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Abstract

We study a family of graphs related to the n-cube. The middle cube graph of parameter £ is the
subgraph of (551 induced by the set of vertices whose binary representation has either £ — 1 or
k number of ones. The middle cube graphs can be obtained from the well-known odd graphs by
doubling their vertex set. Here we study some of the properties of the middle cube graphs in the
light of the theory of distance-regular graphs. In particular, we completely determine their spectra
(eigenvalues and their multiplicities, and associated eigenvectors).
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1. Introduction

The n-cube (),, or n-dimensional hypercube, has been extensively studied. Nevertheless,
many open questions remain. Harary, Hayes, and Wu wrote a comprehensive survey on hyper-
cube graphs [20]. Recall that the n-cube ), has vertex set V' = {0, 1}", and n-tuples representing
vertices are adjacent if and only if they differ in exactly one coordinate. Then, (),, is an n-regular
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bipartite graph with 2" vertices. It is natural to consider its vertex set as partitioned into n + 1 lay-
ers, the layer L consisting of the (Z) vertices containing exactly k 1s, for 0 < k& < n. Seeing the
vertices of @), as the characteristic vector of subsets of [n] = {1,2,...,n}, the vertices of layer
Ly, correspond to the subsets of cardinality %, while the adjacencies correspond to the inclusion
relation.

If nis odd, n = 2k — 1, the middle two layers Ly and L;_; of (),, have the same number
(Z) = ( kﬁl) of vertices. Then the middle cube graph, denoted by M ()i, is the graph induced by
these two layers. It has been conjectured by Dejter, Erd6s, and Havel [21] among others, that M (),
is Hamiltonian. It is known that the conjecture holds for n < 16 (see Savage and Shields [26]),
and it was almost solved by Robert Johnson [25].

In this paper we study some of the properties of the middle cube graphs in the light of the
theory of distance-regular graphs. In particular, we completely determine their spectra (eigenval-
ues and their multiplicities, and associated eigenvectors). In this context, Qiu and Das provided
experimental results for eigenvalues of several interconnection networks for which no complete
characterization were known (see [24, §3.2]).

Before proceeding with our study, we fix some basic definitions and notation used throughout
the paper. We denote by G = (V, E) a (simple, connected and finite) graph with vertex set V/
an edge set £. The order of the graph G is n = |V| and its size is m = |E|. We label the
vertices with the integers 1,2,...,n. If ¢ is adjacent to j, that is, ¢j € £, we write ¢ ~ j or
i W j. The distance between two vertices is denoted by dist(i, 7). We also use the concepts of
even distance and odd distance between vertices (see Bond and Delorme [6]), denoted by dist™
and dist ™, respectively. They are defined as the length of a shortest even (respectively, odd) walk
between the corresponding vertices. The set of vertices which are ¢-apart from vertex i, with
respect to the usual distance, is I'y(i) = {j : dist(é,j) = ¢}, so that the degree of vertex i is
simply d; := |['1(7)] = |['(¢)|. The eccentricity of a vertex is ecc(i) := max;<;<, dist(, j) and
the diameter of the graph is D = D(G) := max;<;<,ecc(i). Given 0 < ¢ < D, the distance-{
graph GG, has the same vertex set as G and two vertices are adjacent in G if and only if they are
at distance ¢ in GG. An antipodal graph G is a connected graph of diameter D for which G is
a disjoint union of cliques. In this case, the folded graph of G is the graph G whose vertices are
the maximal cliques of G and two vertices are adjacent if their union contains an edge of G.
If, moreover, all maximal cliques of G, have the same size r, then G is also called an antipodal
r-cover of G (double cover if r = 2, triple cover if r = 3, etc.).

Recall that a graph G with diameter D is distance-regular when, for all integers h,i,j (0 <
h,i,7 < D) and vertices u,v € V with dist(u, v) = h, the numbers

p?j = {w e V : dist(u, w) = 4, dist(w,v) = j}|
do not depend on u and v. In this case, such numbers are called the intersection parameters and,

for notational convenience, we write ¢; = pi,_;, b; = pi,,,, and a; = p}, (see Brouwer, Cohen,
and Neumaier [7] and Fiol [11]).
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Figure 1. The path P, and its bipartite double graph.

