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Abstract

We study a family of graphs related to the n-cube. The middle cube graph of parameter k is the
subgraph of Q2k−1 induced by the set of vertices whose binary representation has either k − 1 or
k number of ones. The middle cube graphs can be obtained from the well-known odd graphs by
doubling their vertex set. Here we study some of the properties of the middle cube graphs in the
light of the theory of distance-regular graphs. In particular, we completely determine their spectra
(eigenvalues and their multiplicities, and associated eigenvectors).

Keywords: distance-regular graph, odd graph, spectrum
Mathematics Subject Classification : 05C50
DOI: 10.5614/ejgta.2015.3.2.3

1. Introduction

The n-cube Qn, or n-dimensional hypercube, has been extensively studied. Nevertheless,
many open questions remain. Harary, Hayes, and Wu wrote a comprehensive survey on hyper-
cube graphs [20]. Recall that the n-cube Qn has vertex set V = {0, 1}n, and n-tuples representing
vertices are adjacent if and only if they differ in exactly one coordinate. Then, Qn is an n-regular
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bipartite graph with 2n vertices. It is natural to consider its vertex set as partitioned into n+ 1 lay-
ers, the layer Lk consisting of the

(
n
k

)
vertices containing exactly k 1s, for 0 ≤ k ≤ n. Seeing the

vertices of Qn as the characteristic vector of subsets of [n] = {1, 2, . . . , n}, the vertices of layer
Lk correspond to the subsets of cardinality k, while the adjacencies correspond to the inclusion
relation.

If n is odd, n = 2k − 1, the middle two layers Lk and Lk−1 of Qn have the same number(
n
k

)
=
(
n
k−1

)
of vertices. Then the middle cube graph, denoted by MQk, is the graph induced by

these two layers. It has been conjectured by Dejter, Erdős, and Havel [21] among others, thatMQk

is Hamiltonian. It is known that the conjecture holds for n ≤ 16 (see Savage and Shields [26]),
and it was almost solved by Robert Johnson [25].

In this paper we study some of the properties of the middle cube graphs in the light of the
theory of distance-regular graphs. In particular, we completely determine their spectra (eigenval-
ues and their multiplicities, and associated eigenvectors). In this context, Qiu and Das provided
experimental results for eigenvalues of several interconnection networks for which no complete
characterization were known (see [24, §3.2]).

Before proceeding with our study, we fix some basic definitions and notation used throughout
the paper. We denote by G = (V,E) a (simple, connected and finite) graph with vertex set V
an edge set E. The order of the graph G is n = |V | and its size is m = |E|. We label the
vertices with the integers 1, 2, . . . , n. If i is adjacent to j, that is, ij ∈ E, we write i ∼ j or
i

(E)∼ j. The distance between two vertices is denoted by dist(i, j). We also use the concepts of
even distance and odd distance between vertices (see Bond and Delorme [6]), denoted by dist+

and dist−, respectively. They are defined as the length of a shortest even (respectively, odd) walk
between the corresponding vertices. The set of vertices which are `-apart from vertex i, with
respect to the usual distance, is Γ`(i) = {j : dist(i, j) = `}, so that the degree of vertex i is
simply δi := |Γ1(i)| ≡ |Γ(i)|. The eccentricity of a vertex is ecc(i) := max1≤j≤n dist(i, j) and
the diameter of the graph is D ≡ D(G) := max1≤i≤n ecc(i). Given 0 ≤ ` ≤ D, the distance-`
graph G` has the same vertex set as G and two vertices are adjacent in G` if and only if they are
at distance ` in G. An antipodal graph G is a connected graph of diameter D for which GD is
a disjoint union of cliques. In this case, the folded graph of G is the graph G whose vertices are
the maximal cliques of GD and two vertices are adjacent if their union contains an edge of G.
If, moreover, all maximal cliques of GD have the same size r, then G is also called an antipodal
r-cover of G (double cover if r = 2, triple cover if r = 3, etc.).

Recall that a graph G with diameter D is distance-regular when, for all integers h, i, j (0 ≤
h, i, j ≤ D) and vertices u, v ∈ V with dist(u, v) = h, the numbers

phij = |{w ∈ V : dist(u,w) = i, dist(w, v) = j}|

do not depend on u and v. In this case, such numbers are called the intersection parameters and,
for notational convenience, we write ci = pi1i−1, bi = pi1i+1, and ai = pi1i (see Brouwer, Cohen,
and Neumaier [7] and Fiol [11]).
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Figure 1. The path P4 and its bipartite double graph.

