors of a or b into three classes:

1. N(a) \ ({b} ∪N(b));
2. N(b) \ ({a} ∪N(a));
3. N(a) ∩N(b).

The pivot graph Gab of G, with respect to ab is the resulting graph of the toggling process: ∀u, v ∈
V (G), if u, v are from different classes shown above, then uv ∈ E(G) ⇐⇒ uv /∈ E(Gab).

Note that Gab = Gba. The pivot operation is only defined for an edge of G. The definition for
the interlace polynomial of a simple graph G is given below. Here, ∀u ∈ V (G), G−u is the graph
resulting from removing u and all the edges of G incident to u from G.
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Definition 1.2. Let G be the class of finite undirected graphs having no loops nor multiple edges.
There is a unique map q : G → Z[x], suhc that, G 7→ q(G). For any undirected graph G with n
vertices that has no loops nor multiple edges, the interlace polynomial q(G) of G is defined by

q(G) =

{
xn, if E(G) = ∅,
q(G− a) + q(Gab − b), if ab ∈ E(G).

This map is a well-defined polynomial on all simple graphs, see [2]. Next, we give some known
results about interlace polynomials and results relating the interlace polynomials to structural com-
ponents of graphs.

This map is a well-defined polynomial on all simple graphs, see [2]. Next, we give some known
results about interlace polynomials and results relating the interlace polynomials to structural com-
ponents of graphs.

Lemma 1.1. [5] Given the interlace polynomial q(G) of any undirected graph G, the following
results hold:

1. The interlace polynomial of any simple graph has zero constant term.
2. For any two disjoint graphs G1, G2, we have q(G1 ∪G2) = q(G1) · q(G2).
3. The degree of the lowest-degree term of q(G) is k(G), the number of components of G.
4. deg(q(G)) ≥ α(G), where α(G) is the independence number, i.e., the size of a maximum

independent set.
5. Let µ(G) denote the size of a maximum matching (maximum set of independent edges) in a

graph G. If G is a forest with n vertices, then deg(q(G)) = n− µ(G).

Lemma 1.2. [5] The interlace polynomials for the following graphs are as follows:

1. (complete graph Km) q(Km) = 2m−1x;
2. (complete bipartite graph Kmn)
q(Kmn) = (1 + x+ ...+ xm−1)(1 + x+ ...+ xn−1) + xm + xn − 1;

3. (path Pn with n edges) q(P1) = 2x, q(P2) = x2 + 2x, and for n ≥ 3, q(Pn) = q(Pn−1) +
xq(Pn−2);

4. (small cycles Cm) q(C3) = 4x and q(C4) = 2x+ 3x2.

Definition 1.3. Let m,n ∈ N, with m ≥ 3, n ≥ 0. The lollipop graph Lm,n is the simple graph
obtained by joining a complete graph Km to a path graph Pn at one of the vertices of Km. The
lollipop graph Lm,n has m+ n vertices and

(
m
2

)
+ n edges. Note, we hold m ≥ 3 to disregard the

case when Lm,n is a path.

2. Interlace Polynomial of Lollipop Graphs

Next, we develop interlace polynomials of lollipop graphs Lm,n, where m,n ∈ N. We treat
Lm,0 as the complete graph with m vertices. The lollipop graph has the same recursive formula as
the path graph, see Lemma 1.2 (3).
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Figure 1. The graph Lm,n.

Lemma 2.1. Let m ≥ 3. For n ≥ 2, q(Lm,n) = q(Lm,n−1)+xq(Lm,n−2), where q(Lm,0) = q(Km)
and q(Lm,1) = q(Km) + xq(Km−1).

Proof. Clearly, q(Lm,0) = q(Km).
Also, Lm,1 is a graph consisting of a complete graph with m vertices and a path of length one.
Labeling the edge of the path as ab, where deg(a) = 1, we have, q(Lm,1 − a) = q(Km). Also note
that Labm,1− b = Km−1 ∪{a}, where b ∈ V (Km). So, q(Lm,1) = q(Km)+x · q(Km−1), by Lemma
1.2 (2).

Now assume n ≥ 2 and consider the graph Lm,n with the edge ab, such that deg(a) = 1. See
the following figure.

Figure 2. Lm,n.

