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Abstract

Let GG be a finite group. For a fixed element g in G and a given subgroup X of G, the relative
g-noncommuting graph of (G is a simple undirected graph whose vertex set is G and two vertices
x and y are adjacent if € X ory € X and [z,y] # ¢,9~'. We denote this graph by R
In this paper, we obtain computing formulae for degree of any vertex in F%G and characterize
whether Fﬁ(’G is a tree, star graph, lollipop or a complete graph together with some properties of
F%G involving isomorphism of graphs. We also present certain relations between the number of
edges in F_%{’G and certain generalized commuting probabilities of G which give some computing
formulae for the number of edges in Fgw. Finally, we conclude this paper by deriving some
bounds for the number of edges in I'% ..
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1. Introduction

Throughout the paper, G is a finite non-abelian groupand Z(G) = {z € G : zx = zzVx € G}
is the center of G. For any X < G (X is a subgroup of ), we write Z(X,G) = {zx € X : 2y =
yrVy € Gt and Z(G,X) = {z € G : xy = yxVy € X}, which implies Z(G,G) = Z(G). For
any element z € G, we write Cx(z) = {y € X : 2y = ya}. Clearly, Z(X,G) = () Cx(x).

zeG
We write K(X,G) = {[z,y] : * € Xandy € G}, where [z,y] = 2 'y tzy, and [X,G] =
(K(X,Q)). Therefore, |G, G| = G, the commutator subgroup of G.
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The non-commuting graph of G, denoted by I'g, is a simple undirected graph with G \ Z(G)
as the vertex set and two distinct vertices « and y are adjacent whenever [z, y] # 1. This graph is
originated due to the work of Erdos and Neumann [19] in 1976. After that different mathematicians
studied different aspects of I'¢. For instance, characterization of finite non-abelian groups with
isomorphic non-commuting graph is discussed in [1, 3, 13, 16], Laplacian spectrum and energy
of I'; are computed in [7, 8], expressions for various topological indices of I'¢ are obtained in
[14, 15] and a characterization of finite groups through domination number of I'¢ can be found in
[27]. Graph theoretic invariants such that clique number, vertex chromatic number, independent
number etc. for non-commuting graph of dihedral groups are investigated in [24].

Various interesting generalizations of ' due to Erfanian and his collaborators can be found
in [2, 11, 25, 26]. In particular, in the year 2013, Tolue and Erfanian [25] introduced relative
non-commuting graph for a given X < G which is a simple undirected graph, denoted by I'x ¢,
with vertex set G\ Z(X,G) where two vertices © and y (z # y) are adjacent if z € X or
y € X and [x,y] # 1. In the year 2014, Tolue, Erfanian and Jafarzadeh [26] introduced g-
noncommuting graph for a given element g of a finite group G which is denoted by I'Y,. Recall that
g-noncommuting graph of G is a simple undirected graph whose vertex set is G and two vertices
z and y (x # y) are adjacent if [x,y] # g and g~'. Fusing the concepts of I'x ; and I'Z, in this
paper, we introduce relative g-noncommuting graph of (G. For a given X < G and g € G, the
relative g-noncommuting graph of GG, denoted by Fg(’G, is defined as the simple undirected graph
whose vertex set is G and two vertices x and y (x # y) are adjacent if z € X or y € X and
[z,y] # g and g~'. In [23], the induced subgraph of I} ; on G'\ Z(X, G) is considered and its
properties, including connectivity and diameter with special attention to the dihedral groups, are
investigated. Note that if g = 1 then the induced subgraph of I'{. ; on G\ Z(X, G) is the relative
non-commuting graph for a given X < G, thatis I'x ¢. Also, if X = G then I'}; ; = I'¢,. The ring
theoretic analogues of I'x ¢, FgG and F%}G can be found in [6, 17] and [22] respectively.

Let Gi + G, be the join of the graphs G; and G, and let G be the complement of G. Then we
have the following observations, where K, is the complete graph on n vertices and deg(v) denotes
the degree of any vertex v in Fg’(’G.

Observation 1.1. Let X < G and g € G.
(@) If g ¢ K(X,G) then I’g(,G = K- x| + K|x| and so

X ] X
deg(@) =41 °P TTEC
|G| -1, ifzreX.
(b) If g=1and K(X,G) = {1} then T ;, = K|q|.
Observation 1.2. Let X < G and g € G\ K(X,G). Then

(a) ' gisatree <= X = {1} and | X| = |G| = 2.
(b) Tk g is astar <= X = {1}.
(c) I'% ¢ is complete <= X = G.
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Note that if X = Z(X, G) or G is abelian then K (X, G) = {1}. Therefore, in view of Observation
1.1, we shall consider G to be non-abelian, X < G such that X # Z(X,G) and g € K(X,G)
throughout this paper.