2. Preliminaries

2.1. The odd graphs
The odd graph, independently introduced by Balaban, Farcussiu, and Banica [2] and Biggs [3],

is a family of graphs that has been studied by many authors (see Biggs [4, 5] and Godsil [18]).
More recently, Fiol, Garriga, and Yebra [16] introduced the twisted odd graphs, which share some
interesting properties with the odd graphs although they have, in general, a more involved structure.

For k ≥ 2, the odd graph Ok has vertices representing the (k − 1)-subsets of [2k − 1] =
{1, 2, . . . , 2k − 1}, and two vertices are adjacent if and only if they are disjoint. For example, O2

is the complete graph K3, and O3 is the Petersen graph. In general, Ok is a k-regular graph on
n =

(
2k−1
k−1

)
vertices, diameter D = k − 1 and girth g = 3 if k = 2, g = 5 if k = 3, and g = 6 if

k > 4 (see Biggs [5]).
The odd graph Ok is a distance-regular graph with intersection parameters

bj = k −
[
j + 1

2

]
, cj =

[
j + 1

2

]
0 ≤ j ≤ k − 1.

With respect to the spectrum, the distinct eigenvalues of Ok are λi = (−1)i(k − i), 0 ≤ i ≤
k − 1, with multiplicities

m(λi) =

(
2k − 1

i

)
−
(

2k − 1

i− 1

)
=
k − i
k

(
2k

i

)
.

2.2. The bipartite double graph
Let G = (V,E) be a graph of order n, with vertex set V = {1, 2, . . . , n}. Its bipartite double

graph G̃ = (Ṽ , Ẽ) is the graph with the duplicated vertex set Ṽ = {1, 2, . . . , n, 1′, 2′, . . . , n′}, and
adjacencies induced from the adjacencies in G as follows:

i
(E)∼ j ⇒

{
i

(Ẽ)∼ j′, and

j
(Ẽ)∼ i′.

(1)

Thus, the edge set of G̃ is Ẽ = {ij′|ij ∈ E}.
From the definition, it follows that G̃ is a bipartite graph with stable subsets V1 = {1, 2, . . . , n}

and V2 = {1′, 2′, . . . , n′}. For example, if G is a bipartite graph, then its bipartite double graph G̃
consists of two non-connected copies of G (see Figure 1).
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Figure 2. Graph G has diameter 2 and G̃ has diameter 3.
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Figure 3. C5 and its bipartite double graph.

The bipartite double graph G̃ has an involutive automorphism without fixed edges, which in-
terchanges vertices i and i′. On the other hand, the map from G̃ onto G defined by i′ 7→ i, i 7→ i
is a 2-fold covering.

If G is a δ-regular graph, then G̃ also is. Moreover, if the degree sequence of the origi-
nal graph G is δ = (δ1, δ2, . . . , δn), the degree sequence for its bipartite double graph is δ̃ =
(δ1, δ2, . . . , δn, δ1, δ2, . . . , δn).

The distance between vertices in the bipartite double graph G̃ can be given in terms of the even
and odd distances in G. Namely,

distG̃(i, j) = dist+G(i, j)

distG̃(i, j′) = dist−G(i, j).

Note that always dist−G(i, j) > 0 even if i = j. Actually, G̃ is connected if and only if G is
connected and non-bipartite.

More precisely, it was proved by Bond and Delorme [6] that if G is a non-bipartite graph with
diameter D, then its bipartite double graph G̃ has diameter D̃ ≤ 2D + 1, and D̃ = 2D + 1 if and
only if for some vertex i ∈ V the subgraph induced by the vertices at distance less than D from i,
G≤D−1(i), is bipartite.

In Figures 2-5, we can see the bipartite double graph of three different graphs. The cycle C5

and Petersen graph both have diameter D = 2, and their bipartite double graphs have diameter
D̃ = 2D + 1 = 5, while in the first example (Figure 2) G̃ has diameter D̃ = 3 < 2D + 1.

The extended bipartite double graph Ĝ of a graph G is obtained from its bipartite double graph
by adding edges (i, i′) for each i ∈ V . Note that when G is bipartite, then Ĝ is the direct product
G2K2.
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1

2

4

5

3

1

5‘

4‘

3‘

2‘

12

3

4

5

‘

Figure 4. C5 and C10 as another view of its bipartite double graph.
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Figure 5. Petersen’s graph and its bipartite double graph.

