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Abstract

Let G be an edge-colored connected graph G. A path P in the graph G is called l-rainbow path if
each subpath of length at most l + 1 is rainbow. The graph G is called (k, l)-rainbow connected
if any two vertices in G are connected by at least k pairwise internally vertex-disjoint l-rainbow
paths. The smallest number of colors needed in order to make G (k, l)-rainbow connected is called
the (k, l)-rainbow connection number of G and denoted by rck,l(G). In this paper, we consider the
(1, 2)-rainbow connection number at most 3 in some connected dense graphs. Our main results are
as follows: (1) Let n ≥ 7 be an integer and G be a connected graph of order n. If ω(G) ≥ n− 3,
then rc1,2(G) ≤ 3. Moreover, the bound of the clique number is sharpness. (2) Let n ≥ 7 be an
integer and G be a connected graph of order n. If |E(G)| ≥

(
n−3
2

)
+ 7, then rc1,2(G) ≤ 3.
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1. Introduction

We use [18] for terminology and notation not defined here and consider simple, finite, and
undirected graphs only. Let G be a graph. We denote by V (G), E(G), n,m the vertex set, the edge
set, the number of vertices, the number of edges, respectively. Let v ∈ V (G) be a vertex. The
degree of vertex v in G is denoted by dG(v) (simply d(u) if G is known). A clique in a graph is a
set of pairwise adjacent vertices. The clique number of G, written ω(G), is the maximum size of
a clique in G. Let Kω(G) be a clique of order ω(G) in G. Let uv be an edge of G and c(uv) be its
color. Let p(G) denote the order of a longest path in G and c(G) be the circumference of G. We
abbreviate the set {1, 2, . . . , k} by [k].

Let G be a graph of order n with a vertex set V (G) = {v1, . . . , vn} and an edge set E(G),
u /∈ V (G) be an arbitrary vertex, k ∈ [n] be an arbitrary integer. G∪u is a new graph obtained from
G and u with the vertex set V (G∪u) = V (G)∪{u} and the edge set E(G∪u) = E(G)∪{uvi |∀i ∈
[k]}.

In the last years, the connection concepts of connected graphs appeared in graph theory and
received many attentions. They have many applications in the transmission of information in
networks. Let G be a connected and edge-colored graph.

The first connection concept introduced by Chartrand et al. [5] is rainbow connection. A
rainbow path in an edge-colored graph G is a path P whose edges are assigned distinct colors.
An edge-colored graph G is rainbow connected if every two vertices are connected by at least one
rainbow path in G. For a connected graph G, the rainbow connection number of G, denoted by
rc(G), is defined as the smallest number of colors required to make it rainbow connected. After
that, many researchers have studied problems on rainbow connection [10, 16, 17]. Moreover, it has
been shown in [7] that computing rc(G) for a given connected graph G is an NP-hard problem.
Readers who are interested in this topic are referred to [14, 15].

Motivated by proper coloring and rainbow connection, Borozan et al. [2] and Andrews et al.
[1], independently introduced the concept of proper connection. A path P in an edge-colored
graph G is a proper path if any two consecutive edges receive distinct colors. An edge-colored
graph G is properly connected if every two vertices are connected by at least one proper path in G.
For a connected graph G, the proper connection number of G, denoted by pc(G), is defined as the
smallest number of colors required to make it properly connected. Some results on this topic can
be found in [3, 4]. Very recently, it has been shown in [11] that computing pc(G) for a given graph
G is an NP-hard problem. For more details we refer to the survey [12].

Recently, the new concept of connection that is (k, l)-rainbow connection was defined in [13] as
a generalization of rainbow connection and proper connection. The concept of l-rainbow coloring
was also independently introduced and studied in [6, 8, 9, 20]. A path P in an edge-colored
graph G is called an l-rainbow path if each subpath of length at most l + 1 of P is rainbow. An
edge-colored graph G is called (k, l)-rainbow connected if every two vertices are connected by
at least k pairwise internally vertex-disjoint l-rainbow paths in G. For a connected graph G, the
(k, l)-rainbow connection number of G, denoted by rck,l(G), is defined as the smallest number
of colors required to make it (k, l)-rainbow connected. From this definition, it can be readily seen
that the (1, 1)-rainbow connection number of a connected graph G is actually its proper connection
number, i.e rc1,1(G) = pc(G). Meanwhile, the (1, l)-rainbow connection number of a connected
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graph G can be its rainbow connection number as long as l is large enough. Recently, there is
a few results on this topic. In this paper, we consider the (1, 2)-rainbow connection number of
connected dense graphs with some additional properties. Clearly, 1 ≤ rc1,2(G) ≤ m. Moreover,
rc1,2(G) = 1 if and only if G is complete.

2. Auxiliary results

In this section, we introduce some definitions and basic results that will be essential tools in
the proof of our results.

Definition 2.1. Let P = v1v2 . . . vn be a path of order n. We color all edges of P alternately with
colors 1, 2 and 3 that means every subpath of length at most 3 is rainbow.

Similar to the proper connection number and the rainbow connection number, the following
proposition is easily obtained in [20].