In Section 2, we obtain computing formulae for degree of any vertex in F&G and characterize
whether ng,G is a tree, star graph, lollipop or a complete graph together with some properties of
Fg(’c involving isomorphism of graphs. In Section 3, we obtain the number of edges in Fg{,c using
Pr,(X, G), which is the probability (introduced and studied in [4, 18]) that the commutator of a
randomly chosen pair of elements (z,y) € X x G equals g. We shall conclude this paper with
some bounds for the number of edges in ' .

2. Vertex degree and other properties

In this section we first obtain computing formula for deg(v) in terms of |G|, | X | and the orders
of the centralizers of v. We write v ~ z if v is conjugate to z.

Theorem 2.1. Let v € X.

(a) Forg =1, deg(v) = |G| — |Ca(v)]
(1G]~ 1Co)] ~ 1. ifv ~ vg or v,
1G] = 2|Ce(v)] — 1, ifv ~ vg and vg~".
(¢) For g # land g* = 1, deg(v) = |G| — |Cq(v)| — 1, whenever v ~ vg.

(b) For g # 1and g*> # 1, deg(v)

Proof. (a) Let g = 1. Then deg(v) is the number of z € G such that z does not commute with v.
Hence, deg(v) = |G| — |Cx(v)]-

(b) Let g # 1 and g> # 1. Then g # g~'. Suppose that v ~ vg or vg~! but not to both. Without
any loss we assume that v is conjugate to vg. Then there exits z € G such that z~'vz = vg, that is
[v, 2] = vtz vz = g. Therefore, the set S, := {z € G : z~'vz = vg} is non-empty. Also, for
any a € S, we have [v, a] = g which gives that « is not adjacent to z. Thus, a € G is not adjacent
to v if and only if @ = v or & € S;. Therefore, the number of vertices not adjacent to v is equal to
|Sg] + 1.

Let z; € S, and 2, € C(v)z;. Then z5 = uz; for some u € C(v). We have

22_11)22 = Zl_lu_lvuzl = zflvzl = vg.

Therefore, z, € S, and so Ci(v)z; C S,. Suppose that z3 € S,. Then 2z Ywz; = 23 'vzs which
implies 2327 ' € Cg(v). Therefore, 23 € C(v)2; and so S, € Cg(v)z;. Thus S, = Cg(v)z; and
s0 |Sy| = |Ce(v)|. Hence, the number of vertices not adjacent to v is equal to |C(v)| + 1 and so
deg(v) = |G| = [Ca(v)] — 1.

If v is conjugate to vg and vg~* then S, N Sy-1 = 0, where S,-1 ;= {2z € G : z7 vz =vg~'}
and |S,-1| = |Cs(v)]. In this case, & € G is not adjacent to v if and only if « = vor v € S;US-1.
Therefore, the number of vertices not adjacent to v is equal to |S,| + [Sy-1| + 1 = 2|Cs(v)| + 1.
Hence, deg(v) = |G| — 2|Cq(v)| — 1.

(c)Letg # 1 and g = 1. Then g = g~! and so vg = vg~!. Now, if v is conjugate to vg then, as
shown in the proof of part (b), we have deg(v) = |G| — |Cg(v)| — 1. O
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Theorem 2.2. Letv € G\ X.

(@) Forg =1, deg(v) = [X| —[Cx(v)].
(b) For g # 1 and g* # 1,

des(v) | X|— |Cx ()|, ifv~wvgorvg™! for some elementin X,
eg(v) =
& | X| —2|Cx(v)], ifv~wvgandvg™? for some element in X .

(¢) Forg # land g*> = 1, deg(v) = | X| — |Cx(v)

, whenever v ~ vg, for some element in X.

Proof. The proof is analogous to the proof of Theorem 2.1. [

It is noteworthy that ¢ ¢ K (X,G) if v is not conjugate to vg and vg~'. Therefore, this case

does not arise in Theorem 2.1 and Theorem 2.2. The degree of a vertex, in such case, is given by
Observation 1.1.
Now, we present some properties of Fgw. The following lemmas are useful in this regard.

Lemma 2.1. If g # 1 and X has an element of order 3 then Fgw is not triangle free.

Proof. Letv € X having order 3. Then the vertices 1,v and v~ form a triangle in I'%; ;. Hence,
the lemma follows. L

0 fg=1,
Lemma 2.2. Ifv € Z(X,G) then deg(v) = {]é| . z;:g 41
) g .

Proof. By definition of Z(X,G), it follows that v € X and [v,z] = 1 for all z € G and so
Cg(v) = G. Therefore, if g = 1 then by Theorem 2.1(a) we have deg(v) = 0. If g # 1 then all the
elements of GG except v are adjacent to v. Therefore, deg(v) = |G| — 1. O

As a consequence of Lemma 2.2, we have y(I'%. ;) = 1 if g # 1 since {v} is a dominating set
forallv € Z(X, G), where 7(I'% ;) is the domination number of ' . If g € X having even order
then it can be seen that {g} is also a dominating setin 'y . If g = 1 then y(I'% ) > |Z(X, G)|+1.