2. Preliminaries

2.1. The odd graphs

The odd graph, independently introduced by Balaban, Farcussiu, and Banica [2] and Biggs [3],
is a family of graphs that has been studied by many authors (see Biggs [4, 5] and Godsil [18]).
More recently, Fiol, Garriga, and Yebra [16] introduced the twisted odd graphs, which share some
interesting properties with the odd graphs although they have, in general, a more involved structure.

For k > 2, the odd graph Oy, has vertices representing the (k — 1)-subsets of [2k — 1] =
{1,2,...,2k — 1}, and two vertices are adjacent if and only if they are disjoint. For example, O
is the complete graph K3, and Oj is the Petersen graph. In general, Oy is a k-regular graph on
n = (%) vertices, diameter D = k — 1 and girth g = 3if k =2, g =5if k = 3, and g = 6 if
k > 4 (see Biggs [5]).

The odd graph Oy, is a distance-regular graph with intersection parameters

1 41
bj:k—[‘%}, cj:{%} 0<j<k-—1

With respect to the spectrum, the distinct eigenvalues of Oy, are \; = (—1)i(k — 1), 0 < i <
k — 1, with multiplicities

() = <2I<:Z— ) - <2ik_—11) K . i (2@/@)

2.2. The bipartite double graph

Let G = (V, E) be a graph of order n, with vertex set V' = {1,2,...,n}. Its bipartite double
graph G = (V, E) is the graph with the duplicated vertex set V' = {1,2,...,n,1',2', ... n’}, and
adjacencies induced from the adjacencies in GG as follows:

. (B)
i(r@j:>{®‘~j"and (1)

Thus, the edge set of G is E = {ij'|ij € E}.

From the definition, it follows that G is a bipartite graph with stable subsets V; = {1,2,...,n}
and Vo = {1’,2/,... n'}. For example, if G is a bipartite graph, then its bipartite double graph G
consists of two non-connected copies of GG (see Figure 1).
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Figure 2. Graph G has diameter 2 and G has diameter 3.
1
1 2 3 4 5
2
5

3

4 5 4 3 2 1"

Figure 3. C5 and its bipartite double graph.

The bipartite double graph G has an involutive automorphism without fixed edges, which in-
terchanges vertices ¢ and 7’. On the other hand, the map from G onto G defined by ¢’ +— i, i — i
is a 2-fold covering. N

If G is a d-regular graph, then G also is. Moreover, if the degree sequence of the origi-
nal graph G is § = (d1,09,...,0,), the degree sequence for its bipartite double graph is § =
(01,09, .., 0n, 01,02, ..., 0n).

The distance between vertices in the bipartite double graph G can be given in terms of the even
and odd distances in G. Namely,

distg(i,5) = distg (4, 4)
distz(i,5) = distg(4,7).

Note that always dist;(7,7) > 0 even if i = j. Actually, G is connected if and only if G is
connected and non-bipartite.

More precisely, it was proved by Bond and Delorme [6] that if G is a non-bipartite graph with
diameter D, then its bipartite double graph G has diameter D < 2D + 1,and D = 2D + 1 if and
only if for some vertex ¢« € V' the subgraph induced by the vertices at distance less than D from ¢,
G<p-1(1), is bipartite.

In Figures 2-5, we can see the bipartite double graph of three different graphs. The cycle Cj
and Petersen graph both have diameter D = 2, and their bipartite double graphs have diameter
D =2D +1 =5, while in the first example (Figure 2) G has diameter D = 3 < 2D + 1.

The extended bipartite double graph G of a graph G is obtained from its bipartite double graph
by adding edges (i,4') for each i € V. Note that when G is bipartite, then G is the direct product
GOK,.
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Figure 5. Petersen’s graph and its bipartite double graph.