2.3. Spectral properties of the bipartite double graph
Let us now recall a useful result from spectral graph theory. For any graph, it is known that

the components of its eigenvalues can be seen as charges on each vertex (see Fiol and Mitjana [17]
and Godsil [19]). Let G = (V,E) be a graph with adjacency matrix A and λ-eigenvector v. Then,
the charge of vertex i ∈ V is the entry vi of v, and the equation Av = λv means that the sum of
the charges of the neighbors of vertex i is λ times the charge of vertex i:

(Av)i =
∑
i
(E)∼ j

vj = λvi.

In what follows we compute the eigenvalues of the bipartite double graph G̃ and the extended
bipartite double graph Ĝ as functions of the eigenvalues of a non-bipartite graph G. We also show
how to obtain the eigenvalues together with the corresponding eigenvectors of G̃ and Ĝ.

First, we recall the following technical result, due to Silvester [27], on the determinant of some
block matrices:
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Theorem 2.1. Let F be a field and let R be a commutative subring of F n×n, the set of all n × n
matrices over F . Let M ∈ Rm×m, then

detF (M ) = detF
(
detR(M)

)
.

For example, if M =

(
A B
C D

)
, where A,B,C,D are n×nmatrices over F which commute

with each other, then Theorem 2.1 reads

detF (M ) = detF (AD −BC). (2)

Now we can use the above theorem to find the characteristic polynomial of the bipartite double
and the extended bipartite double graphs.

Theorem 2.2. Let G be a graph on n vertices, with the adjacency matrix A and characteristic
polynomial φG(x). Then, the characteristic polynomials of G̃ and Ĝ are, respectively,

φG̃(x) = (−1)nφG(x)φG(−x), (3)
φĜ(x) = (−1)nφG(x− 1)φG(−x− 1). (4)

Proof. From the definitions of G̃ and Ĝ, their adjacency matrices are, respectively,

Ã =

(
O A
A O

)
and Â =

(
O A + I

A + I O

)
.

Thus, by (2), the characteristic polynomial of G̃ is

φG̃(x) = det(xI2n − Ã) = det

(
xIn −A
−A xIn

)
= det(x2In −A2)

= det(xIn −A) det(xIn + A) = (−1)nφG(x)φG(−x),

whereas, the characteristic polynomial of Ĝ is

φĜ(x) = det(xI2n − Â) = det

(
xIn −A− In

−A− In xIn

)
= det

(
x2In − (A + In)2

)
= det

(
xIn − (A + In)

)
det
(
xIn + (A + In)

)
= det

(
(x− 1)In −A

)
(−1)n det

(
− (x+ 1)In −A

)
= (−1)nφG(x− 1)φG(−x− 1).

As a consequence, we have the following corollary:
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Corollary 2.1. Given a graph G with spectrum

spG = {λm0
0 , λm1

1 , . . . , λmd
d },

where the superscripts denote multiplicities, then the spectra of G̃ and Ĝ are, respectively,

sp G̃ = {±λm0
0 ,±λm1

1 , . . . ,±λmd
d },

sp Ĝ = {±(1 + λ0)
m0 ,±(1 + λ1)

m1 , . . . ,±(1 + λd)
md}.

Proof. Just note that, by (3) and (4), for each root λ of φG(x), µ = ±λ are roots of φG̃(x), whereas
µ = ±(1 + λ) are roots of φĜ(x).

Note that the spectra of G̃ and Ĝ are symmetric, as expected, because both G̃ and Ĝ are bipartite
graphs.

In the next theorem we are concerned with the eigenvectors of G̃ and Ĝ, in terms of the eigen-
vectors of G. The computations also give an alternative derivation of the above spectra.

Theorem 2.3. Let G be a graph and v a λ-eigenvector of G. Let us consider the vector u+ with
components u+i = u+i′ = vi, and u−, with components u−i = vi and u−i′ = −vi, for 1 ≤ i, i′ ≤ n.
Then,

• u+ is a λ-eigenvector of G̃ and a (1 + λ)-eigenvector of Ĝ;

• u− is a (−λ)-eigenvector of G̃ and a (−1− λ)-eigenvector of Ĝ.

Proof. In order to show that u+ is a λ-eigenvector of G̃, we distinguish two cases:

• Given vertex i, for 1 ≤ i ≤ n, all its adjacent vertices are of type j′, with i
(E)∼ j. Then

(Au+)i =
∑
j′

(Ẽ)∼ i

u+j′ =
∑
j
(E)∼ i

vj = λvi = λu+i .

• Given vertex i′, for 1 ≤ i ≤ n, all its adjacent vertices are of type j, with i
(E)∼ j. Then

(Au+)i′ =
∑
j
(Ẽ)∼ i′

u+j =
∑
j
(E)∼ i

vj = λvi = λu+i .