This lower bound is sharp because fy(F;’)Sg) is2 =1|Z(X,S;)|+1, where X is any subgroup of S
of order 2. If g = 1 then, by Lemma 2.2, we also have that F%G 1s disconnected. Hence, FkG 1S

not a tree and complete graph. Now we determine whether F%G is a tree, star graph or complete
graph if g # 1.

Theorem 2.3. Let X < G and | X| # 2. Then Fgfé is not a tree.

Proof. Suppose for any X < G, 'y is a tree, where g # 1. There exits a vertex v in ['{ ; of
degree one.
Casel.v € X

By Theorem 2.1, deg(v) = |G| — |Cg(v)| — 1 =1 or deg(v) = |G| — 2|Cg(v)| — 1 = 1. That
is,

|G| = |Ca(v)] = 2or |G] = 2|Ca(v)] = 2.

Therefore, |C(v)] = 2 and |G| = 4,6. Since G is non-abelian and |X| # 1,2, we must have
G = S3and X = Aj or S5. Therefore, by Lemma 2.1, F%G has a triangle which is a contradiction.
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Case2.ve G\ X

By Theorem 2.2, deg(v) = |X| — |Cx(v)| = 1 or deg(v) = | X| — 2|Cx(v)| = 1. Therefore,
|Cx(v)| = 1and | X| = 2,3. However, | X| # 2 (by assumption). If | X'| = 3 then, by Lemma 2.1,
Fg{,a has a triangle which is a contradiction. Hence, the result follows. O]

The proof of Theorem 2.3 also gives the following result.

Theorem 2.4. Let X < G and |X| # 2,3. Then Fgfé is not a lollipop. Further, if | X| # 2,3,6
then Fggfé has no vertex of degree 1.

As a consequence of Theorem 2.3 we have the following results.
Corollary 2.1. Let X < G and |X| # 2. Then ngfg is not a star graph.
Corollary 2.2. If g # 1 and G is a group of odd order then Fg(’G is not a tree and hence not a star.
Theorem 2.5. If g # 1 then ' , is a star <= G = Sz and | X| = 2.

Proof. By Lemma 2.2, deg(1) = |G| — 1. Suppose that I'; , is a star graph. Then deg(v) =1 V
1#v € G. Since g € K(X,G) and g # 1 we have X # {1}. Suppose that 1 # y € X. If g*> = 1,
then by Theorem 2.1, we get 1 = deg(y) = |G| —|Cs(y)| — 1 which gives |G| = 4, a contradiction
since G is non-abelian. If g* # 1, then by Theorem 2.1, we get 1 = deg(y) = |G| — |Ca(y)| — 1
or |G| — 2|Cqs(y)| — 1 which gives |G| = 6. Therefore, G = S5, g = (123),(132) and X =
{(1),(12)},{(1), (13)},{(1),(23)} or X = {(1), (123), (132)}. If | X| = 3 then, by Lemma 2.1,
I'% s, is not a star. If | X| = 2 then it is easy to see that '} g is a star. This completes the proof. []

Theorem 2.6. If g # 1 then I’ g(,G is not complete.

Proof. Let I'y ; be complete graph where g # 1. Then deg(v) = |G| =1 V v € G. Since
g € K(X,G) and g # 1 we have X # {1}. Suppose that 1 # y € X. Then by Theorem 2.1, we
get |G| — 1 =deg(y) = |G| —|Ca(y)| — Lor |G| — 1 =deg(y) = |G| — 2|Cs(y)| — 1. Therefore,
|Ca(y)| = 0, a contradiction. Hence, I'%; ; is not complete. O

For X is a normal subgroup of GG, we write X < G.
Theorem 2.7. Let X I G and g ~ h. ThenT'% , = T'% .

Proof. Let h = ¢* := 2~ 'gx for some x € G. Then for any two elements a;, a; € G, we have
g y
[af,a3] = hor h™' <= [a1,az) = gorg™". 2.1)

Consider the bijection ¢ : V(I'} ;) = V(I'k ;) given by ¢(a) = a* for all « € G. We shall show
that ¢ preserves adjacency.