Proposition 2.1. (Zhu et al. [20]) Let G be a nontrivial connected graph. If H is a connected
spanning subgraph of G, then rc1,2(G) ≤ rc1,2(H). Particularly, rc1,2(G) ≤ rc1,2(T ) for every
spanning tree T of G.

By using Proposition 2.1, the authors in [20] gave the (1, 2)-rainbow connection number of the
traceable graph, i.e. graphs containing a Hamiltonian path.

Proposition 2.2. (Zhu et al. [20]) If G be a traceable graph, then rc1,2(G) ≤ 3.

We present now the following proposition.

Proposition 2.3. Let G be a traceable graph and u /∈ V (G) be an arbitrary vertex. If H = G ∪ u
and dH(u) ≥ 2, then rc1,2(H) ≤ 3.

Proof. Since G is a traceable graph of order n, by Proposition 2.2, rc1,2(G) ≤ 3. Let P = v1 . . . vn
be a path containing all vertices of G and vi, vj be two neighbours of u in G, where i < j. We
consider that there are some vertices vk between vi and vj in P . Otherwise, v1 . . . viuvj . . . vn is a
path. By Proposition 2.1 and Proposition 2.2, rc1,2(H) ≤ 3.

All edges of P now are alternately assigned with colors 1, 2 and 3. Next, color the edge uvi
so that c(uvi) /∈ {c(vivi+1), c(vi+1vi+2)} and color the edge uvj so that c(uvj) /∈ {c(vjvj−1),
c(vj−1vj−2)}. It can be readily seen that every two vertices of P ∪ u is connected by at least one
2-rainbow path.

Thereby completing the proof.

3. Main results

In this section, we study the (1, 2)-rainbow connection number of connected dense graphs
with some additional properties. The first result is investigated in a connected graph G with the
condition of the clique number ω(G).
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Figure 1. Graph H11.
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Figure 2. Graph H21.
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Figure 3. Graph H22.
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Figure 4. Graph H23.

Theorem 3.1. Let n ≥ 7 be an integer. If G is a connected graph of order n with ω(G) ≥ n − 3,
then rc1,2(G) ≤ 3. Moreover, the bound of the clique number is sharpness.

Proof. Let H be a minimally connected spanning subgraph of G such that ω(H) = ω(G) and
if the removal of any edges that are not in Kω(H), then H is not connected. By Proposition 2.1,
rc1,2(G) ≤ rc1,2(H). We only consider that H is nontraceable. Otherwise, by Proposition 2.2,
rc1,2(G) ≤ rc1,2(H) ≤ 3. Note that H is connected. If ω(H) = n or ω(H) = n − 1, then H is
traceable. Hence, we consider that ω(H) ∈ {n − 2, n − 3}. Moreover, H is nontraceable. Let
V (Kω(H)) = {v1, v2, . . . , vω(H)} and S = {w1, . . . , wn−ω(H)} be a vertex set of Kω(H) and a vertex
set not in Kω(H), respectively.

Case 1. If ω(H) = n− 2 and H is nontraceable, then we have only one case that is H ∼= H11,
see Figure 1. We color all edges of H11 as follows: c(w1v1) = 1, c(w2v1) = 2 and c(vivj) = 3,
where vivj ∈ Kω(H11). Since H11 \ {w1, w2} is a clique, two vertices vi, vj are connected by at
least one 2-rainbow path, say an edge. On the other hand, a 2-rainbow path between vj and wi,
where j ∈ [n − 2], and i ∈ [2] is vjv1wi, and a 2-rainbow path between w1, w2 is w1v1w2. Every
two vertices of H11 is connected by at least one 2-rainbow path. Hence, rc12(H11) ≤ 3. We obtain
the result.

Case 2. Let i ∈ [5]. If ω(H) = n− 3 and H is nontraceable, then we have some cases that are
H ∼= H2i, relabeling vertices of Kω(H2i) if necessary, see Figures [2–6]. Since n ≥ 7, there always
exists a cycle of order 3 in Kω(H2i), say C3 = v1v2v3.

v3
Kn−3 v1

w3

w2

w1

Figure 5. Graph H24.

v1

Kn−3 v2

v3

w1

w2

w3

Figure 6. Graph H25.
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Now, we color all edges of H21, H22, H24, H25 by 3 colors as follows:
(a) For graph H21: c(v1w1) = 1, c(v1w2) = 2, c(w2w3) = 3, c(v2v1) = 1, c(v3v1) = 2.
(b) For graph H22: c(v1wk) = k, where k ∈ [3], c(v2v3) = 1, c(v3v1) = 2.
(c) For graph H24: c(v1w1) = 1, c(v1w2) = 2, c(v3w3) = 2, c(v2v3) = 1.
(d) For graph H25: c(vkwk) = k, where k ∈ [3], c(v2v3) = 1, c(vtv3) = 2, where t ∈

[n− 3] \ {2}.
All remaining edges of H21, H22, H24, H25 are assigned to color 3.
For graph H23, some edges are assigned as follows: c(v1w1) = 1, c(w2w1) = 2, c(w3w1) =

3, c(vtv1) = 3, where t ∈ {3, . . . , n − 3}, c(vn−3v2) = 2. Next, we color all edges of path
w3w1v1v2 . . . vn−3 by alternating 3-colors. All remaining edges of H23 can be assigned by any
color from [3].

