(1,2)-rainbow connection number at most 3 in connected dense graphs

Trung Duy Doan*, Le Thi Duyen
School of Applied Mathematics and Informatics, Hanoi University of Science and Technology,
Hanoi, Vietnam
trungdoanduy@gmail.com, leduyen1997q1@gmail.com
*corresponding author

Abstract

Let G be an edge-colored connected graph G. A path P in the graph G is called l-rainbow path if each subpath of length at most $l+1$ is rainbow. The graph G is called (k, l)-rainbow connected if any two vertices in G are connected by at least k pairwise internally vertex-disjoint l-rainbow paths. The smallest number of colors needed in order to make $G(k, l)$-rainbow connected is called the (k, l)-rainbow connection number of G and denoted by $r c_{k, l}(G)$. In this paper, we consider the (1,2)-rainbow connection number at most 3 in some connected dense graphs. Our main results are as follows: (1) Let $n \geq 7$ be an integer and G be a connected graph of order n. If $\omega(G) \geq n-3$, then $\operatorname{rc}_{1,2}(G) \leq 3$. Moreover, the bound of the clique number is sharpness. (2) Let $n \geq 7$ be an integer and G be a connected graph of order n. If $|E(G)| \geq\binom{ n-3}{2}+7$, then $r c_{1,2}(G) \leq 3$.

Keywords: edge-coloring, rainbow connection, (1, 2)-rainbow connection.
Mathematics Subject Classification : 05C15, 05C40
DOI: 10.5614/ejgta.2023.11.2.6

1. Introduction

We use [18] for terminology and notation not defined here and consider simple, finite, and undirected graphs only. Let G be a graph. We denote by $V(G), E(G), n, m$ the vertex set, the edge set, the number of vertices, the number of edges, respectively. Let $v \in V(G)$ be a vertex. The degree of vertex v in G is denoted by $d_{G}(v)$ (simply $d(u)$ if G is known). A clique in a graph is a set of pairwise adjacent vertices. The clique number of G, written $\omega(G)$, is the maximum size of a clique in G. Let $K_{\omega(G)}$ be a clique of order $\omega(G)$ in G. Let $u v$ be an edge of G and $c(u v)$ be its color. Let $p(G)$ denote the order of a longest path in G and $c(G)$ be the circumference of G. We abbreviate the set $\{1,2, \ldots, k\}$ by $[k]$.

Let G be a graph of order n with a vertex set $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ and an edge set $E(G)$, $u \notin V(G)$ be an arbitrary vertex, $k \in[n]$ be an arbitrary integer. $G \cup u$ is a new graph obtained from G and u with the vertex set $V(G \cup u)=V(G) \cup\{u\}$ and the edge set $E(G \cup u)=E(G) \cup\left\{u v_{i} \mid \forall i \in\right.$ $[k]\}$.

In the last years, the connection concepts of connected graphs appeared in graph theory and received many attentions. They have many applications in the transmission of information in networks. Let G be a connected and edge-colored graph.

The first connection concept introduced by Chartrand et al. [5] is rainbow connection. A rainbow path in an edge-colored graph G is a path P whose edges are assigned distinct colors. An edge-colored graph G is rainbow connected if every two vertices are connected by at least one rainbow path in G. For a connected graph G, the rainbow connection number of G, denoted by $r c(G)$, is defined as the smallest number of colors required to make it rainbow connected. After that, many researchers have studied problems on rainbow connection [10, 16, 17]. Moreover, it has been shown in [7] that computing $r c(G)$ for a given connected graph G is an NP-hard problem. Readers who are interested in this topic are referred to [14, 15].

Motivated by proper coloring and rainbow connection, Borozan et al. [2] and Andrews et al. [1], independently introduced the concept of proper connection. A path P in an edge-colored graph G is a proper path if any two consecutive edges receive distinct colors. An edge-colored graph G is properly connected if every two vertices are connected by at least one proper path in G. For a connected graph G, the proper connection number of G, denoted by $p c(G)$, is defined as the smallest number of colors required to make it properly connected. Some results on this topic can be found in [3, 4]. Very recently, it has been shown in [11] that computing $p c(G)$ for a given graph G is an NP-hard problem. For more details we refer to the survey [12].

