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Abstract

In this paper we propose a new definition of domination in hypergraphs in such a way that when
restricted to graphs it is the usual domination in graphs. Let H = (V, E) be a hypergraph. A subset
S of V is called a dominating set of H if for every vertex v in V − S, there exists an edge e ∈ E
such that v ∈ e and e − {v} ⊆ S. The minimum cardinality of a dominating set of H is called
the domination number of H and is denoted by γ(H). We determine the domination number for
several classes of uniform hypergraphs.We characterise minimal dominating sets and introduce the
concept of independence and irredundance leading to domination chain in hypergraphs.

Keywords: hypergraph, domination, independence.
Mathematics Subject Classification : 05C22
DOI: 10.5614/ejgta.2024.12.2.3

1. Introduction

By a graph G = (V,E) we mean a finite undirected graph with neither loops nor multiple
edges. For graph theoretic terminology we refer to Chartrand and Lesniak [1]. For terminology in
hypergraphs we refer to Berge [2, 3].
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A hypergraph H is an ordered pair (V, E) where V is a finite nonempty set and E is a subset
of the power set P(V ) such that |e| ≥ 2 for all e ∈ E and

⋃
e∈E

e = V. A hypergraph H is called a

simple hypergraph if no edge is a proper subset of another edge. Two vertices u, v ∈ V are called
adjacent if there exists an edge e ∈ E such that {u, v} ⊆ e. Throughout this paper we consider only
simple hypergraphs. A hypergraph H is called a k-uniform hypergraph if |e| = k for all e ∈ E . If
E = {e : e ⊆ V and |e| = k}, then H is called a complete k-uniform hypergraph. Let H = (V, E)
be a hypergraph. A hypergraph H1 = (V1, E1) is called a subhypergraph of H if V1 ⊆ V and
E1 ⊆ E .

Domination in graphs has been extensively investigated. An excellent treatment of fundamen-
tals of domination is given in [4]. For survey of several advanced topics in domination we refer to
[5]. For recent results on domination related parameters we refer to [11, 12]. Let G = (V,E) be
a graph. A subset D ⊆ V is called a dominating set of G if for every vertex v in V − D, there
exists u ∈ D such that u and v are ajdacent. The domination number γ(G) of G is the minimum
cardinality of a dominating set of G.

Theorem 1.1. [4] If G is a path Pn or a cycle Cn of order n, then γ(G) =
⌈
n
3

⌉
.

Definition 1.1. [4] Let P denote a graph theoretic property of a set of vertices S in a graph G =
(V,E). If S has property P, then S is called a P -set; otherwise it is a P -set. A property P is said
to be hereditary if every subset of a P -set is a P -set. A P -set S is called a maximal P -set if every
proper superset T ⊃ S is a P -set. A P -set S is a 1-maximal P -set if S ∪ {v} is a P -set for every
v ∈ V − S.

Theorem 1.2. [4] Let G = (V,E) be a graph and let P be a hereditary property. Then a set S is
a maximal P -set if and only if S is a 1-maximal P -set.

One can similarly define superhereditary property P, minimal P -set, 1-minimal P -set and ob-
tain a theorem analogous to Theorem 1.3. For further details we refer to ([4], Page 67-68).

The concept of domination in graphs can be looked at from three different perspectives. Let
D ⊆ V (G) and let v ∈ V −D. Then D is a dominating set of G if and only if one of the following
holds.

(i) There exists a vertex u ∈ D such that uv is an edge of G.

(ii) There exists an edge e ∈ E such that v ∈ e and e− {v} ⊆ D.

(iii) There exists an edge e ∈ E such that v ∈ e and |D ∩ e| ≥
⌈
|e|
2

⌉
.

Acharya [6] introduced the concept of domination in hypergraphs using (i).

Definition 1.2. [6] Let H = (V, E) be a hypergraph. A subset D of V is called a dominating set of
H if for every v ∈ V −D, there exists u ∈ D such that u and v are adjacent.