2.3. Spectral properties of the bipartite double graph

Let us now recall a useful result from spectral graph theory. For any graph, it is known that
the components of its eigenvalues can be seen as charges on each vertex (see Fiol and Mitjana [17]
and Godsil [19]). Let G = (V, E) be a graph with adjacency matrix A and \-eigenvector v. Then,
the charge of vertex ¢ € V' is the entry v; of v, and the equation Av = Av means that the sum of
the charges of the neighbors of vertex 7 is A times the charge of vertex :

(A'U)l = Z v; = )\Ul‘.
e
In what follows we compute the eigenvalues of the bipartite double graph G and the extended
bipartite double graph G as functions of the eigenvalues of a non-bipartite graph G. We also show
how to obtain the eigenvalues together with the corresponding eigenvectors of G and G.
First, we recall the following technical result, due to Silvester [27], on the determinant of some
block matrices:

137



On Middle Cube Graphs | C. Dalfé, M. A. Fiol, M. Mitjana

Theorem 2.1. Let F be a field and let R be a commutative subring of F™*", the set of all n x n
matrices over F'. Let M € R™ ™, then

detF(M) = detF (d6tR(M)) .

For example, if M = (é, g) ,where A, B, C, D are n Xxn matrices over F' which commute

with each other, then Theorem 2.1 reads
detp(M) = detp(AD — BC). 2)

Now we can use the above theorem to find the characteristic polynomial of the bipartite double
and the extended bipartite double graphs.

Theorem 2.2. Let G be a graph on n vertices, with the adjacency matrix A and characteristic
polynomial ¢ (x). Then, the characteristic polynomials of G and G are, respectively,

og(x) = (-1)"¢a(x)da(—1), 3)
palz) = (=1)"¢c(z — Doc(—z —1). (4)

Proof. From the definitions of G and G, their adjacency matrices are, respectively,
~ O A -~ O A+1
A= (A 0) and A = <A+I s) )

Thus, by (2), the characteristic polynomial of G is

~ I, —A
dg(x) = det(xly, — A) = det (—A xIn) = det(2°I, — A?)

= det(xl, — A)det(zI, + A) = (—1)"pg(x)pc(—x),
whereas, the characteristic polynomial of G is

-~ xI, —-A-1,
da(x) = det(xly, — A) = det (—A— I, o, >

= det (2’1, — (A+1,) )—det(xIn— (A+1I,))det (eI, + (A +1I,))
= det ((z — 1)1, — A)(=1)"det (— (z+ 1)I, — A)
= (=1)"¢c(z —1)¢a(—z —1).

As a consequence, we have the following corollary:
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Corollary 2.1. Given a graph G with spectrum
spG = {AJ A" AT
where the superscripts denote multiplicities, then the spectra of G and G are, respectively,
spG = {EAO LN AT
spG = {H(14 )™, £(1+ A)™, ..., £(1+ Mg)™}.
Proof. Just note that, by (3) and (4), for each root A of ¢g(x), u = £\ are roots of gbé(x) whereas
i = £(1 + X) are roots of ¢z (). O

Note that the spectra of G and G are symmetric, as expected, because both G and G are bipartite
graphs. B R

In the next theorem we are concerned with the eigenvectors of G and G, in terms of the eigen-
vectors of GG. The computations also give an alternative derivation of the above spectra.

Theorem 2.3. Let G be a graph and v a \-eigenvector of G. Let us consider the vector u™ with

components uf = uj = v;, and uw~, with components u; = v; and u;, = —v;, for 1 <i,7' < n.

Then,

e u' is a \-eigenvector ofé and a (1 + \)-eigenvector of@;

o u” isa (—\)-eigenvector of G and a (—1 — \)-eigenvector of G.
Proof. In order to show that u™ is a A-eigenvector of G, we distinguish two cases:

e Given vertex i, for 1 < i < n, all its adjacent vertices are of type j', with i ) j. Then

(Au't), = E uj, = E v; = v, = My
E L(B) .
7B, i

e Given vertex 4/, for 1 < i < n, all its adjacent vertices are of type j, with i <) 7. Then

(Aut)y = Z uf = Z v; = v, = M

E (E) .

By a similar reasoning with u~, we obtain

(Au™); = Z Uy = — Z v; = —Au; and (Au™ )y = Z u; = Z vj = —Auy .