Suppose that a;,ay € V(F’}QG). If a; and ay are not adjacent in Fgw then [ay,as] = g or
g~'. Therefore, by (2.1), it follows that ¢(a;) and ¢(az) are not adjacent in I'} . If a1 and ay are
adjacent then atleast one of a; and a; must belong to X and [aq, as] # g, g~ '. Without any loss
assume that a; € X. Since X <G we have ¢(a;) € X. By (2.1), we have [¢(a;), ¢(az)] # h, h™L.
Thus ¢(a;) and ¢(as) are adjacent in I' . Hence, the result follows. O
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A pair of isomorphisms (¢, ) is called a relative isoclinism between the pairs of groups

(X1,G1) and (X», G), where X; < G fori =1,2,¢ 1 5ftan — ity and ¢ ¢ [Xy, Gh] —
[XZaGQ]
X Xy
’ (Z(X1 Gﬂ) T 2K Gy MY 000 = © (0 0),
. X Gi Qo
where a(x,.¢)) : zxay X 7 Gy [ X, G;] is given by

aix; o) ((hiZ(Xi, Gi), 92 (X3, Gi))) = [hi, gi]

G1 X2 G2
and ¢ x ¢ ZX1 Gl) X Z(X1,G1) — Z(X2,G2) X Z(X2,G2)

(¢ x &) (MZ(X1,Gr), 1 Z(X1,Gh))) = (9(MZ(Xy1,Gh)), 9(91Z (X1, Gh)))-

Thus forall h; € X; and g1 € G; we must have 1([hy, g1]) = [ha, g2], Where go € (917 (X1, G1))
and hg € ¢(h1Z(X1, Gl))

The pairs (X1, G1) and (X3, G2) are called relative isoclinic if there is a relative isoclinism
between them. The concept of relative isoclinism between two pairs of groups was introduced in
[18, 21, 25]. This coincides with one of the fascinating concepts of Hall [12] known as isoclinism
between two groups if X; = G, for ¢ = 1,2. In [25, Theorem 4.5], it was shown that I'x, ¢, is
isomorphic to I'x, ¢, if (X1, G1) and (X2, G) are relative isoclinic satisfying certain conditions.
Tolue et al. [26, Theorem 2.16], also proved that Fg is isomorphic to Fw if G; and G, are
isoclinic such that | Z(G,)| = |Z(G2)|. We conclude Sectlon 2 with Theorem 2.8 which generalizes
[26, Theorem 2.16].

is given by

Theorem 2.8. Let (¢, 1) be a relative isoclinism between the pairs of groups (X1, G1) and (X, G3).
If|1Z(X1,Gh)| = | Z(Xy, Go)| then T o, is isomorphic to Fﬁ(f’)%.

Proof. Since ¢ : X ey — Z(XG2202) is an isomorphism such that ¢ <Z(XX—101)> = % So
_ a _|_g¢ X
we have | 7| = loian | and Iz | = lzccian - Let ‘Z(XﬁGl) |7tk = mand
)Z(XGJGO | = Gg)| = n. Given |Z(X1,G1)| = |Z(X2, G2)|, so J abijection 6 : Z(X;,Gy) —
Z(Xs,Go). Let {hi,hoy ooy Py Gmgas -5 gnfand {RY, Ry, o R gLy, ., gh, ) be two trans-
versals of W and XG—ZG) respectively where {hy, ho, ..., hy,} and {h}, R}, ... k! } are
transversals of Z(X "oy and 57 2 respectively. Let us define ¢ as o(hiZ(X1,Gh)) = hiZ (X3, Gs)

and ¢(g;Z (Xl,Gl)) =g Z(XQ,GQ) forl <i<mandm+1<j<n.

Let pv : Gy — Go be a map such that u(hiz) = hif(2), u(g;z) = g;0(z) for 2 € Z(X1,Gh),
1<i<mandm+1 < j < n. Clearly pu is a bijection. Suppose two vertices x and y in I'% X161
are adjacent. Then z € X ory € X, and [z,y] # ¢,¢ . Without any loss of generality, let us
assume that + € X;. Then x = h;z; for 1 < i < m and y = kzy where 21,2, € Z(X1,G1),
k € {hi,ha,..., hm, Gms1s .-, gn}. Therefore, for some k' € {h),.... ¢kl g\ 1,--., 95}, We
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have

Y([hiz1, kz]) = U([hi, k]) = ¥ o aix, 6 (RiZ (X1, Gh), kZ (X1, Gh)))
= A(x,,0,) © (¢ X @) (hiZ (X1, Gh), kZ(Xy,Gh)))
= a(x,.00) (1 Z (X2, Ga), K Z (X3, Ga)))
= [h;, k,] = [hlzhk/ ] (2.2)

where 21, 2, € Z(Xs, Gs). Also,

[hiz1, k2] # 979_1
:Iﬁ([hzl’kzﬂ) 7“#( )’ (g )

= [hi21, k2] # ¥(9), ¥ (g) (using (2.2))
= [00(21), K'0(22)] # ¥ (9), ™" (9)

= [u(hiz1), n(k22)] # 9 (9), ¥~ (9)

= [u(@), n(y)] # ¥(9), ¥~ (9)-

Thus p(z) is adjacent to p(y) in Fﬁ(ﬁ)% since ju(7) € X,. Hence, the graphs '}, and Fﬁ(i)gz are

isomorphic under the map . 0

3. Relation between I'}; - and Pr (X, G)

The commuting probability of a finite group G is the probability that a randomly chosen pair
of elements of it commute with each other. The popularity of this probability have been constantly
increasing since its inception which is attributed to the works of Erdos and Turan [9] published in
the year 1968. Many mathematicians worked on commuting probability and its generalizations and
obtained valuable results towards classification of finite groups. Results related to this notion can
be found in [5] and the references listed there. Two most striking generalizations of commuting
probability due to Pournaki et. al [20] and Erfanian et. al [10] are given by

{(c.d) € G* : [c,d] = g}
G?