Further results on domination in hypergraphs are given in [8, 7, 9].
According to the above definition an edge e of a hypergraph H is considered as a complete

graph so that any vertex v of e dominates all the remaining vertices of e, irrespective of the cardi-
nality |e|. In fact if G is the graph with V (G) = V (H) and the subgraph of G induced by the set
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of all vertices of any edge e is K|e|, then the domination in H is equivalent to domination in the
graph G.

In this paper we propose a new definition for domination in hypergraphs which is formulated
using (ii), so that this coincides with the usual concept of domination when restricted to graphs.

2. Main Results

We start with a new look at the concept of domination in hypergraphs.

Definition 2.1. Let H = (V, E) be a hypergraph. A subset D of V is called a dominating set of H
if for every v ∈ V −D, there exists an edge e ∈ E such that v ∈ e and e−{v} ⊆ D. The minimum
cardinality of a dominating set of H is called the domination number of H and is denoted by γ(H).

We observe that when restricted to graphs, this coincides with the usual concept of domination
in graphs.

Also according to Definition 1.4 an edge e of a hypergraph dominates |e|−1 vertices in V −D
whereas according to Definition 2.1, e dominates just one vertex in V −D. Hence the domination
number obtained by using Definition 2.1 may be much larger than the domination number obtained
from Definition 1.4.

Example 2.1.

(i) For the complete r-uniform hypergraph Kr
n, we have γ(Kr

n) = r − 1.

(ii) The complete r-partite r-uniform hypergraph H = (V, E) is such that V can be partitioned
into r nonempty subsets V1, V2, . . . , Vr and E = {e ⊆ V : |e| = r and |e ∩ Vi| = 1 for each
i}. If |Vi| = ni, we denote this hypergraph by H = Kr

n1,n2,...,nr
. Clearly If D ⊆ V, |D| =

r − 1 and |D ∩ Vi| = 1 for all i, 1 ≤ i ≤ r − 1, then D is a minimum dominating set
of H. Hence γ(H) = r − 1. In particular consider |H = K3

2,2,3 where the partite sets are
V1 = {a1, a2}, V2 = {b1, b2} and V3 = {c1, c2, c3}. Let D = {a1, b1}. Since e = {a1, b1, c1}
is an edge in H, it follows that c1 is dominated by D. Similarly D dominates all the vertices
of H.

Definition 2.2. A vertex v of a hypergraph H is called a pendent vertex if v ∈ e for exactly one
edge e of H.

The r-uniform linear path P r
m is the hypergraph H = (V,E) where V = {vi : 1 ≤ i ≤

m(r − 1) + 1}, E = {e1, e2, . . . , em} and

ei =

{
{v1, v2, . . . , vr}, if i = 1,
{v(i−1)r−(i−2), . . . , vir−(i−1)}, if 2 ≤ i ≤ m.

Theorem 2.1. Let H = P r
m be the r-uniform linear path. Then

γ(H) =

{ ⌈
m+1
3

⌉
, if r = 2,

m(r − 2) + 1, if r ≥ 3.
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Proof. If r = 2, then H is the path Pm+1 and hence by Theorem 1.1, γ(H) = γ(Pm+1) =
⌈
m+1
3

⌉
.

Suppose r ≥ 3. The vertices v1, v2, v3, . . . , vr−1 lie only on edge e1 and hence are pendent vertices.
The vertices vr+1, vr+2, . . . , vr−2 lie only on the edge e2 and hence are pendent vertices. In general,
all the vertices of ei − {v(i−1)r−(i−2), vir−(i−1)} are pendent vertices and hence each edge of H has
at least r − 2 pendent vertices. Now, choose a pendent vertex wi in ei where 1 ≤ i ≤ m. Then
D = V − {wi : 1 ≤ i ≤ m} is a dominating set of H and |D| = |V | −m = m(r − 2) + 1. Hence
γ(H) ≤ m(r − 2) + 1. Now let S be any dominating set of H. Since each edge of H has at least
r − 2 pendent vertices, it follows that at most one pendent vertex of any edge is not in S. Hence
|S| ≥ |V | −m = m(r − 2) + 1.