E (E) . E (E) .
i 2 i iR i~

Therefore, u~ is a (—\)-eigenvector of the bipartite double graph G. R
In the same way, we can prove that u™ and w ™~ are eigenvectors of G with respective eigenval-
ues 1 +Aand —1 — A\ [

Notice that, for every linearly independent eigenvectors v; and v, of G, we get the linearly
independent eigenvectors ui and u of G. As a consequence, the geometric multiplicity of eigen-

value A of G coincides with the geometric multiplicities of the eigenvalues A and —A of G, and
1+ Xand —1 — A of G.
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3. The middle cube graphs

For k > 1 and n = 2k — 1, the middle cube graph M @), is the subgraph of the n-cube @),
induced by the vertices whose binary representations have either £ — 1 or k£ number of 1s. Then,
M@y, has order 2(2) and is k-regular, since a vertex with £ — 1 1s has k zeroes, so it is adjacent
to k vertices with k 1s, and similarly a vertex with k£ 1s has £k adjacent vertices with k — 1 1s (see
Figures 6 and 7).

The middle cube graph M Q). is a bipartite graph with stable sets 1 and V; constituted by the
vertices whose corresponding binary string has, respectively, even or odd Hamming weight, that is,
number of 1s. The diameter of the middle cube graph M Q) is D = 2k — 1.

3.1. MQ)y is the bipartite double graph of Oy,

Notice that, if A and B are both subsets of [2k — 1], A C Bif and only if A and B are disjoint.
Moreover, if |B| = k, then | B| = k — 1. This gives the following result.

Proposition 3.1. The middle cube graph M (Q);. is isomorphic to 5k the bipartite double graph of
Og.

Proof. The mapping from Oy to MQ,, defined by:

f: VO] — VIMQg]
u u
u = u

is clearly bijective. Moreover, according to the definition of bipartite double graph in (1), if v and
v’ are two vertices of Oy, then

u~v SunNv=90 & ucCu,
which is equivalent to say that if w ~ v’ in Oy, then fu) =u~wv=f(v)in MQy. O

For example, the middle cube graph M (), contains vertices with one or two 1s in their binary
representation. The adjacencies give simply a 6-cycle (see Figure 6), which is isomorphic to Os.
As another example, M ()3 has 20 vertices because there are (g) = 10 vertices with two 1s, and
(g) = 10 vertices with three 1s in their binary representation (see Figure 7). Compare the Figures 5
and 7 in order to realize the isomorphism between the definitions of M ()3 and 53.

It is known that O, is a bipartite 2-antipodal distance-regular graph. See Biggs [5] and Brouwer,

Cohen, and Neumaier [7] for more details.

3.2. Spectral properties

The spectrum of the hypercube (551 contains all the eigenvalues (including multiplicities) of
the middle cube M Q);:

sp MQy C spQaog—1.
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Figure 6. The middle cube graph M Q- as a subgraph of Q3 or as the bipartite double graph of O, = K.

11000
11100 11010 11001

e YV NP 2N

01100 10100 01010 10010 01001 10001

01110 10110 01101 10101 01011 10011

NSNS NS

00110 00101 00011
00111

Figure 7. The middle cube graph M Qs.

According to the result of Corollary 2.1, the spectrum of the middle cube graph M Q); ~ Ok
can be obtained from the spectrum of the odd graph Oy. The distinct eigenvalues of M Q) are
0 = (—=1)i(k — i) and 0, = —6;", for 0 < i < k — 1, with multiplicities

m(8}) = m(67) = - - i (Q.k). )

]

For example,

spMQs = {£2,+1%},

spMQs = {£3,+£2% £1°},

spMQ; = {£4,+3° +2" +11}
spMQg = {£5,+4% £3%7 2% +1%}.

The middle cube graph is a distance-regular graph. For instance, the distance polynomials of M (),
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are
po(ﬂf) = y
P1 ($> = )
po(z) = 2° -3,
1
ps(z) = §(x3 — 5z),
1
pa(z) = Z(.T4 — 9% + 12),
1
ps(z) = E(I5 — 112° + 227).

