

Electronic Journal of Graph Theory and Applications

On the signed 2-independence number of graphs

S.M. Hosseini Moghaddam^a, D.A. Mojdeh^b, Babak Samadi^b, Lutz Volkmann^c

^aQom Azad University, Qom, Iran

^bDepartment of Mathematics, University of Mazandaran, Babolsar, Iran ^cLehrstuhl II für Mathematik, RWTH Aachen University, 52056 Aachen, Germany

sm.hosseini1980@yahoo.com, damojdeh@umz.ac.ir, samadibabak62@gmail.com, volkm@math2.rwth-aachen.de

Abstract

In this paper, we study the signed 2-independence number in graphs and give new sharp upper and lower bounds on the signed 2-independence number of a graph by a simple uniform approach. In this way, we can improve and generalize some known results in this area.

Keywords: domination number, limited packing, tuple domination, signed 2-independence number Mathematics Subject Classification : 05C69 DOI:10.5614/ejgta.2017.5.1.4

1. Introduction

Throughout this paper, let G be a finite connected graph with vertex set V = V(G) and edge set E = E(G). We use [13] as a reference for terminology and notation which are not defined here. The *open neighborhood* of a vertex v is denoted by N(v), and the *closed neighborhood* of v is $N[v] = N(v) \cup \{v\}$. The minimum and maximum degree of G are respectively denoted by $\Delta(G) = \Delta$ and $\delta(G) = \delta$.

Let $S \subseteq V$. For a real-valued function $f: V \to R$ we define $f(S) = \sum_{v \in S} f(v)$. Also, f(V) is the weight of f. A signed 2-independence function, abbreviated S2IF, of G is defined in [14] as a function $f: V \to \{-1, 1\}$ such that $f(N[v]) \leq 1$, for every $v \in V$. The signed 2-independence number, abbreviated S2IN, of G is $\alpha_s^2(G) = \max\{f(V) | f \text{ is a S2IF of } G\}$. This concept was

Received: 9 January 2015, Revised 15 January 2017, Accepted: 26 January 2017.

defined in [14] as a certain dual of the signed domination number of a graph [3] and has been studied by several authors including [8, 10, 11, 12].

A set $S \subseteq V$ is a *dominating set* if each vertex in $V \setminus S$ has at least one neighbor in S. The *domination number* $\gamma(G)$ is the minimum cardinality of a dominating set [7]. A subset $B \subseteq V$ is a 2-packing in G if for every pair of vertices $u, v \in B$, $d(u, v) \ge 3$. The 2-packing number (or packing number) $\rho(G)$ is the maximum cardinality of a 2-packing in G.

Gallant et al. [5] introduced the concept of *limited packing* in graphs. They exhibited some real-world applications of it to network security, NIMBY, market saturation and codes. In this paper we exhibit an application of it to signed 2-independence number in graphs. In fact as it is defined in [5], a set of vertices $B \subseteq V$ is called a *k*-limited packing in *G* provided that for all $v \in V$, we have $|N[v] \cap B| \leq k$. The *limited packing number*, denoted $L_k(G)$, is the largest number of vertices in a *k*-limited packing set. It is easy to see that $L_1(G) = \rho(G)$. In [6], Harary and Haynes introduced the concept of *tuple domination* in graphs. A set $D \subseteq V$ is a *k*-tuple dominating set in *G* if $|N[v] \cap D| \geq k$, for all $v \in V(G)$. The *k*-tuple domination number, denoted $\gamma_{\times k}(G)$, is the smallest number of vertices in a *k*-tuple domination number is called the *double domination number* and is denoted by dd(G). In fact the authors showed that every graph *G* with $\delta \geq k - 1$ has a *k*-tuple dominating set and hence a *k*-tuple domination number.

By a simple uniform approach, we derive many new sharp bounds on $\alpha_s^2(G)$ in terms of several different graph parameters. Some of our results improve some known bounds on the S2IN of graphs in [8, 11, 12].

The authors noted that most of the existing bounds on $\alpha_s^2(G)$ are lower bounds. In section 2, we prove that $\alpha_s^2(G) \ge 2\lfloor \frac{\delta+2\rho(G)}{2} \rfloor - n$, for a graph G of order n. Also in section 3, by a simple connection between the concepts of limited packing and tuple domination, we obtain the exact value of the signed 2-independence numbers of regular graphs. In particular, we bound the signed 2-independence numbers of cubic graphs from below and above just in terms of order as, $-\frac{n}{3} \le \alpha_s^2(G) \le 0$.