Thus γ(H) = m(r − 2) + 1.

The r-uniform linear cycle Cr
m is the hypergraph H = (V, E) where V = {vi : 1 ≤ i ≤

m(r − 1)}, E = {e1, e2, . . . , em} and

ei =


{v1, v2, . . . , vr}, if i = 1,
{v(i−1)r−(i−2), . . . , vir−(i−1), if 2 ≤ i ≤ m− 1,
{v(m−1)r−(m−2), . . . , vm(r−1), v1}, if i = m.

Theorem 2.2. Let H = Cr
m be the r-uniform cycle. Then

γ(H) =

{ ⌈
m
3

⌉
, if r = 2,

m(r − 2), if r ≥ 3.

Proof. If r = 2, then H is the cycle Cm and hence by Theorem 1.2, γ(H) = γ(Cm) =
⌈
m
3

⌉
.

Suppose r ≥ 3. As in Theorem 2.3, we observe that every edge of H contains r−2 pendent vertices.
Now, choose a pendent vertex wi in ei where 1 ≤ i ≤ m. Then D = V − {wi : 1 ≤ i ≤ m} is a
dominating set of H and |D| = |V | − m = m(r − 2). Hence γ(H) ≤ m(r − 2). Now, let S be
any dominating of H. Since each edge of H has exactly r − 2 pendent vertices, it follows at most
pendent vertex of any edge is not in S. Hence |S| ≥ |V | −m = m(r− 2). Thus γ(H) ≥ m(r− 2)
and so γ(H) = m(r − 2).

Let H = (V, E) be a hypergraph and let k = min
e∈E

|e|. Since |e| ≥ 2 for all e ∈ E , we have

k ≥ 2. In the following theorem we prove that k−1 is a lower bound for γ(H). We also determine
all hypergraphs for which γ(H) = k − 1. For this purpose we define a hypergraph.

Let V be any finite set and let S be a proper nonempty subset of V. Let H(S) denote the
hypergraph (V, E∗) where E∗ = {S ∪ {v} : v ∈ V − S}.

Theorem 2.3. Let H = (V, E) be a hypergraph and let k = min
e∈E

|e| and k ≥ 2. Then γ(H) ≥ k−1

and equality holds if and only if there exists a proper subset S of V such that |S| = k − 1 and
H(S) is a subhypergraph of H.

Proof. Let S be any dominating set of H and let v ∈ V −S. Then there exists e ∈ E such that v ∈ e
and e−{v} ⊆ S. Hence |S| ≥ |e|−1 ≥ k−1. Hence γ(H) ≥ k−1. Now suppose γ(H) = k−1.
Let S be a γ-set of H. Then for any v ∈ V −S, there exists an edge ev ∈ E such that ev−{v} ⊆ S.
Hence ev ⊆ S ∪ {v} and |S ∪ {v}| = k. Hence ev = S ∪ {v}. Let E∗ = {ev : v ∈ V − S}.
Clearly E(H(S)) = E∗ ⊆ E(H). Hence H(S) is a subhypergraph of H. Conversely if H(S) is a
subhypergraph of H, then S is a dominating set of H. Hence γ(H) ≤ |S| = k − 1.
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Corollary 2.1. Let H = (V, E) be a hypergraph and let |V | = n. Then γ(H) = 1 if and only if the
star K1,n−1 is a subhypergraph of H.

Since domination in hypergraph is a superhereditary property, it follows from analogus of
Theorem 1.3 that a dominating set S of a hypergraph H is a minimal dominating set if and only if
S − {v} is not a dominating set of H for all v ∈ S.

In the following theorem we obtain a characterization of minimal dominating sets.

Theorem 2.4. Let S be a dominating set of a hypergraph H = (V, E). Then S is a minimal
dominating set of H if and only if for each u ∈ S, one of the following holds.