Considering the interlace polynomial, we have that Lm,n − a = Lm,n−1.

Figure 3. Lm,n − a.

Now toggling the graph, we have, Labm,n − b = Lm,n−2 ∪ {a}, as illustrated in the following
figure, where n ≥ 2.
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Figure 4. Lab
m,n − b.

Hence, q(Lm,n) = q(Lm,n−1) + xq(Lm,n−2), for n ≥ 2 as desired.

The next result gives the explicit formula for the interlace polynomial of Lm,n for m ≥ 3 and
n ≥ 0.

Theorem 2.1. For m ≥ 3 and n ≥ 0,

q(Lm,n) =
1√

1 + 4x

[
q(Km) + γxq(Km−1)

γn+1
− (q(Km) + βxq(Km−1))

βn+1

]

where γ =

√
1 + 4x− 1

2x
and β =

−
√
1 + 4x− 1

2x
.

Proof. We utilize the recurrence relation in a generating function G(y), where the coefficient of
yn is q(Lm,n):

G(y) =
∞∑
n=0

q(Lm,n)y
n

By Lemma 2.1,

G(y) = q(Lm,0) + y · q(Lm,1) +
∞∑
n=2

(q(Lm,n−1) + xq(Lm,n−2)) y
n

=
q(Lm,0) + y · q(Lm,1)− y · q(Lm,0)

1− y − xy2

For convenience, let γ =

√
1 + 4x− 1

2x
and β =

−
√
1 + 4x− 1

2x
, the roots of the polynomial

1 − y − xy2. Since q(Lm,0) = q(Km) and q(Lm,1) = q(Km) + xq(Km−1), we have the desired
result.

Proposition 2.1. For m ≥ 3, n ≥ 0, deg(q(Lm,n)) = 1 +
⌈
n
2

⌉
, where 1 +

⌈
n
2

⌉
= α(Lm,n), the

independence number of Lm,n.
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Proof. The maximal independent set of vertices consists of the leaf, alternating non-adjacent ver-
tices of the path, and potentially one vertex in the complete component of the graph. For even path
length (n odd), this set is of size 1 + n+1

2
. For odd path length (n even), it is size 1 + n

2
. Including

any additional vertex of the graph would result in a dependent vertex set. Therefore we have the
desired result.

For paths of odd length, there are an even number of vertices, and at most n+1
2

independent
vertices. For paths of even length, there are an odd number of vertices, and at most n

2
independent

vertices. We have that deg(q(Lm,n)) = 1 +
⌈
n
2

⌉
by strong induction.

Arritia, Bollóbas and Sorkin evaluate interlace polynomials at certain small values of x, as
these values give information relating to circuit partitions of the graphs, see [5]. They show that
for any graph G, q(G)(2) = 2|V (G)| and if H is the interlace graph of an Euler circuit of a 2-in,
2-out digraph D, then q(H)(1) is the number of Euler circuits of D.

We now give some propositions which show the evaluations of the lollipop graph at 1 and −1.
In [5], the following corollary was given.

Corollary 2.1. [5] For the path Pn, q(Pn)(1) = Fn+2, the (n + 2)’nd Fibonacci number (with
F0 = 0 and F1 = 1).

Since the lollipop has the same recursive formula as the path, we obtain similar results when
evaluating at x = 1. For the evaluation at x = −1, we give our results in the same form as what
was given in [2].

Proposition 2.2. For m ≥ 3, n ≥ 0,

1. q(Lm,n)(1) = 2m−2Fn+3, the (n+ 2)’nd Fibonacci number (with F0 = 0 and F1 = 1).

2. q(Lm,n)(−1) =


−2m−1, if n ≡ 0 mod 6,
−2m−2, if n ≡ 1, 5 mod 6,
2m−2, if n ≡ 2, 4 mod 6,
2m−1, if n ≡ 3 mod 6.