It can be readily seen that every two vertices of H2i is connected by at least one 2-rainbow path.
It follows that H2i is (1, 2)-rainbow connected with respect to this 3-coloring. Hence, rc1,2(H2i) ≤
3. We obtain the result.

Our proof is finished.

Remark 3.1. The following example points out that Theorem 3.1 is best possible in sense of the
clique number of graph G. For n ≥ 7, let Kn−4 be a complete graph and K1,4 be a star. Next,
identify the center of the star with an arbitrary vertex of Kn−4. Hence, the resulting graph G4 has
order n and clique number ω(G) = n− 4. It can be readily seen that rc1,2(G4) ≥ 4.

Next, we consider the (1, 2)-rainbow connection number in connected graph with respect to
their size.

Theorem 3.2. Let n ≥ 7 be an integer and G be a connected graph of order n. If |E(G)| ≥(
n−3
2

)
+ 7, then rc1,2(G) ≤ 3.

For the proof of Theorem 3.2 we will make use the following result.

Theorem 3.3. (Woodall et al. [19]) Let G be a graph of order n = tm + r, where m ≥ 1, t ≥ 0
and 1 ≤ r ≤ m. If

|E(G)| > t

(
m+ 1

2

)
+

(
r

2

)
then c(G) ≥ m+ 2

Proof. Since |E(G)| ≥
(
n−3
2

)
+7, we observe that |E(Ḡ)| ≤ 3n− 13, where Ḡ is the complement

of G.
By Woodall’s Theorem we conclude that c(G) ≥ n − 2. Now suppose, to the contrary, that

rc1,2(G) ≥ 4. By using Proposition 2.2, G is not a traceable graph. Hence, we only consider that
c(G) = n − 2. Since G is connected, p(G) = n − 1. Let C = v1 . . . vn−2v1 be a cycle of order
n−2, which is clockwise oriented, and u, w be two vertices not belong to C. Clearly, uw /∈ E(G).
Otherwise, G is traceable. Moreover, by using Proposition 2.3, we deduce that d(u) = d(w) = 1.
We consider two cases as follows.
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Case 1. N(u)∩N(w) = {v1}, renaming vertices if necessary. We construct 3-coloring of C as
follows. Let c(uv1) = 2 and c(wv1) = 3. We color all edges of C alternately with colors 1, 2 and 3
so that c(v1v2) = 1, c(v2v3) = 2, c(v3v4) = 3 if n = 3k or c(v1v2) = 3, c(v2v3) = 1, c(v3v4) = 2
if n = 3k + 2.

If n = 3k + 1, then vivi+2 ∈ E(G) for some i ∈ [n− 2] (indices taken modulo 2). Otherwise,
|E(Ḡ)| ≥ n − 3 + n − 3 + n > 3n − 13 (note that n − 2 ≥ 5), a contradiction. Choose i so that
i ̸= 2. Now, let C ′ be a new cycle obtained from C by replacing the path vivi+1vi+2 with the edge
vivi+2. color all the edges of C ′ as the same as the case n = 3k. Next assign the color of vivi+2 to
both vivi+1 and vi+1vi+2.

It can be readily seen that G is (1, 2)-rainbow connected with respect to this 3-coloring.
Case 2. N(u)∩N(w) = ∅. Renaming vertices if necessary, we may assume that N(u) = {v1}

and N(w) = {vl}. Hence, 3 ≤ l ≤ n− 3. If n = 3k + 2, then we color all edges of C alternately
with colors 1, 2 and 3 so that c(v1v2) = 1, c(v2v3) = 2 and c(v3v4) = 3. Next, let c(uv1) = 3 and
c(wvl) = c(vlvl+1).

By using a similar argument as in Case 1, there exist some edges vivi+2 ∈ E(G) for i ∈ [n−2]
and i /∈ {2, l − 1}. If n = 3k, then let C ′ be a new cycle obtained from C by replacing the
path vivi+1vi+2 with the edge vivi+2. color all edge of C ′ and uv1, wvl as the same as the case
n = 3k + 2. Next assign the color of vivi+2 to both vivi+1 and vi+1vi+2. If n = 3k + 1, then
there are two edges vivi+2, vjvj+2 in G so that j ̸= i + 1. Let C ′ a new cycle obtained from C by
replacing the following paths: vivi+1vi+2 with the edge vivi+2 and vjvj+1vj+2 with the edge vjvj+2.
color all edge of C ′ and uv1, wvl as the same as the case n = 3k + 2. Next assign the color of
vivi+2 to both vivi+2, vi+2vi+2 and the color of vjvj+2 to both vjvj+1, vj+1vi+2 .

Clearly, G is (1, 2)-rainbow connected with respect to this 3-coloring.
We complete our proof.
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