Recently, the new concept of connection that is (k, l)-rainbow connection was defined in [13] as a generalization of rainbow connection and proper connection. The concept of l-rainbow coloring was also independently introduced and studied in [6, 8, 9, 20]. A path P in an edge-colored graph G is called an l-rainbow path if each subpath of length at most $l+1$ of P is rainbow. An edge-colored graph G is called (k, l)-rainbow connected if every two vertices are connected by at least k pairwise internally vertex-disjoint l-rainbow paths in G. For a connected graph G, the (k, l)-rainbow connection number of G, denoted by $r c_{k, l}(G)$, is defined as the smallest number of colors required to make it (k, l)-rainbow connected. From this definition, it can be readily seen that the $(1,1)$-rainbow connection number of a connected graph G is actually its proper connection number, i.e $r c_{1,1}(G)=p c(G)$. Meanwhile, the $(1, l)$-rainbow connection number of a connected
graph G can be its rainbow connection number as long as l is large enough. Recently, there is a few results on this topic. In this paper, we consider the (1,2)-rainbow connection number of connected dense graphs with some additional properties. Clearly, $1 \leq r c_{1,2}(G) \leq m$. Moreover, $r c_{1,2}(G)=1$ if and only if G is complete.

2. Auxiliary results

In this section, we introduce some definitions and basic results that will be essential tools in the proof of our results.

Definition 2.1. Let $P=v_{1} v_{2} \ldots v_{n}$ be a path of order n. We color all edges of P alternately with colors 1, 2 and 3 that means every subpath of length at most 3 is rainbow.

Similar to the proper connection number and the rainbow connection number, the following proposition is easily obtained in [20].

Proposition 2.1. (Zhu et al. [20]) Let G be a nontrivial connected graph. If H is a connected spanning subgraph of G, then $r c_{1,2}(G) \leq r c_{1,2}(H)$. Particularly, $r c_{1,2}(G) \leq r c_{1,2}(T)$ for every spanning tree T of G.

By using Proposition 2.1, the authors in [20] gave the (1, 2)-rainbow connection number of the traceable graph, i.e. graphs containing a Hamiltonian path.

Proposition 2.2. (Zhu et al. [20]) If G be a traceable graph, then $r c_{1,2}(G) \leq 3$.
We present now the following proposition.
Proposition 2.3. Let G be a traceable graph and $u \notin V(G)$ be an arbitrary vertex. If $H=G \cup u$ and $d_{H}(u) \geq 2$, then $r c_{1,2}(H) \leq 3$.

Proof. Since G is a traceable graph of order n, by Proposition 2.2, $r c_{1,2}(G) \leq 3$. Let $P=v_{1} \ldots v_{n}$ be a path containing all vertices of G and v_{i}, v_{j} be two neighbours of u in G, where $i<j$. We consider that there are some vertices v_{k} between v_{i} and v_{j} in P. Otherwise, $v_{1} \ldots v_{i} u v_{j} \ldots v_{n}$ is a path. By Proposition 2.1 and Proposition 2.2, $r c_{1,2}(H) \leq 3$.

All edges of P now are alternately assigned with colors 1,2 and 3 . Next, color the edge $u v_{i}$ so that $c\left(u v_{i}\right) \notin\left\{c\left(v_{i} v_{i+1}\right), c\left(v_{i+1} v_{i+2}\right)\right\}$ and color the edge $u v_{j}$ so that $c\left(u v_{j}\right) \notin\left\{c\left(v_{j} v_{j-1}\right)\right.$, $\left.c\left(v_{j-1} v_{j-2}\right)\right\}$. It can be readily seen that every two vertices of $P \cup u$ is connected by at least one 2-rainbow path.

Thereby completing the proof.

3. Main results

In this section, we study the (1,2)-rainbow connection number of connected dense graphs with some additional properties. The first result is investigated in a connected graph G with the condition of the clique number $\omega(G)$.

Figure 1. Graph H_{11}.

Figure 3. Graph H_{22}.

Figure 2. Graph H_{21}.

Figure 4. Graph H_{23}.

Theorem 3.1. Let $n \geq 7$ be an integer. If G is a connected graph of order n with $\omega(G) \geq n-3$, then $\operatorname{rc}_{1,2}(G) \leq 3$. Moreover, the bound of the clique number is sharpness.

Proof. Let H be a minimally connected spanning subgraph of G such that $\omega(H)=\omega(G)$ and if the removal of any edges that are not in $K_{\omega(H)}$, then H is not connected. By Proposition 2.1, $r c_{1,2}(G) \leq r c_{1,2}(H)$. We only consider that H is nontraceable. Otherwise, by Proposition 2.2, $r c_{1,2}(G) \leq r c_{1,2}(H) \leq 3$. Note that H is connected. If $\omega(H)=n$ or $\omega(H)=n-1$, then H is traceable. Hence, we consider that $\omega(H) \in\{n-2, n-3\}$. Moreover, H is nontraceable. Let $V\left(K_{\omega(H)}\right)=\left\{v_{1}, v_{2}, \ldots, v_{\omega(H)}\right\}$ and $S=\left\{w_{1}, \ldots, w_{n-\omega(H)}\right\}$ be a vertex set of $K_{\omega(H)}$ and a vertex set not in $K_{\omega(H)}$, respectively.