2. Main results

At this point we are going to present some sharp upper bounds on $\alpha_s^2(G)$. First, let us introduce some notation. Let $f: V \longrightarrow \{-1, 1\}$ be a maximum S2IF of G. We define $V_+ = \{v \in V | f(v) = 1\}$, $V_- = \{v \in V | f(v) = -1\}$, $G_+ = G[V_+]$ and $G_- = G[V_-]$ where G_+ and G_- are the subgraphs of G induced by V_+ and V_- , respectively. For convenience, let $[V_+, V_-]$ be the set of edges having one end point in V_+ and the other in V_- . Finally, $deg_{G_+}(v) = |N(v) \cap V_+|$ and $deg_{G_-}(v) = |N(v) \cap V_-|$. Obviously, $|V_+| = \frac{n + \alpha_s^2(G)}{2}$ and $|V_-| = \frac{n - \alpha_s^2(G)}{2}$.

Theorem 2.1. Let G be a graph of order n. Then

$$\alpha_s^2(G) \leq (\frac{\lfloor \frac{\Delta}{2} \rfloor - \lceil \frac{\delta}{2} \rceil + 1}{\lfloor \frac{\Delta}{2} \rfloor + \lceil \frac{\delta}{2} \rceil + 1})n$$

and this bound is sharp.

Proof. Let f be a maximum S2IF of G. Let $v \in V_+$. Since $f(N[v]) \leq 1$, the vertex v has at least $\lceil \frac{deg(v)}{2} \rceil \geq \lceil \frac{\delta}{2} \rceil$ neighbors in V_- . Therefore $|[V_+, V_-]| \geq \lceil \frac{\delta}{2} \rceil |V_+|$. Now let $v \in V_-$. Since f is a S2IF, the vertex v has at most $\lfloor \frac{deg(v)}{2} \rfloor + 1 \leq \lfloor \frac{\Delta}{2} \rfloor + 1$ neighbors in V_+ . Therefore $|[V_+, V_-]| \leq (\lfloor \frac{\Delta}{2} \rfloor + 1)|V_-|$. In fact

$$\lceil \frac{\delta}{2} \rceil |V_+| \le |[V_+, V_-]| \le (\lfloor \frac{\Delta}{2} \rfloor + 1)|V_-|.$$

Using $|V_+| = \frac{n + \alpha_s^2(G)}{2}$ and $|V_-| = \frac{n - \alpha_s^2(G)}{2}$, we obtain the desired upper bound. For sharpness it is sufficient to consider the complete graph K_n .

In [8] the author established a relationship between the signed 2-independence number and the domination number of a graph as follows.

Theorem 2.2. ([8]) If G is a connected graph of order $n \ge 2$, then $\alpha_s^2(G) + 2\gamma(G) \le n$, and this bound is sharp.

Now we are going to improve Theorem 2.2. We shall need the following result, which can be found implicit in [4] and explicit in [2] as Corollary 81.

Theorem 2.3. ([2],[4]) If G is a graph with $\delta \ge k-1$, then $\gamma_{\times k}(G) \ge \gamma(G)+k-1$.

Theorem 2.4. If G is a connected graph of order n, then $\alpha_s^2(G) + 2\gamma(G) \le n - 2\lceil \frac{\delta}{2} \rceil + 2$, and this bound is sharp.

Proof. Let f be a maximum S2IF of G. We have shown that $|N[v] \cap V_{-}| \ge \lceil \frac{\delta}{2} \rceil$ for all $v \in V_{+}$. On the other hand, if $v \in V_{-}$, then $deg_{G_{-}}(v) \ge \lceil \frac{deg(v)}{2} \rceil - 1 \ge \lceil \frac{\delta}{2} \rceil - 1$. Therefore $|N[v] \cap V_{-}| \ge \lceil \frac{\delta}{2} \rceil$. This shows that V_{-} is a $\lceil \frac{\delta}{2} \rceil$ -tuple dominating set in G. This implies, $|V_{-}| \ge \gamma_{\times \lceil \frac{\delta}{2} \rceil}(G)$ and hence $\alpha_{s}^{2}(G) \le n - 2\gamma_{\times \lceil \frac{\delta}{2} \rceil}(G)$. Now by Theorem 2.3, we have $\alpha_{s}^{2}(G) \le n - 2(\gamma(G) + \lceil \frac{\delta}{2} \rceil - 1)$. Therefore $\alpha_{s}^{2}(G) + 2\gamma(G) \le n - 2\lceil \frac{\delta}{2} \rceil + 2$. For sharpness it is sufficient to consider the complete graph K_{n} .

By the concept of limited packing we can present a sharp lower bound on $\alpha_s^2(G)$ that involves the packing number.