As the sum of the distance polynomials is the Hoffman polynomial [22], we have

5

S pile) = 5o~ D(a — 2)(z + e+ 2)(x +1) ©)

=0
The eigenvalues of the M ()3 are Ay = 3 and the zeroes of polynomial (6):
evMQ@s ={3,2,1,—1,-2, -3},

and their multiplicities, m()\;), can be computed using the highest degree polynomial po_1, ac-
cording to the result by Fiol [11]:

_ Popar—1(Ao)

m(/\,) B ¢ip2k—1()\i) ’

0<i<2k—1,

where ¢; = H?i&lj 2i(Ai = A;). Of course, this expression yields the same result as (5). Namely,
m()\l) = m()\Qkf]_fi) = m(@f), for 0 < 1 < k—1.
The values of the highest degree polynomial are p5(3) = p5(1) = ps(—1) = 1 and p5(2) =

ps(—1) = ps(—3) = —1. Moreover, ¢g = —¢5 = 240, ¢ = —¢py = —60, and ¢ = —¢p3 = 48.

Then,
m(Xo) = m(Xs) = m(fy) =1,
m(Ar) = m(\s) = m(67) = 4,
m(Ag) = m(A3) =m(05) =5

3.3. Middle cube graphs as boundary graphs

Let GG be a graph with diameter D and distinct eigenvalues ev G = {\g, A1, ..., Ay}, where
Ao > A > .-+ > A4 A classical result states that D < d (see, for instance, Biggs [5]). Other
results related to the diameter D and some (or all) different eigenvalues have been given by Alon
and Milman [1], Chung [8], van Dam and Haemers [9], Delorme and Solé¢ [10], and Mohar [23],
among others. Fiol, Garriga, and Yebra [12, 14, 15] showed that many of these results can be
stated with the following common framework: If the value of a certain polynomial P at ) is large
enough, then the diameter is at most the degree of P. More precisely, it was shown that optimal
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results arise when P is the so-called k-alternating polynomial, which in the case of degree d — 1
is characterized by P()\;) = (—1)"! for 1 < i < d, and satisfies P()\o) = >0, 0, where
T = Hj:o, i2i 1A — Ajl. In particular, when G is a regular graph on n vertices, the following
implication holds:

PQ@+1:§:%%>n = D<d-1
i=0 °

This result suggested the study of the so-called boundary graphs [13, 15], characterized by

¢ x
= =n. (7)
; T

i=1
Fiol, Garriga, and Yebra [13] showed that extremal (D = d) boundary graphs, where each vertex
has maximum eccentricity, are 2-antipodal distance-regular graphs. As we show in the next result,
this is the case of the middle cube graphs M ();, where the antipodal pairs of vertices are (x; ),

withx = 2gz1 ... 20p_1and T =To X1 ... Top_1-
Proposition 3.2. The middle cube graph M Q). is a boundary graph.
Proof. Recall that the eigenvalues of M ()}, are
ev MQoy—1 =1k, k—1,...,1,—1,..., =k},
thatis, \; = k — i, \pyy = —(i + 1), for 0 < ¢ < k. Now, according to (7), we have to prove that
Z?io_l oo = 2(2]“,{_1). Computing 7;, for 0 < i < 2k — 1, we get

U

i!(2k —1)! ,
Wi:%:ﬂ'yg_(i_i_l), 0<i<k.
This implies
2k) (k—1 k—1(2k
o _ o :( )( Z), = Z(,),f0r0§i<k,
T Tok—(i+1) kil (2k —q)! k )
giving exactly the multiplicities of the corresponding eigenvalues, as found in (5). By summing up
we get
2k—1 k—1 k—1 k=1 .
K o 2k 1 (2k
— =2 — = — - .
— T, — T, (Z(z) Zk(z)) ®)
=0 =0 =0 =1
But
— 2K\ 1 2% 2% — 1
—_ _ 22k _ — 22k—1 o -
> (1) =3 (- (V) ) ©
=0
and

k-1 . k—2
1 (2k 2k —1 2k —1
E - :2§ :22k—1_2
i=1k<i) i:O( ¢ ) (k_1>’

where we have used (9), changing k£ by k£ — 1. Thus, replacing the above values in (8), we get the
result. 0
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