Case 1. If $\omega(H)=n-2$ and H is nontraceable, then we have only one case that is $H \cong H_{11}$, see Figure 1. We color all edges of H_{11} as follows: $c\left(w_{1} v_{1}\right)=1, c\left(w_{2} v_{1}\right)=2$ and $c\left(v_{i} v_{j}\right)=3$, where $v_{i} v_{j} \in K_{\omega\left(H_{11}\right)}$. Since $H_{11} \backslash\left\{w_{1}, w_{2}\right\}$ is a clique, two vertices v_{i}, v_{j} are connected by at least one 2 -rainbow path, say an edge. On the other hand, a 2 -rainbow path between v_{j} and w_{i}, where $j \in[n-2]$, and $i \in[2]$ is $v_{j} v_{1} w_{i}$, and a 2 -rainbow path between w_{1}, w_{2} is $w_{1} v_{1} w_{2}$. Every two vertices of H_{11} is connected by at least one 2-rainbow path. Hence, $r c_{12}\left(H_{11}\right) \leq 3$. We obtain the result.

Case 2. Let $i \in[5]$. If $\omega(H)=n-3$ and H is nontraceable, then we have some cases that are $H \cong H_{2 i}$, relabeling vertices of $K_{\omega\left(H_{2 i}\right)}$ if necessary, see Figures [2-6]. Since $n \geq 7$, there always exists a cycle of order 3 in $K_{\omega\left(H_{2 i}\right)}$, say $C_{3}=v_{1} v_{2} v_{3}$.

Figure 5. Graph H_{24}.

Figure 6. Graph H_{25}.

Now, we color all edges of $H_{21}, H_{22}, H_{24}, H_{25}$ by 3 colors as follows:
(a) For graph $H_{21}: c\left(v_{1} w_{1}\right)=1, c\left(v_{1} w_{2}\right)=2, c\left(w_{2} w_{3}\right)=3, c\left(v_{2} v_{1}\right)=1, c\left(v_{3} v_{1}\right)=2$.
(b) For graph $H_{22}: c\left(v_{1} w_{k}\right)=k$, where $k \in[3], c\left(v_{2} v_{3}\right)=1, c\left(v_{3} v_{1}\right)=2$.
(c) For graph $H_{24}: c\left(v_{1} w_{1}\right)=1, c\left(v_{1} w_{2}\right)=2, c\left(v_{3} w_{3}\right)=2, c\left(v_{2} v_{3}\right)=1$.
(d) For graph $H_{25}: c\left(v_{k} w_{k}\right)=k$, where $k \in[3], c\left(v_{2} v_{3}\right)=1, c\left(v_{t} v_{3}\right)=2$, where $t \in$ $[n-3] \backslash\{2\}$.

All remaining edges of $H_{21}, H_{22}, H_{24}, H_{25}$ are assigned to color 3 .
For graph H_{23}, some edges are assigned as follows: $c\left(v_{1} w_{1}\right)=1, c\left(w_{2} w_{1}\right)=2, c\left(w_{3} w_{1}\right)=$ $3, c\left(v_{t} v_{1}\right)=3$, where $t \in\{3, \ldots, n-3\}, c\left(v_{n-3} v_{2}\right)=2$. Next, we color all edges of path $w_{3} w_{1} v_{1} v_{2} \ldots v_{n-3}$ by alternating 3-colors. All remaining edges of H_{23} can be assigned by any color from [3].

It can be readily seen that every two vertices of $H_{2 i}$ is connected by at least one 2-rainbow path. It follows that $H_{2 i}$ is (1,2)-rainbow connected with respect to this 3-coloring. Hence, $r c_{1,2}\left(H_{2 i}\right) \leq$ 3. We obtain the result.

Our proof is finished.

Remark 3.1. The following example points out that Theorem 3.1 is best possible in sense of the clique number of graph G. For $n \geq 7$, let K_{n-4} be a complete graph and $K_{1,4}$ be a star. Next, identify the center of the star with an arbitrary vertex of K_{n-4}. Hence, the resulting graph G_{4} has order n and clique number $\omega(G)=n-4$. It can be readily seen that $r c_{1,2}\left(G_{4}\right) \geq 4$.