Proof. We prove (1) by strong induction on n. Note, q(Lm,0)(1) = q(Km)(1) = 2m−1 = 2m−2F3,
by Lemma 1.2 (1). Let n ≥ 1 and assume q(Lm,n)(1) = 2m−2(Fk+3), for all k, 0 ≤ k ≤ n. By
Lemma 2.1,

q(Lm,n+1)(1) = q(Lm,n)(1) + q(Lm,n−1)(1)

= 2m−2(Fn+3) + 2m−2(Fn+2)

= 2m−2(Fn+3 + Fn+2)

= 2m−2(Fn+4), by definition of the Fibonacci sequence,
= 2m−2(F(n+1)+3).
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For (2), also by Lemma 2.1,

q(Lm,n)(−1) = q(Lm,n−1)(−1)− q(Lm,n−2)(−1)
= [q(Lm,n−2)(−1)− q(Lm,n−3)(−1)]− q(Lm,n−2)(−1)
= −q(Lm,n−3)(−1)
= −q(Lm,n−4)(−1) + q(Lm,n−5)(−1)
= −q(Lm,n−5)(−1) + q(Lm,n−6)(−1) + q(Lm,n−5)(−1)
= q(Lm,n−6)(−1).

Therefore, q(Lm,n)(−1) is periodic of period 6. The first six values of q(Lm,n)(−1) are: q(Lm,0)(−1) =
−2m−1, q(Lm,1)(−1) = −2m−2 = q(Lm,5)(−1), q(Lm,2)(−1) = 2m−2 = q(Lm,4)(−1), q(Lm,3)(−1) =
2m−1.

In the following Theorem Balister, Bollóbas, Cutler and Peabody give an explicit formula for
the interlace at x = −1, therefore proving the conjecture in [7].

Theorem 2.2. [7] Let A be the adjacency matrix of G, n = |V (G)| and let r = rank(A+ I) over
Z2 and I be the n× n identity matrix. Then

q(G,−1) = (−1)n(−2)n−r.

Now we consider applications of lollipop graphs in solving a linear algebra problem. We
determine the ranks of the adjacency matrices related to Lm,n over Z2. For m ≥ 3, n ≥ 0, let Am,n
denote the adjacency matrix of Lm,n. Then Am,n has the form

Am,n =



0 1 . . . 1 | 0 . . . . . . 0

1 0 1 ... | ...

0 ...
... 1 . . . 1 | 0 0 ...
1 . . . 1 0 | 1 0 . . . 0
− − − − − − − − −
0 . . . 0 1 |
... 0 0 | A
0 0 0 |



(m+ n) × (m+ n)

with Am×n = [aij], where

aij =

{
1, if j = i+ 1 or j = i− 1,
0, otherwise.

.
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Proposition 2.3. Suppose m ≥ 3, n ≥ 0, let Cm,n = Am,n + Im+n, where Im+n is the (m+ n)×

(m+ n) identity matrix. Then, rank(Cm,n) =

{
n+ 1, if n ≡ 0, 3 mod 6,
n+ 2, otherwise.

Proof. Using Theorem 2.2 and Proposition 2.2(2), we have the desired result.

We end this section by giving information about coefficients of Lm,n, which gives us a way to
describe the relations between coefficients.

Theorem 2.3. For m ≥ 3, n ≥ 0, write q(Lm,n)(x) =

1+dn2 e∑
k=0

lm,n,kx
k. Then the coefficients

lm,n,k = 2m−2
((
n−k+1
k−2

)
+ 2
(
n−k+1
k−1

))
for all k ≥ 0.

Proof. Note that from Lemma 2.1, we have, q(Lm,n) = q(Lm,n−1) + xq(Lm,n−2), which yields

lm,n,k = lm,n−1,k + lm,n−2,k−1. (1)

Fix m ≥ 3. We proceed by multivariate strong induction on n and k. To show the base cases,
note that by Lemma 1.1 (1), lm,n,0 = 0, for all n ≥ 0 and so lm,n,0 = 2m−2

((
n+1
−2

)
+ 2
(
n+1
−1

))
, for

all n ≥ 0. By lemma 1.2 (1), q(Lm,0) = q(Km) = 2m−1x and so lm,0,k =

{
0, k 6= 1,

2m−1, k = 1.

Now fix n, k ≥ 0. Assume the following inductive hypotheses:
lm,i,j = 2m−2

((
i−j+1
j−2

)
+ 2
(
i−j+1
j−1

))
, for all i, j, when 1 ≤ i ≤ n and 1 ≤ j ≤ k + 1.

lm,i,j = 2m−2
((

i−j+1
j−2

)
+ 2
(
i−j+1
j−1

))
, for all i, j, when 1 ≤ i ≤ n+ 1 and 1 ≤ j ≤ k.