Theorem 2.5. Let G be a connected graph of order n. Then

$$\alpha_s^2(G) \ge 2\lfloor \frac{\delta + 2\rho(G)}{2} \rfloor - n$$

and this bound is sharp.

Proof. Let B be a $\lfloor \frac{\delta}{2} \rfloor$ -limited packing set in G. Obviously, $L_{\lfloor \frac{\delta}{2} \rfloor}(G) \leq L_{\lfloor \frac{\delta}{2}+1 \rfloor}(G)$. We claim that $B \neq V$. If B = V and $v \in V$ such that $deg(v) = \Delta$, then $\Delta + 1 = |N[v] \cap B| \leq \lfloor \frac{\delta}{2} \rfloor \leq \Delta$, a contradiction. Now let $u \in V - B$. It is easy to check that $|N[v] \cap (B \cup \{u\})| \leq \lfloor \frac{\delta}{2} \rfloor + 1$, for all $v \in V(G)$. Therefore $B \cup \{u\}$ is a $(\lfloor \frac{\delta}{2} \rfloor + 1)$ -limited packing set in G. Hence

$$L_{\lfloor \frac{\delta}{2} \rfloor + 1}(G) \ge |B \cup \{u\}| = |B| + 1 = L_{\lfloor \frac{\delta}{2} \rfloor}(G) + 1.$$

Repeating these inequalities, we have

$$L_{\lfloor \frac{\delta}{2} \rfloor + 1}(G) \ge L_{\lfloor \frac{\delta}{2} \rfloor}(G) + 1 \ge \dots \ge L_1(G) + \lfloor \frac{\delta}{2} \rfloor = \rho(G) + \lfloor \frac{\delta}{2} \rfloor.$$
(1)

Now let B be a maximum $(\lfloor \frac{\delta}{2} \rfloor + 1)$ -limited packing set in G. We define $f: V \to \{-1, 1\}$ by

$$f(v) = \begin{cases} 1 & \text{if } v \in B \\ -1 & \text{if } v \in V - B. \end{cases}$$

We deduce that

$$\begin{aligned} f(N[v]) &= |N[v] \cap B| - |N[v] \cap (V - B)| \\ &= 2|N[v] \cap B| - |N[v]| \le 2\lfloor \frac{\delta}{2} \rfloor - \delta + 1 \le 1, \end{aligned}$$

for all $v \in V$. Therefore, f is a S2IF of G. This implies

$$\alpha_s^2(G) \ge f(V) = |B| - |V - B| = 2|B| - n = 2L_{\lfloor \frac{\delta}{2} \rfloor + 1}(G) - n.$$

Now (1) implies

$$\alpha_s^2(G) \ge 2L_{\lfloor \frac{\delta}{2} \rfloor + 1}(G) - n \ge 2(\rho(G) + \lfloor \frac{\delta}{2} \rfloor) - n,$$

as desired. Considering the graph K_n we can see that this bound is sharp.

Volkmann in [11] proved that if G is a graph of order n, then $2 - n \le \alpha_s^2(G)$. Moreover if $n \ge 3$, then $4 - n \le \alpha_s^2(G)$. Obviously, the lower bound in Theorem 2.5 is an improvement of the first inequality and when $\delta \ge 2$ this improves the second, as well.

At the end of this section we exhibit a short comment about signed 2-independence number of bipartite graphs. The following upper bound on $\alpha_s^2(G)$ of a bipartite graph was obtained by Wang [12].

Theorem 2.6. ([12]) If G is a bipartite graph of order $n \ge 2$, then

$$\alpha_s^2(G) \le n + 6 - 2\sqrt{2n + 9}.$$

Furthermore, the bound is sharp.

We now improve the bound in the previous theorem.

Theorem 2.7. Let G be a bipartite graph of order n. Then

$$\alpha_s^2(G) \le n + 2(2 + \lceil \frac{\delta}{2} \rceil) - 2\sqrt{(2 + \lceil \frac{\delta}{2} \rceil)^2 + 2\lceil \frac{\delta}{2} \rceil n}$$

and this bound is sharp.

Proof. Let f be a maximum S2IF of G. Let X and Y be the partite sets of G. For convenience we define $X_+ = X \cap V_+$, $X_- = X \cap V_-$ and let Y_+ and Y_- be defined, analogously. Obviously, $V_+ = X_+ \cup Y_+$ and $V_- = X_- \cup Y_-$.