Pr,(G) ==

and
{(c,d) € X x G :[c,d] =1}

| X|G]
respectively. Blending these notions, Nath together with Das and Yadav [4, 18] considered the
following generalization of commuting probability in their study

Prl (X, G) =

[{(c,d) € X x G : e, d] = g}|

Pr,(X,G) = Xcl

In [25], Tolue and Erfanian established some relations between Pr; (X, () and relative non-commuting
graphs of finite groups. In [26], Tolue et al. also established relations between I'y, and Pr,(G).
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Their results stimulate us to obtain relations between I‘%G and Pr, (X, G). We obtain the number
of edges of '}, denoted by [E(I' )|, in terms of Pr,(X, G). Clearly, if g ¢ K(X,G) then
from Observation 1.1, we get

2E(T% o)l = 21X|IG| — |X]* = | X].
The following theorem gives expressions for | E(I'% ;)| in terms of Pry (X, G) where g € K(X, G).

Theorem 3.1. Let Pr,,(X,G) := 1 — Pry(X, G), where X # {1}.
(@) 2|E(k ¢)| = 2|X[|G[Prox (X, G) — [X]*(1 = Py (X)).
(b) If g # 1 and g* = 1 then

21X |G|Prysg(X, G) — [X[P(1 = Pry(X)) — |X],  ifg € X,

2| (T =
%o {mXﬂGWuﬂchw—uw—wxu oG\ X

(c) If g # 1 and g* # 1 then

(21X]|G|(1 - X Pru(X,q))
u=g,g~!
, —[XPA - X PrX))—|X], ifgeX,
2E(T% )| = o
2X||GI(1 = X Pru(X,G))
u=g,g~!
\ _|X|2_|X|7 lngG\X

Proof. Let By = {(c,d) € X X G : ¢ # d,[c,d] # gand [c,d] # g '} and Ey = {(c,d) €
Gx X :c#d,c,d # gand [c,d] # g'}. Clearly we have a bijection from E; to E, defined
by (¢,d) — (d,c). So |Ej| = |Es|. It is easy to see that |E(I'% )| is equal to half |E) U Ej|.
Therefore, |

2|E(T% o) = 2| By | — | E1 N Byl (3.1)

where By N Ey={(c,d) € X x X : c#d,|c,d] # g and [c,d] # g '}.
(a) If g = 1 then we have

By = [{(e.d) € X x Gt [e,d] # 1}
— 1X]|G] — [{(e.d) € X x G : [e,d] = 1}]
— X]GI(1 — Pr,(X,G))

and

By By = [{(c,d) € X x X : [c,d] £ 1}]
— X2~ {(c,d) € X x X : [e,d] = 1}]
= [X[*(1 = Pry(X)).

Hence, the result follows from (3.1).
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(b) If g # 1 and g* = 1 then we have
|E1| = |{(C,d) € X X G:c%dv[qd] %g}l
= |X[|G] = {(e,d) € X x G : [e,d] = g} = [{(c,d) € X x G : c=d}
= [X]|G|(1 = Pry(X, G)) — [X].
Now, if g € X then
[EANEs| = [{(c,d) € X x X : ¢ # d[e,d] # g}
= |XP ~ {(e.d) € X x X : [e,d] = g} = [{(c,d) € X x X : ¢ = d}}|
= |X]*(1 = Pry(X)) — | X].
If g € G\ X then
|Ey N Ey| = |X]* — | X].
Hence, the result follows from (3.1).
(c) If g # 1 and ¢g* # 1 then we have
|Er| = [{(c;d) € X x G :c#d,[e,d] # gand[c,d] # g7}
= 1X[IG] = H(e,d) € X X G : [e, d] = g}
~H(ed) e X x G:led =g M~ {{e.d) € X x X :e=d)
= [X[|GI(1— ) Pr(X,@)) —|X].

u=g,g~ 1

Now, if g € X then
|E1mE2| = |{(C7d) e X xX: C#d,[C,d] %gand [Cad] #g_l}l

= X" = {(e.d) € X x X : [e,d] = g}
—{(e,d) € X x X :[e,d] = g7} — {(c.,d) € X x X : ¢ = d}|

= [X]P(1— ) Pr.(X))—|X|.

u=g,9~1

If g € G\ X then
By NV By = [ XT* — | X].

Hence, the result follows from (3.1).

For an abelian group X we have

1, ifg=1,

MAX):{Q ifg 1.