(i) If e ∈ E and u ∈ e, then e ∩ (V − S) ̸= ∅.
(ii) There exists a vertex v ∈ V − S such that if e is any edge in E with v ∈ e and e− {v} ⊆ S,

then u ∈ e.

Proof. Let S be a minimal dominating set of H and let u ∈ S. Then S1 = S − {u} is not a
dominating set of H. Hence there exists a vertex v ∈ V − S1 such that v is not dominated by S1.
If v = u then (i) holds.

Suppose u ̸= v. Let e be any edge of H such that v ∈ e and e − {v} ⊆ S. If u ̸∈ e, then v is
dominated by S − {u}, which is a contradiction. Hence (ii) holds.

Conversely, suppose that for each u ∈ S, either (i) or (ii) holds. If (i) holds, then u is not
dominated by S − {u}. If (ii) holds, then v is not dominated by S − {u}. Hence S − {u} is not a
dominating set H and so S is a minimal dominating set of H.

Definition 2.3. Let H = (V, E) be a hypergraph. The maximum cardinality of a minimal dominat-
ing set of H is called the upper domination number of H and is denoted by Γ(H).

It follows from the definition that γ(H) ≤ Γ(H).
We now proceed to introduce the concept of independence in hypergraphs.

Definition 2.4. Let H = (V, E) be a hypergraph. A subset S of V is called an independent set if
e ̸⊆ S for any e ∈ E .
Example 2.2. Let e ∈ E be any edge of H. Since H is a simple hypergraph, |e| ≥ 2. Clearly
S = e− v where v ∈ V is an independent set in H.

Clearly independence in hypergraph is a hereditary property. Hence it follows from Theo-
rem 1.3 that an independent set S is maximal if and only if S ∪ {u} is not an independent set for
any u ∈ V − S.

Theorem 2.5. Let H = (V, E) be a hypergraph. A subset S of V is a maximal independent set if
and only if S is an independent set and a dominating set.

Proof. Suppose S is both independent and dominating. Let u ∈ V − S. Then there exists an edge
e ∈ E such that u ∈ e and e− {u} ⊆ S. Hence e ⊆ S ∪ {u} so that S ∪ {u} is not an independent
set. Hence S is a maximal independent set. Conversely, let S be a maximal independent set. Let
u ∈ V − S. Since S ∪ {u} is not an independent set, there exists e ∈ E such that e ⊆ S ∪ {u}.
Since S is independent, e ̸⊆ S. Hence it follows that u ∈ e and e− {u} ⊆ S. Thus u is dominated
by S and hence S is a dominating set of H.
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Theorem 2.6. Every maximal independent set S of H is a minimal dominating set of H.

Proof. It follows from Theorem 2.5 that S is a dominating set of H. If S is not a minimal domi-
nating set, then there exists u ∈ S such that S − {u} is a dominating set of H. Hence there exists
an edge e ∈ E such that u ∈ e and e − {u} ⊆ S − {u}. Hence e ⊆ S which is a contradiction.
Hence S is a minimal dominating set of H.

Definition 2.5. Let H = (V, E) be a hypergraph. Let i(H) = min{|S| : S is a maximal independent
set of H} and β0(H) = max{|S| : S is a maximal independent set of H}. Then i(H) is called the
independent domination number of H and β0(H) is called the independence number of H.

Theorem 2.7. Let H = (V, E) be any hypergraph. Then γ(H) ≤ i(H) ≤ β0(H) ≤ Γ(H).

Proof. The result follows from Theorem 2.6.

As in graphs we use the minimality condition for domination given in Theorem 2.4 to introduce
the concept of irredundance.

Definition 2.6. Let H = (V, E) be a hypergraph. A subset S of V is called an irredundant set if for
every vertex u ∈ S one of the following holds.

(i) If e ∈ E and u ∈ e, then e ∩ (V − S) ̸= ∅.
(ii) There exists a vertex v ∈ V − S such that if e is any edge in E with v ∈ e and e− {v} ⊆ S,

then u ∈ e.