By a similar reasoning with u−, we obtain

(Au−)i =
∑
j′

(Ẽ)∼ i

u−j′ = −
∑
j
(E)∼ i

vj = −λu−i and (Au−)i′ =
∑
j
(Ẽ)∼ i′

u−j =
∑
j
(E)∼ i

vj = −λu−i′ .

Therefore, u− is a (−λ)-eigenvector of the bipartite double graph G̃.
In the same way, we can prove that u+ and u− are eigenvectors of Ĝ with respective eigenval-

ues 1 + λ and −1− λ.

Notice that, for every linearly independent eigenvectors v1 and v2 of G, we get the linearly
independent eigenvectors u±1 and u±2 of G̃. As a consequence, the geometric multiplicity of eigen-
value λ of G coincides with the geometric multiplicities of the eigenvalues λ and −λ of G̃, and
1 + λ and −1− λ of Ĝ.
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3. The middle cube graphs

For k ≥ 1 and n = 2k − 1, the middle cube graph MQk is the subgraph of the n-cube Qn

induced by the vertices whose binary representations have either k − 1 or k number of 1s. Then,
MQk has order 2

(
n
k

)
and is k-regular, since a vertex with k − 1 1s has k zeroes, so it is adjacent

to k vertices with k 1s, and similarly a vertex with k 1s has k adjacent vertices with k − 1 1s (see
Figures 6 and 7).

The middle cube graph MQk is a bipartite graph with stable sets V0 and V1 constituted by the
vertices whose corresponding binary string has, respectively, even or odd Hamming weight, that is,
number of 1s. The diameter of the middle cube graph MQk is D = 2k − 1.

3.1. MQk is the bipartite double graph of Ok

Notice that, if A and B are both subsets of [2k− 1], A ⊂ B if and only if A and B are disjoint.
Moreover, if |B| = k, then |B| = k − 1. This gives the following result.

Proposition 3.1. The middle cube graph MQk is isomorphic to Õk, the bipartite double graph of
Ok.

Proof. The mapping from Õk to MQk defined by:

f : V [Õk] → V [MQk]
u 7→ u
u′ 7→ u

is clearly bijective. Moreover, according to the definition of bipartite double graph in (1), if u and
v′ are two vertices of Õk, then

u ∼ v′ ⇔ u ∩ v = ∅⇔ u ⊂ v,

which is equivalent to say that if u ∼ v′ in Õk, then f(u) = u ∼ v = f(v′) in MQk.

For example, the middle cube graph MQ2 contains vertices with one or two 1s in their binary
representation. The adjacencies give simply a 6-cycle (see Figure 6), which is isomorphic to Õ2.
As another example, MQ3 has 20 vertices because there are

(
5
2

)
= 10 vertices with two 1s, and(

5
3

)
= 10 vertices with three 1s in their binary representation (see Figure 7). Compare the Figures 5

and 7 in order to realize the isomorphism between the definitions of MQ3 and Õ3.
It is known that Õk is a bipartite 2-antipodal distance-regular graph. See Biggs [5] and Brouwer,

Cohen, and Neumaier [7] for more details.

3.2. Spectral properties
The spectrum of the hypercube Q2k−1 contains all the eigenvalues (including multiplicities) of

the middle cube MQk:
spMQk ⊆ spQ2k−1.
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Figure 6. The middle cube graph MQ2 as a subgraph of Q3 or as the bipartite double graph of O2 = K3.

11000

11100 11010 11001

01100 10100 01010 10010 01001 10001

01110 10110 01101 10101 01011 10011

00110 00101 00011

00111

Figure 7. The middle cube graph MQ3.

According to the result of Corollary 2.1, the spectrum of the middle cube graph MQk ' Õk

can be obtained from the spectrum of the odd graph Ok. The distinct eigenvalues of MQk are
θ+i = (−1)i(k − i) and θ−i = −θ+i , for 0 ≤ i ≤ k − 1, with multiplicities

m(θ+i ) = m(θ−i ) =
k − i
k

(
2k

i

)
. (5)

For example,

spMQ3 = {±2,±12},
spMQ5 = {±3,±24,±15},
spMQ7 = {±4,±36,±214,±114},
spMQ9 = {±5,±48,±327,±248,±142}.

The middle cube graph is a distance-regular graph. For instance, the distance polynomials ofMQk
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are

p0(x) = 1,

p1(x) = x,

p2(x) = x2 − 3,

p3(x) =
1

2
(x3 − 5x),

p4(x) =
1

4
(x4 − 9x2 + 12),

p5(x) =
1

12
(x5 − 11x3 + 22x).