Using these values in Theorem 3.1 we get Corollary 3.1.
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Corollary 3.1. Let {1} # X < G be abelian.
@) |E(x o)l = [X[|G|(Prom (X, G)).
(b) If g # 1 and g* = 1 then
2| E(I% ¢)] = 2|X[|G|(Prozy (X, @) — [X[* — | X].
(c) If g # 1 and g # 1 then
2|E(T% o)l = 2AX[|GI(1— Y Pr(X,G) — |X[* = |X].
u=g,g~!
Proposition 3.1. Ler X < G and g € K(X,G). Let |[X, G]| = p, the smallest prime dividing |G|.
@) 2p|E(Tx o)l = (p = DRIGI(IX| = 12(X, G)]) — [X[(IX] = |Z(X)])).
(b) If g # 1 and g* = 1 then
2(61((p - DIX| + |Z(X.0))
= X[ = DX+ |2(X)[ +p), ifgeX,

2|GI((p — DIX|+[Z(X,G)])
— p|X|(IX]+ 1), ifgeG\X.

2plE(T% o)l =

(c) If g # 1 and g* # 1 then

2|G[((p = 2) X[ +2|2(X, G)))
— [ X[((p =X +212(X)| +p), fgeX,

2p|E(Tx ¢)| =
a 2|G|((p = 2)| X[+ 2|Z(X, G)|)
— p|X[(| X[+ 1), ifge G\ X.

Proof. By [18, Lemma 3], we have

L1+ 2ot ) . ifg=1,

Pr,(x,G) = 4 7y PO

I~ wzxay ) 19 # L.

Hence, the result follows from Theorem 3.1. O

It is worth mentioning that, in view of [18, Theorem B], the conclusion of Proposition 3.1 also
holds if G is nilpotent such that |[X, G]| = p, where p is not necessarily the smallest prime. We
also have the following corollary.

Corollary 3.2. Let X < G where X is abelian and G is nilpotent. Let |[X, G]| = p be any prime
and g € K(X,G).

@ plETk )| = (p— DIG|(1X] = [Z(X, G))).
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(b) Ifg # 1and g* = 1 then

2| E(T% )| = 2IGI(1Z2(X, G)| + (p — DIX]) — plX[(1 + [X]).
(©) If g # 1 and g* # 1 then

2p|E(M 6)| = 2GI(2|Z2(X, G)| + (p — 2)IX]) — plX[(1 + [X]).

In [26, Proposition 2.14], Toule et al. obtained a relation between |E(I'},)| and Pry(G). It is
noteworthy that their result can also be obtained from the next proposition considering X = G,
where k(X ) denotes the number of conjugacy classes in X.

Proposition 3.2. Let {1} # X <G and g € K(X, G).
(@) 2[E( o)l = 2IG] = [X)(|X] - k(X)).
(b) If g # 1 and g* = 1 then
2|E(T% o)l = 21X ||G|(Prazy(X, G)) — |X[(1 = Pry(X)) — | X].
(c) If g # 1 and g # 1 then
2|E(T% ¢)l = 2IX||GI(1 — 2Pry(X, G)) — |X[*(1 - 2Pry(X)) — |X].
Proof. If g = 1 then by [4, Corollary 2.4] we have

k(X)

Pry(X,G) =Pr,(X) = X

Hence, part (a) follows from Theorem 3.1. Parts (b) and (c) also follow from Theorem 3.1 noting
that the case g € G'\ X does not arise (since g € X if X is normal) and Pr (X, G) = Pr,-1(X, G)
(as shown in [4, Proposition 2.1]). ]

Let Irr(G) be the set of all irreducible characters of G. If X < G then by [4, Equation (6)] we
have

I~

Prg(X,G):L Z <79X719X>ﬁa
| |19EIrr(G’) (1)

where ¥ x is the restriction of ¥ € Irr(G) on X and (, ) represents inner product of class functions.
By the above expression for Pr, (X, G) and Proposition 3.2 we get the following character theoretic
formula for |E(T'% ;).

Corollary 3.3. Let {1} # X <G and g € K(X, G).
(@) 2|E(k )| = (1X] = [Ir(X) ) (2IG] = [X]).
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(b) If g # 1 and g* = 1 then

I~

g
2B ) =2x] (16— <ﬁx7ﬂx>%
ﬂEIrr(G’)

S D) Y]

Jelrr(X) ( )

(c) If g # 1 and g> # 1 then

V(g
2B )l =21x] (161 -2 3 x5
delrr(G)
J(g)
-ixi(1xi-2 3 G ) -

Yelrr(X

Corollary 3.4. Let g € K(G).