We now proceed to prove that irredundance is a hereditary property.

Theorem 2.8. Let H = (V, E) be a hypergraph and let S be an irredundant set in H. Then any
subset S1 of S is also irredundant.

Proof. Let u ∈ S1. Then u ∈ S. Hence (i) or (ii) holds. Suppose (i) holds. Then if e ∈ E and
u ∈ e, then e ∩ (V − S) ̸= ∅. Hence e ∩ (V − S1) ̸= ∅. Hence (i) holds for S1.

Suppose (ii) holds. Let e be any edge in E such that v ∈ e and e−{v} ⊆ S1. Then e−{v} ⊆ S.
Hence by (ii) u ∈ e. Thus (ii) holds for S1. Hence S1 is irredundant.

It follows from Theorem 2.8 that an irredundant set S is a maximal irredundant set if and only
if S ∪ {v} is not an irredundant set for any v ∈ V − S.

Observation 2.1. Since the minimality condition for domination is the definition of irredundance,
it follows that a dominating set S is a minimal dominating set if and only if S is both a dominating
set and an irredundant set.

Definition 2.7. Let H = (V, E) be a hypergraph. Let ir(H) = min{|S| : S is a maximal irredun-
dant set of H} and IR(H) = max{|S| : S is a maximal irredundant set of H}. Then ir(H) and
IR(H) are respectively called the irredundance number and upper irredundance number of H.

Theorem 2.9. Every minimal dominating set S of a hypergraph H is a maximal irredundant set
of H.
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Proof. It follows from Observation 2.1 that S is an irredundant set of H. Suppose S is not maximal
irredundant. Then there exists v ∈ V − S such that S1 = S ∪ {v} is an irredundant set.

Now for v ∈ S1, condition (i) or (ii) holds. Suppose (i) holds. Then if e ∈ E and v ∈ e then
e ∩ (V − S1) ̸= ∅. Let w ∈ e ∩ (V − S1). Since v ̸∈ e ∩ (V − S1), it follows that w ̸= v. Hence
w ∈ e ∩ (V − S). Hence e− v ̸⊆ S. Thus v is not dominated by S, which is a contradiction.

Suppose (ii) holds. Then there exists w ∈ V −S1 such that if e is any edge in E with w ∈ e and
e−{w} ⊆ S1, then v ∈ e. Clearly w ̸= v. Hence v ∈ e∩ (V −S) so that (e−{w})∩ (V −S) ̸= ∅.
Thus w is not dominated by S, which is a contradiction. Hence S is maximal irredundant.

Corollary 2.2. Let H = (V, E) be any hypergraph. Then

ir(H) ≤ γ(H) ≤ i(H) ≤ β0(H) ≤ Γ(H) ≤ IR(H).

Proof. Follows from Theorem 2.7 and Theorem 2.9. Thus we have the domination chain for
hypergraphs.

3. Conclusion and Scope

Though domination in graphs has been extensively investigated, the study of domination in
hypergraphs has not received much atention. In Section 1, we have indicated three different per-
spectives for extending the concept of domination to hypergraphs. Acharya [6] introduced the
concept of domination in hypergraphs and in this case any edge e can dominate |e| − 1 vertices in
V − D. The definition that we have introduced in this paper uses (ii) and in this case an edge e
can dominate just one vertex in V − D. These two definitions are extreme cases. The concept of
domination can also be extended to hypergraphs using (iii) and in this case an edge e can dominate⌊
|e|
2

⌋
vertices in V − D. Results in this direction will be presented in a subsequent paper. Our

definition of domination has resulted in extending the concept of domination chain in the context
of hypergraph.

The domination chain for graphs which was first established by Cockayne et al. [10] has been
the focus of more than 100 research papers ([4], Page 76). We expect that the domination chain
for hypergraphs developed in this paper will naturally lead to the investigation of several questions
for hypergraphs which arise naturally.
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