Consider lm,n+1,k+1. From Equation (1), we have, lm,n+1,k+1 = lm,n,k+1 + lm,n−1,k−1. By the
first inductive hypothesis,

lm,n,k+1 = 2m−2
((

n− (k + 1) + 1

(k + 1)− 2

)
+ 2

(
n− (k + 1) + 1

(k + 1)− 1

))
= 2m−2

((
n− k
k − 1

)
+ 2

(
n− k
k

))
.

By the second inductive hypothesis,

lm,n−1,k = 2m−2
((

(n− 1)− k + 1

k − 2

)
+ 2

(
(n− 1)− k + 1

k − 1

))
= 2m−2

((
n− k
k − 2

)
+ 2

(
n− k
k − 1

))
.

Hence,
lm,n+1,k+1 = lm,n,k+1 + lm,n−1,k−1

= 2m−2
((

n− k
k − 1

)
+

(
n− k
k − 2

)
+ 2

(
n− k
k

)
+ 2

(
n− k
k − 1

))
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Applying Pascal’s Identity yields:

lm,n+1,k+1 = 2m−2
((

n− k
k − 1

)
+ 2

(
n− k
k

))
Thus, lm,n,k = 2m−2

((
n−k+1
k−2

)
+ 2
(
n−k+1
k−1

))
for all m ≥ 3 and n, k ≥ 0.

3. Interlace Polynomial of Tadpole Graphs

Now we turn our attention to tadpole graphs. Tadpole graphs have structure similar to lollipop
graphs as they are cycles connected to a path at a vertex of the cycle.

Definition 3.1. Let m,n ∈ N, with m ≥ 3, n ≥ 0. The tadpole graph Tm,n is the simple graph
obtained by joining a cycle Cm to a path graph Pn at one of the vertices of Cm. The tadpole graph
Tm,n has m+ n vertices and m+ n edges. Note, we hold m ≥ 3 to disregard the case when Tm,n
is a path.

Figure 5. The graph Tm,n.

Next, we show that the recursive formula for the interlace polynomial of the tadpole graph is
the same as the interlace polynomial of the path and lollipop graphs. The explicit formula for the
interlace polynomial of the tadpole graph has a structure similar to the interlace polynomial of the
lollipop graph.

Lemma 3.1. For m ≥ 3, n ≥ 2, q(Tm,n) = q(Tm,n−1) + xq(Tm,n−2), where q(Tm,0) = q(Cm) and
q(Tm,1) = q(Cm) + xq(Pm−2).

We utilize the following explicit formulas given in [5].

Lemma 3.2. [5] Let Pm be the path of length m (with m+1 vertices and m edges) and Cm denote
the cycle with m vertices.

1. For m ≥ 2, the interlace polynomial of the path Pm satisfies

q(Pm) =
(3 + y)(y − 1)

4y

(1 + y

2

)m+1

+
(3− y)(y + 1)

4y

(1− y
2

)m+1

where y =
√
1 + 4x.
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2. For m ≥ 4, with y =
√
1 + 4x,

q(Cm) =
(1− y

2

)m
+
(1 + y

2

)m
+
y4 − 10y2 − 7

16
for m even,

q(Cm) =
(1− y

2

)m
+
(1 + y

2

)m
+
y2 − 5

4
for m odd.

In [2] a general explicit function for q(Tm,n) is given for m ≥ 6, n ≥ 5. Here we provide an
alternative form of the explicit function for Tm,n and give results for m ≥ 3, n ≥ 0.

Theorem 3.1. For m ≥ 3 and n ≥ 0,

q(Tm,n) =
q(Cm) + xq(Pm−2)γ

x(β − γ)

(1
γ

)n+1

− q(Cm) + xq(Pm−2)β

x(β − γ)

( 1
β

)n+1

where γ =

√
1 + 4x− 1

2x
, β =

−
√
1 + 4x− 1

2x
and q(Cm) and q(Pm) are the explicit forms given

in Lemma 3.2.

Proposition 3.1. For m ≥ 3, n ≥ 1, deg(q(Tm,n)) = 1 +
⌈
n
2

⌉
, when n is odd and deg(q(Tm,n)) =

2 +
⌈
n
2

⌉
, when n is even.