Since every vertex in X_+ has at least $\lceil \frac{\delta}{2} \rceil$ neighbors in Y_- , by the pigeonhole principle, there exists a vertex v in Y_- that is joined to at least $\frac{\lceil \frac{\delta}{2} \rceil |X_+|}{|Y_-|}$ vertices in X_+ . This implies

$$\frac{|\frac{\vartheta}{2}||X_{+}|}{|Y_{-}|} - |X_{-}| - 1 \le |N[v] \cap X_{+}| - |N[v] \cap X_{-}| - 1 = f(N[v]) \le 1,$$

and hence

$$\frac{\delta}{2} |X_{+}| \le |Y_{-}|(|X_{-}|+2).$$
(2)

A similar argument shows that

$$\lceil \frac{\delta}{2} \rceil |Y_{+}| \le |X_{-}|(|Y_{-}|+2).$$
(3)

Using inequalities (2) and (3) we have

$$\left\lceil \frac{\delta}{2} \right\rceil |V_{+}| \le 2|X_{-}||Y_{-}| + 2|V_{-}| \le \frac{1}{2}(|X_{-}| + |Y_{-}|)^{2} + 2|V_{-}| = \frac{1}{2}|V_{-}|^{2} + 2|V_{-}|.$$

Using $|V_+| = n - |V_-|$, we obtain

$$|V_{-}|^{2} + (4 + 2\lceil \frac{\delta}{2} \rceil)|V_{-}| - 2|V_{-}|n \ge 0.$$

This yields to $|V_{-}| \geq \frac{-4-2\lceil \frac{\delta}{2}\rceil + \sqrt{(4+2\lceil \frac{\delta}{2}\rceil)^2 + 8\lceil \frac{\delta}{2}\rceil n}}{2}$. Now, by using the value of $|V_{-}|$ we derive the desired bound.

Using calculus we can see that $g(x) = n + 2(x+2) - 2\sqrt{(x+2)^2 + 2nx}$ is a decreasing function for $x \ge 0$. So, for $\delta \ge 1$, $\lceil \frac{\delta}{2} \rceil \ge 1$ implies that

$$n + 2\left(2 + \left\lceil\frac{\delta}{2}\right\rceil\right) - 2\sqrt{\left(2 + \left\lceil\frac{\delta}{2}\right\rceil\right)^2 + 2\left\lceil\frac{\delta}{2}\right\rceil n} \le n + 6 - 2\sqrt{2n + 9}$$

and therefore Theorem 2.7 is an improvement of Theorem 2.6.

3. Remarks on signed 2-independence in regular graphs

Zelinka [14] obtained the following sharp upper bound on $\alpha_s^2(G)$ for regular graphs G.

Theorem 3.1. ([14]) If G is an r-regular graph of order n, then $\alpha_s^2(G) \leq \frac{n}{r+1}$ when r is even and $\alpha_s^2(G) \leq 0$ when r is odd.

We note that the bound in Theorem 2.1 implies the previous result. The authors in [9] proved the following result.

Lemma 3.1. ([9]) Let G be a graph. Then the following statements hold.

(i) Let $\delta \ge k - 1$. If $B \subseteq V$ is a k-limited packing set, then V - B is a $(\delta - k + 1)$ - tuple dominating set in G.

(ii) Let $\delta \ge k$. If $D \subseteq V$ is a k-tuple dominating set, then V - D is a $(\Delta - k + 1)$ -limited packing set in G.

Now, by the above lemma we are able to obtain the exact value of the signed 2-independence number of regular graphs, first in terms of order and limited packing number, second in terms of order and tuple domination number. At the end we bound $\alpha_s^2(G)$ of a cubic graph G from above and below, just in terms of the order. First we need the following lemma.

Lemma 3.2. Let G be a graph of order n, then (i) $2L_{\lfloor \frac{\delta}{2} \rfloor + 1}(G) - n \le \alpha_s^2(G) \le 2L_{\lfloor \frac{\Delta}{2} \rfloor + 1}(G) - n$, (ii) $n - 2\gamma_{\times \lceil \frac{\Delta}{2} \rceil}(G) \le \alpha_s^2(G) \le n - 2\gamma_{\times \lceil \frac{\delta}{2} \rceil}(G)$.

Proof. (i) In the proof of Theorem 2.5 we have seen that $2L_{\lfloor \frac{\delta}{\alpha} \rfloor+1}(G) - n \leq \alpha_s^2(G)$.

Now let f be a maximum S2IF of G. In the proof of Theorem 2.1 we have shown that $|N[v] \cap V_+| \leq \lfloor \frac{\Delta}{2} \rfloor + 1$, for all $v \in V_-$. On the other hand, if $v \in V_+$, then $deg_{G_+}(v) \leq \lfloor \frac{deg(v)}{2} \rfloor \leq \lfloor \frac{\Delta}{2} \rfloor$. Therefore V_+ is a $(\lfloor \frac{\Delta}{2} \rfloor + 1)$ -limited packing set in G. This implies $|V_+| \leq L_{\lfloor \frac{\Delta}{2} \rfloor + 1}(G)$ and hence $\alpha_s^2(G) \leq 2L_{\lfloor \frac{\Delta}{2} \rfloor + 1}(G) - n$.