As the sum of the distance polynomials is the Hoffman polynomial [22], we have

5∑
i=0

pi(x) =
1

12
(x− 1)(x− 2)(x+ 3)(x+ 2)(x+ 1). (6)

The eigenvalues of the MQ3 are λ0 = 3 and the zeroes of polynomial (6):

evMQ3 = {3, 2, 1,−1,−2,−3},

and their multiplicities, m(λi), can be computed using the highest degree polynomial p2k−1, ac-
cording to the result by Fiol [11]:

m(λi) =
φ0p2k−1(λ0)

φip2k−1(λi)
, 0 ≤ i ≤ 2k − 1,

where φi =
∏2k−1

j=0, j 6=i(λi − λj). Of course, this expression yields the same result as (5). Namely,
m(λi) = m(λ2k−1−i) = m(θ±i ), for 0 ≤ i ≤ k − 1.

The values of the highest degree polynomial are p5(3) = p5(1) = p5(−1) = 1 and p5(2) =
p5(−1) = p5(−3) = −1. Moreover, φ0 = −φ5 = 240, φ1 = −φ4 = −60, and φ2 = −φ3 = 48.
Then,

m(λ0) = m(λ5) = m(θ±0 ) = 1,
m(λ1) = m(λ4) = m(θ±1 ) = 4,
m(λ2) = m(λ3) = m(θ±2 ) = 5.

3.3. Middle cube graphs as boundary graphs
Let G be a graph with diameter D and distinct eigenvalues evG = {λ0, λ1, . . . , λd}, where

λ0 > λ1 > · · · > λd. A classical result states that D ≤ d (see, for instance, Biggs [5]). Other
results related to the diameter D and some (or all) different eigenvalues have been given by Alon
and Milman [1], Chung [8], van Dam and Haemers [9], Delorme and Solé [10], and Mohar [23],
among others. Fiol, Garriga, and Yebra [12, 14, 15] showed that many of these results can be
stated with the following common framework: If the value of a certain polynomial P at λ0 is large
enough, then the diameter is at most the degree of P . More precisely, it was shown that optimal
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results arise when P is the so-called k-alternating polynomial, which in the case of degree d − 1
is characterized by P (λi) = (−1)i+1 for 1 ≤ i ≤ d, and satisfies P (λ0) =

∑d
i=1

π0
πi

, where
πi =

∏d
j=0,j 6=i |λi − λj|. In particular, when G is a regular graph on n vertices, the following

implication holds:

P (λ0) + 1 =
n∑
i=0

π0
πi
> n ⇒ D ≤ d− 1.

This result suggested the study of the so-called boundary graphs [13, 15], characterized by
d∑
i=1

π0
πi

= n. (7)

Fiol, Garriga, and Yebra [13] showed that extremal (D = d) boundary graphs, where each vertex
has maximum eccentricity, are 2-antipodal distance-regular graphs. As we show in the next result,
this is the case of the middle cube graphs MQk, where the antipodal pairs of vertices are (x;x),
with x = x0x1 . . . x2k−1 and x = x0 x1 . . . x2k−1.

Proposition 3.2. The middle cube graph MQk is a boundary graph.

Proof. Recall that the eigenvalues of MQk are

evMQ2k−1 = {k, k − 1, . . . , 1,−1, . . . ,−k},

that is, λi = k − i, λk+i = −(i + 1), for 0 ≤ i < k. Now, according to (7), we have to prove that∑2k−1
i=0

π0
πi

= 2
(
2k−1
k

)
. Computing πi, for 0 ≤ i ≤ 2k − 1, we get

πi =
i!(2k − i)!
k − i

= π2k−(i+1), 0 ≤ i < k.

This implies

π0
πi

=
π0

π2k−(i+1)

=
(2k)!

k

(k − i)
i! (2k − i)!

=
k − i
k

(
2k

i

)
, for 0 ≤ i < k,

giving exactly the multiplicities of the corresponding eigenvalues, as found in (5). By summing up
we get

2k−1∑
i=0

π0
πi

= 2
k−1∑
i=0

π0
πi

= 2

(
k−1∑
i=0

(
2k

i

)
−

k−1∑
i=1

i

k

(
2k

i

))
. (8)

But
k−1∑
i=0

(
2k

i

)
=

1

2

(
22k −

(
2k

k

))
= 22k−1 −

(
2k − 1

k

)
, (9)

and
k−1∑
i=1

i

k

(
2k

i

)
= 2

k−2∑
i=0

(
2k − 1

i

)
= 22k−1 − 2

(
2k − 1

k − 1

)
,

where we have used (9), changing k by k − 1. Thus, replacing the above values in (8), we get the
result.
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