Next, we consider the (1,2)-rainbow connection number in connected graph with respect to their size.

Theorem 3.2. Let $n \geq 7$ be an integer and G be a connected graph of order n. If $|E(G)| \geq$ $\binom{n-3}{2}+7$, then $r c_{1,2}(G) \leq 3$.

For the proof of Theorem 3.2 we will make use the following result.
Theorem 3.3. (Woodall et al. [19]) Let G be a graph of order $n=t m+r$, where $m \geq 1, t \geq 0$ and $1 \leq r \leq m$. If

$$
|E(G)|>t\binom{m+1}{2}+\binom{r}{2}
$$

then $c(G) \geq m+2$
Proof. Since $|E(G)| \geq\binom{ n-3}{2}+7$, we observe that $|E(\bar{G})| \leq 3 n-13$, where \bar{G} is the complement of G.

By Woodall's Theorem we conclude that $c(G) \geq n-2$. Now suppose, to the contrary, that $r c_{1,2}(G) \geq 4$. By using Proposition 2.2, G is not a traceable graph. Hence, we only consider that $c(G)=n-2$. Since G is connected, $p(G)=n-1$. Let $C=v_{1} \ldots v_{n-2} v_{1}$ be a cycle of order $n-2$, which is clockwise oriented, and u, w be two vertices not belong to C. Clearly, $u w \notin E(G)$. Otherwise, G is traceable. Moreover, by using Proposition 2.3, we deduce that $d(u)=d(w)=1$. We consider two cases as follows.

Case 1. $N(u) \cap N(w)=\left\{v_{1}\right\}$, renaming vertices if necessary. We construct 3-coloring of C as follows. Let $c\left(u v_{1}\right)=2$ and $c\left(w v_{1}\right)=3$. We color all edges of C alternately with colors 1,2 and 3 so that $c\left(v_{1} v_{2}\right)=1, c\left(v_{2} v_{3}\right)=2, c\left(v_{3} v_{4}\right)=3$ if $n=3 k$ or $c\left(v_{1} v_{2}\right)=3, c\left(v_{2} v_{3}\right)=1, c\left(v_{3} v_{4}\right)=2$ if $n=3 k+2$.

If $n=3 k+1$, then $v_{i} v_{i+2} \in E(G)$ for some $i \in[n-2]$ (indices taken modulo 2). Otherwise, $|E(\bar{G})| \geq n-3+n-3+n>3 n-13$ (note that $n-2 \geq 5$), a contradiction. Choose i so that $i \neq 2$. Now, let C^{\prime} be a new cycle obtained from C by replacing the path $v_{i} v_{i+1} v_{i+2}$ with the edge $v_{i} v_{i+2}$. color all the edges of C^{\prime} as the same as the case $n=3 k$. Next assign the color of $v_{i} v_{i+2}$ to both $v_{i} v_{i+1}$ and $v_{i+1} v_{i+2}$.

It can be readily seen that G is $(1,2)$-rainbow connected with respect to this 3 -coloring.
Case 2. $N(u) \cap N(w)=\emptyset$. Renaming vertices if necessary, we may assume that $N(u)=\left\{v_{1}\right\}$ and $N(w)=\left\{v_{l}\right\}$. Hence, $3 \leq l \leq n-3$. If $n=3 k+2$, then we color all edges of C alternately with colors 1,2 and 3 so that $c\left(v_{1} v_{2}\right)=1, c\left(v_{2} v_{3}\right)=2$ and $c\left(v_{3} v_{4}\right)=3$. Next, let $c\left(u v_{1}\right)=3$ and $c\left(w v_{l}\right)=c\left(v_{l} v_{l+1}\right)$.

By using a similar argument as in Case 1 , there exist some edges $v_{i} v_{i+2} \in E(G)$ for $i \in[n-2]$ and $i \notin\{2, l-1\}$. If $n=3 k$, then let C^{\prime} be a new cycle obtained from C by replacing the path $v_{i} v_{i+1} v_{i+2}$ with the edge $v_{i} v_{i+2}$. color all edge of C^{\prime} and $u v_{1}, w v_{l}$ as the same as the case $n=3 k+2$. Next assign the color of $v_{i} v_{i+2}$ to both $v_{i} v_{i+1}$ and $v_{i+1} v_{i+2}$. If $n=3 k+1$, then there are two edges $v_{i} v_{i+2}, v_{j} v_{j+2}$ in G so that $j \neq i+1$. Let C^{\prime} a new cycle obtained from C by replacing the following paths: $v_{i} v_{i+1} v_{i+2}$ with the edge $v_{i} v_{i+2}$ and $v_{j} v_{j+1} v_{j+2}$ with the edge $v_{j} v_{j+2}$. color all edge of C^{\prime} and $u v_{1}, w v_{l}$ as the same as the case $n=3 k+2$. Next assign the color of $v_{i} v_{i+2}$ to both $v_{i} v_{i+2}, v_{i+2} v_{i+2}$ and the color of $v_{j} v_{j+2}$ to both $v_{j} v_{j+1}, v_{j+1} v_{i+2}$.