Proof. Similar to Proposition 2.1.

Proposition 3.2. For m ≥ 3, n ≥ 1, the independence number α(Tm,n) =
⌈
n−1
2

⌉
+ bm

2
c.

Next, we give evaluations of Tm,n at x = 1 and −1. Similar to the interlace polynomials of
the path and lollipop graphs evaluated at x = 1, the interlace polynomial for the tadpole graph
evaluated at 1 involves the Fibonacci sequence.

Theorem 3.2. For m ≥ 3, n ≥ 0,

q(Tm,n)(1) =

(Fn+1

√
5 + Fn)Fm + 2Fn+1

((
1−
√
5

2

)m
− 1
)
, if m is even,

(Fn+1

√
5 + Fn)Fm + 2Fn+1

(
1−
√
5

2

)m
, if m is odd,

where Fn is the n-th Fibonacci number with F0 = 0 and F1 = 1.

Proof. Fixing m ≥ 3, this proof follows by induction on n and Lemma 3.2(2).

Proposition 3.3. For m ≥ 3, n ≥ 0, let Cm =
(1−√−3

2

)m
+
(1 +√−3

2

)m
.

We have that Cm =


2, if m ≡ 0 mod 6,
1, if m ≡ 1, 5 mod 6,
−1, if m ≡ 2, 4 mod 6,
−2, if m ≡ 3 mod 6,

and then
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q(Tm,n)(−1) =



4, if n,m ≡ 0 mod 6,
−1, if n ≡ 0 mod 6; m ≡ 1, 5 mod 6,
1, if n ≡ 0 mod 6; m ≡ 2, 4 mod 6,
−4, if n ≡ 0 mod 6; m ≡ 3 mod 6,

2, if n ≡ 1 mod 6;m is even,
−2, if n ≡ 1 mod 6;m is odd,

−Cm, if n ≡ 2 mod 6,

−q(Tm,0), if n ≡ 3 mod 6,

−q(Tm,1), if n ≡ 4 mod 6,

−q(Tm,2), if n ≡ 5 mod 6

.

Proof. For m ≥ 3, we have, Cm =
(1−√−3

2

)m
+
(1 +√−3

2

)m
=(

1−
√
−3
)m

+
(
1 +
√
−3
)m

2m
=

(
2ei

π
3

)m
+
(
2e−i

π
3

)m
2m

= ei
mπ
3 + e−i

mπ
3 = 2 cos mπ

3
.

Note, that cos mπ
3

=


1, if m ≡ 0 mod 6,
1
2
, if m ≡ 1, 5 mod 6,
−1

2
, if m ≡ 2, 4 mod 6,

−1, if m ≡ 3 mod 6

.

Therefore, Cm is as claimed. Utilizing Lemma 3.2, the remainder of the proof is similar to Propo-
sition 2.2.

Now we consider applications of tadpole graphs in solving a linear algebra problem. For n ≥ 1,
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let Bmn denote the adjacency matrix of Tmn. Then

Bmn =



| 0 . . . . . . 0

| ... 0 ...

B | 0 0 ...
| 1 0 . . . 0

− − − − − − − − −
0 . . . 0 1 |
... 0 0 | A
0 0 0 |


(m+n)× (m+n)

with Bm×m = [bij], where

bij =


1, if j = i+ 1 or j = i− 1,
1, if i = 1, j = m or i = m, j = 1,
0, otherwise.

An×n = [aij], where aij =

{
1, if j = i+ 1 or j = i− 1,
0, otherwise.

.

Proposition 3.4. Suppose m ≥ 3, n ≥ 0, let Dm,n = Bm,n + Im+n, where Im+n is the (m+ n)×
(m+ n) identity matrix. Then,

rank(Dm,n) =


m+ n− 2, if n,m ≡ 0, 3 mod 6,
m+ n, if n ≡ 0, 2, 3, 5 mod 6;m ≡ 1, 2, 4, 5 mod 6,
m+ n− 1, if n ≡ 1, 4 mod 6 andn ≡ 2, 5 mod 6;m ≡ 0, 3 mod 6.

Proof. Using Theorem 2.2 and Lemma 3.3, we have the desired result.
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