(*ii*) According to the proof of Theorem 2.4, we have $\alpha_s^2(G) \leq n - 2\gamma_{\times \lceil \frac{\delta}{n} \rceil}(G)$.

Now let D be a minimum $\lceil \frac{\Delta}{2} \rceil$ -tuple dominating set in G. We define $f: V \to \{-1, 1\}$ by

$$f(v) = \begin{cases} -1 & \text{if } v \in D \\ 1 & \text{if } v \in V - D \end{cases}$$

By the previous lemma, we conclude that $f(N[v]) = |N[v] \cap (V - D)| - |N[v] \cap D| \le \Delta - \lceil \frac{\Delta}{2} \rceil + 1 - \lceil \frac{\Delta}{2} \rceil \le 1$. Therefore f is a S2IF of G. This implies $\alpha_s^2(G) \ge f(V) = |V - D| - |D| = n - 2|D| = n - 2\gamma_{\times \lceil \frac{\Delta}{2} \rceil}(G)$.

Considering regular graphs, by the previous lemma, we have the following corollary.

Corollary 3.1. Let G be an r-regular graph of order n. Then

(i) $\alpha_s^2(G) = 2L_{\lfloor \frac{r}{2} \rfloor + 1}(G) - n.$ (ii) $\alpha_s^2(G) = n - 2\gamma_{\times \lceil \frac{r}{2} \rceil}(G).$

As an immediate result of the previous corollary we obtain the following.

Corollary 3.2. If G is a cubic graph of order n, then

(i) $\alpha_s^2(G) = 2L_2(G) - n.$ (ii) $\alpha_s^2(G) = n - 2dd(G).$

In [1], the authors showed that if G is a cubic graph of order n, then $\frac{n}{3} \leq L_2(G)$. Moreover, the upper bound $L_2(G) \leq \frac{n}{2}$ was presented in [5] for a cubic graph G. Therefore Corollary 3.2 leads to

On the signed 2-independence number of graphs S.M. Hosseini Moghaddam et al.

$$-\frac{n}{3} \le \alpha_s^2(G) \le 0$$

for cubic graphs.

Acknowledgement

The authors are grateful to the referee for his/her valuable suggestions.

References

- P.N. Balister, B. Bollobas and K. Gunderson, Limited packings of closed neighbourhoods in graphs, arXiv: 1501.01833v1 [math.CO] 8 Jan 2015.
- [2] M. Chellali, O. Favaron, A. Hansberg and L. Volkmann, *k*-Domination and *k*-independence in graphs, *Graphs Combin.* **28** (2012) 1–55.
- [3] W. Chen and E. Song, Lower bounds on several versions of signed domination number, *Discrete Math.* **308** (2008) 1837–1846.
- [4] O. Favaron, M.A. Henning, J. Puech and D. Rautenbach, On domination and annihilation in graphs with claw-free blocks, *Discrete Math.* 231 (2001) 143–151.
- [5] R. Gallant, G. Gunther, B.L. Hartnell and D.F. Rall, Limited packing in graphs, *Discrete Appl. Math.* **158** (2010) 1357–1364.
- [6] F. Harary and T.W. Haynes, Double domination in graphs, Ars Combin. 55 (2000) 201–213.
- [7] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, *Fundamentals of Domination in Graphs*, New York, Marcel Dekker, 1998.
- [8] M.A. Henning, Signed 2-independence in graphs, Discrete Math. 250 (2002) 93–107.
- [9] D.A. Mojdeh, B. Samadi and S.M. Hosseini Moghaddam, Limited packing vs tuple domination in graphs, *Ars Combin.*, to appear.
- [10] E.F. Shan, M.Y. Sohn and L.Y. Kang, Upper bounds on signed 2-independence numbers of graphs, Ars Combin. 69 (2003) 229–239.
- [11] L. Volkmann, Bounds on the signed 2-independence number in graphs, *Discuss. Math. Graph Theory* 33 (2013) 709–715.
- [12] C. Wang, The modified negative decision number in graphs, *Internat. J. Math. Math. Sci.* Volume 2011 (2011), Article ID 135481, 9 pages.
- [13] D.B. West, Introduction to Graph Theory (Second Edition), Prentice Hall, USA, 2001.
- [14] B. Zelinka, On signed 2-independence number of graphs, manuscript.