Clearly, G is $(1,2)$-rainbow connected with respect to this 3 -coloring.
We complete our proof.

Acknowledgement

We would like to thank the Editors and the reviewers for several valuable comments and suggestions improving this paper. A part of this work was performed while the first author was staying at TU Bergakademie Freiberg as a visiting scholar. This research was partly supported by Vietnam Ministry of Education and Training under grant number B2022-BKA-03.

References

[1] E. Andrews, E. Laforge, C. Lumduanhom, and P. Zhang, On proper-path colorings in graphs, J. Combin. Math. Combin. Comput. 97 (2016) 189-207.
[2] V. Borozan, S. Fujita, A. Gerek, C. Magnant, Y. Manoussakis, L. Montero, and Zs. Tuza, Proper connection of graphs, Discrete Math. 312 (2012) 2550-2560.
[3] C. Brause, T.D. Doan, and I. Schiermeyer, On the minimum degree and the proper connection number of graphs, Electron. Notes Discrete Math. 55 (2016) 109-112.
[4] C. Brause, T.D. Doan, and I. Schiermeyer, Proper connection number 2, connectivity, and forbidden subgraphs, Electron. Notes Discrete Math. 55 (2016) 105-108.
[5] G. Chartrand, G.L. Johns, K.A. McKeon, and P. Zhang, Rainbow connection in graphs, Math. Bohemica 133 (1) (2008) 85-98.
[6] G. Chartrand, S. Devereaux, and P. Zhang, Color-connected graphs and information transfer paths, Ars Combin. to appear
[7] S. Chakraborty, E. Fischer, A. Matsliah, and R. Yuster, Hardness and algorithms for rainbow connection, J. Comb. Optim. 21 (2011)330-347
[8] S. Devereaux, G.L. Johns, and P. Zhang, Color connection in graphs intermediate to proper and rainbow connection, J. Combin. Math. Combin. Comput. to appear
[9] S. Devereaux and P. Zhang, k-rainbow colorings in graphs, manuscript
[10] D. Fitriani, A.N.M. Salman, and Z.Y. Awanis, Rainbow connection number of comb product of graphs, Electron. J. Graph Theory Appl. 10 (2) (2022) 461-473.
[11] F. Huang and X. Li, Hardness results for three kinds of colored connections of graphs, Theoretical Computer Science, https://doi.org/10.1016/j.tcs.2020.06.030
[12] X. Li and C. Magnant, Properly colored notions of connectivity-a dynamic survey, Theory \& Appl. Graphs 0(1) (2015), Art. 2.
[13] X. Li, C. Magnant, M. Wei, and X. Zhu, Generalized rainbow connection of graphs and their complements, Discuss. Math. Graph Theory 38 (2018) 371-384.
[14] X. Li, Y. Shi, and Y. Sun, Rainbow connections of graphs: A survey, Graphs \& Combin. 29 (2013) 1-38.
[15] X. Li and Y. Sun, Rainbow Connections of Graphs, Springer Briefs in Math., Springer, New York (2012).
[16] F. Septyanto and K.A. Sugeng, Color code techniques in rainbow connection, Electron. J. Graph Theory Appl. 6 (2) (2018) 347-361
[17] B.H. Susanti, A.N.M. Salman, and R. Simanjuntak, The rainbow 2-connectivity of Cartesian products of 2-connected graphs and paths, Electron. J. Graph Theory Appl. 8 (1) (2020), 145-156.
[18] D.B. West, Introduction to Graph Theory, Prentice Hall, 2001.
[19] D.R. Woodall, Maximal circuits of graphs I, Acta Math. Acad. Sci. Hungar. 28 (1976) 77-80.
[20] X. Zhu, M. Wei, and C. Magnant, Generalized Rainbow Connection of Graphs, Bull. Malays. Math. Sci. Soc. 44 (2021) 3991—4002. https://doi.org/10.1007/s40840-021-01119-6.