(@) 2|E('g)| = |GI(G] — | Irr(G))).
(b) If g # 1 then

~—

Gl 16l -1- ¥ %) ifg® =1,
2|E(F%)| _ delrr(G)

Gl Gl =1=2 > ZE‘{§> if g # 1.

delrr(G)

4. Bounds for |[E(T'% )|

n [25, Section 3], Tolue and Erfanian obtained bounds for |E(I'x )|. In this section some
bounds for the number of edges in Fg(,G are obtained. By Theorem 3.1, we have

[X[2Pr, (X) + 2|X|G|(Pros,(X.G)).  ifg € X,

4.1
21 X[[G](Prysy (X, G)), irgec\x, Y

2B o) + X[ + X = {

if g # 1 but g> = 1 and

[X[* 30 Pro(X) +2[X[|IGI(1— 3 Pru(X,G)), ifg € X,

BT )|+ | X [P+ |X| = u=g9™ u=09

u=g,g~1

4.2)
if g # 1 and g% # 1.
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Proposition 4.1. Let X < G and g # 1.
(a) If g*> = 1 then

|G1Z(X,G) |+ |X|(|G=D+3] Z2(X) 2~ |X]? ifg, € X,

)

E(T% o) > 2 R
BT )l 2 {IGIIZ(X,G)H)Q(I(GIUIX 7 ifge G\ X.

(b) If g*> # 1 then
2\G|\Z(X,G)|+6|Z(X)|27\X|27\X|, ifg e X,

E(T% > 2
| E( X,G)' = {2G|Z(X,G;||X| 7|X|’ ifg e G\ X.

Proof. By [4, Proposition 3.3], we get

X|+Z(X,G Z(X,G
1—&%AX;G)2‘ [HIZXC O g - > PmﬁXﬁbgle—L—M.
20X] X]
Again, by [4, Proposition 3.1 (iii)], we have
31Z(X)P?
Pry(X) = X

(a) We have g? = 1. Therefore, if ¢ € X then, using (4.1), (4.3) and (4.4), we get

2B o) + 1P + 1] 2 | (AT )+ apxn ().

| X2 2|1 X]

If g € G\ X then, using (4.1) and (4.3), we get

X|+|2(X,G
2IE(F§<,G)|+!X|2+|X|22\X!|G|(| |+ 12 )')

2| X]|

Hence, the result follows from (4.5) and (4.6).

(b) We have g2 # 1. Therefore, if g € X then, using (4.2), (4.3) and (4.4), we get

2(X,G 6/Z(X)[?
2B o) + 1P + x| 2 2111 (22 ) e (L,

If g € G\ X then, using (4.2) and (4.3), we have

21Z(X,G)||X||G
2|E<r§(,g>|+|X|2+|X|z(‘ &, Ol ‘).

X

Hence, the result follows from (4.7) and (4.8).
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Proposition 4.2. Let X < G and g # 1.
(@) If g> = 1 then

4|X\\G|—8\Z(XvG)|IZ(GX)I—\XIQ—\XI(\Z(X)\+2)7 ifg € X,

E(IY < 4
| ( X,G)‘ = {2|XG|4Z(X,G)||22(G,X)|X|2X|7 ifg e G\X.

(b) If g* # 1 then

2AX|IG-SZ OGO XIIZOD e e X

E(TY < 2
| E( X,G)| = {2|XG|—SZ(X,G)||2Z(G,X)|—X|2—X|7 ifge G\ X.

Proof. By [4, Proposition 3.1 (ii)], we get
[ XN|G| - 2[2(X, G)||2(G, X))

1-Pr,(X,G) < XIIG
and
= S Prx,q) < XIGL - 26|26 X
XTic]
Also, by [4, Proposition 3.3], we get
(X —[Z2(X)]

Pr,(X) <
I'g( )— 2’X|

(a) We have g? = 1. Therefore, if ¢ € X then, using (4.1), (4.9) and (4.11), we get
2|B(T% o) [+ X7 + X

, (1X] - |2(x) X1 — 212(X. @)1 2(G, X))
S'X'( X >+2'X”G'( X[[C] )

If g € G\ X then, using (4.1) and (4.9), we get

X||G| - 212(X, &)1 2(G, X
2|E<r%(,a>\+|xw2+|xws2|X||G\(' 1G] = 212 (X, Gl 2 ”).

[ X]IG|
Hence, the result follows from (4.12) and (4.13).
(b) We have g2 # 1. Therefore, if g € X then, using (4.2), (4.10) and (4.11), we get

(XN1G] - 4[2(X, G)IIZ(GX)I)
[ X||G]

(2000

BT )|+ |IXP + 1X] <2/X](C] (

If g € G\ X then, using (4.2) and (4.10), we get
[ X]IG| —4|Z(X7G)||Z(G,X)|)

2| B(T%, )| + X[+ |X] < 21X||¢ (
xa xic|

Hence, the result follows from (4.14) and (4.15).
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In the remaining results p stands for the smallest prime such that p | |G| and g # 1.
Proposition 4.3. (a) If g°> = 1 then

2(p—D|X[|G|+2|Z(X.G)||G|—p|X |*+3p| Z(X)|*—p|X]| ifge X

E(TY > 2p
[EC el = {2(p1)|X|G|+2|Z(>22G>||G|p|X|2p|X7 ifge G\ X.

(b) If g* # 1 then

2(p—2)| X[|G|+4]Z(X.G)||G|—p|X |*+6p| Z(X)|*—p|X| ifge X

E(TY > 2p
[EC el = {2(p2)|X|G|+4|Z()2<I;G>||G|p|X|2p|X7 ifge G\ X.

Proof. By [4, Proposition 3.3], we get

Z(X, G + (p = DIX]

1—-Pr,(X,G) >
(X, C) pIX]|

(4.16)

and
21Z2(X,G)| + (p — 2)|X]

p|X|

1— Z Pr,(X,G) >

1

(4.17)
u=g,9~

(a) We have g? = 1. Therefore, if g € X then, using (4.1), (4.16) and (4.4), we get

317Z(X)]2 Z(X. G — DX
AT )|+ |XP + 1X] = |XP (%)eruew(' X, ”pfxﬂp ) ‘). “.18)

If g € G\ X then, using (4.1) and (4.16), we get

(4.19)

Z2(X,G)| + (p—1)|X
21E<F§,G>|+|X|2+|X|22|X||G|('( I+ (b= 1) ')

p| X]|

Hence, the result follows from (4.18) and (4.19).
(b) We have g2 # 1. Therefore, if g € X then, using (4.2), (4.17) and (4.4), we get

— 29X 207(X. G 6|Z(X)|?
2\E<r§(,a>|+\X|2+rX\z2rXHG\(“’ ) L,*X,' (X, ”)er? (%) (4.20)

If g € G\ X then, using (4.2) and (4.17), we have

(4.21)

p—2)|X| +2|Z(X,C
2\E(F§(,G>|+!XIZ+IX|22|XHG|(( X1+ 212( )').

plX|
Hence, the result follows from (4.20) and (4.21). ]
Proposition 4.4. (a) If g°> = 1 then

2p| X||G|—4p| Z(X.G)||Z(G.X) |- (p—D)| X |*—| X[ | Z(X)| —p| X] ifge X

E(TY < 2p
|E( X,G)| = {2|X|G—4Z(X,G)||2Z(G,X)|—X|2—X|’ ifge G\ X.
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(b) If g* # 1 then

2p|X||G|-8pl Z(X. G Z(G.X) |- (p=2)| X * 2| X[| Z(X)|-p|X] . X
BT o)l < 7 et
= _ _ 2_
X.G 21X|G] 8|Z(X,G)|IQZ(G,X)\ IXP-1X] ifg € G\ X.
Proof. By [4, Proposition 3.3], we get
[ X| = 12(X)]
Pr,(X) < ——= (4.22)

(a) We have g? = 1. Therefore, if g € X then, using (4.1), (4.9) and (4.22), we get

2|E(T% o)X + |X]

X|—|Z(X)]| X||G] - 2|Z(X,G)||Z(G, X))
<X2(|—)+2XG( ) 4.23

If g € G\ X then, using (4.1) and (4.9), we get

(4.24)

X||G| - 212(X, &)||12(G, X
2|E<r§(,c>|+|xw2+|X|32|X||G|(' 1G] = 212 (X, Gl 2 )').

[ X]IG|
Hence, the result follows from (4.23) and (4.24).
(b) We have g2 # 1. Therefore, if g € X then, using (4.2), (4.10) and (4.22), we get

2E(M% o)l + X" + |X]

< o (XZIZ000) gy (UG ALK ONZGN) g5
<2AXP (s X6l S{te (4.25)

If g € G\ X then, using (4.2) and (4.10), we get

Rl 4|Z(X,G)|IZ(G,X)!)
[ XlG]

Hence, the result follows from (4.25) and (4.26). ]

BT )| + X+ |X] < 21X]16 ( (4.26)

Note that several other bounds for | E(I'% ;)| can be obtained using different combinations of
the bounds for Pr, (X, G) and Pr,(X). We conclude this paper with certain bounds for |E(T'{,)|
which are obtained by putting X = G in the above propositions.

Corollary 4.1. (a) If g°> = 1 then

3|GI* — 81Z(G)I* — 1G|(1Z(G)| +2)
4

2 _
R LS I o]
(b) If g* # 1 then

2IGI* = 81Z(G)|* — |G| Z(G)] + 1)
2

2 2
Z|E(F9G)|ZQIG'HZ(G)IHS!Z;G)I G|" - |G|
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Corollary 4.2. (a) Ifg> = 1 then
(p+ DIGP — 4p|Z(G)? — |G|IZ(G)| — plG]

2 > [E(TE)|
o (P =2)|G]* +2|Z(G)[|G]| + 3p|Z(G)I” — p|G|
> %
(b) If g* # 1 then
(p+2)|G* - 8p|Z(G;\; —2G112(G)] —plG] BT
- (= 4|GP +42(G)||G] + 6p|Z(G) [ — pIG|

2p
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