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Abstract

One of the most important Turán’s theorems establishes an inequality between the maximum clique
and the number of edges of a graph. Since 1941, this result has received much attention and many
of the different proofs involve induction and a probability distribution. In this paper we detail
finite procedures that gives a proof for the Turán’s Theorem. Among other things, we give a
generalization of this result. Also we apply this results to a Nikiforov’s inequality between the
spectral radius and the maximum clique of a graph.
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1. Introduction

Many works in graph theory deals with upper bounds for the number of edges in a graph.
Some examples are [5], [9] and [6]. In this scope, the famous Turán’s Theorem is one of the most
important results in graph theory about cliques and the number of edges in a graph and is stated as
follows

Theorem 1.1. (Turán) Consider p ≥ 2 an integer. Let G be a simple graph with n vertices and m
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edges not containing a p− clique, then

m ≤
(
1− 1

p− 1

)
n2

2
. (1)

This result gives the maximum number of edges that a simple graph of n vertices can have if it
doesn’t contain a clique of a certain size [10]. Also this result provides what is known as extremal
problems in graph theory [3]. We recommend [1] for some proofs.

In [1] there are four proofs of Theorem 1.1. The third proof present a sketch of procedures to
prove the theorem and was based on ideas in [2, 7] and [11]. In [7] the proofs are based on finite
induction and in [7, 11] there are generalizations of Turán’s theorem. Theorem 1.1 was utilized by
Nikiforov in [8] to relate the spectral radius and the maximum clique of a graph.

Theorem 1.2. (Nikiforov) Let G be a simple graph with n vertices having the spectral radius λ
and cl(G) the cardinality of a maximum clique. Then

λ ≤
(
1− 1

cl(G)

)
n. (2)

.

In this paper we detail the procedures described in [1] to obtain better inequalities involving
not only the clique number but also the amount of some cliques in the graph. As consequence we
apply these inequalities to improve Nikiforov’s Theorem 1.2.

The rest of the paper is organized as follows: In section 3 we present the detailed procedures
developed. These are described in the proofs of Theorems 3.1 and 3.2. In section 4 we develop our
improved inequalities.

2. Notations

In this paper we will denote by G = (V (G), E(G), ψG) a finite unoriented graph with V (G) =
V the set of vertices, E(G) = E the set of edges and ψG the incidence function. If there is no
confusion, we will simply make mention to the graph G. The vertices will be denoted by v (or vi)
and the edges by e = vivj . N(v) will be the set containing all neighboring vertices of the vertex
v. If v is included in the set, we have a star N(v) = N(v) ∪ {v}. A particular k-clique in G
sometimes will be denoted Clk(G). The cardinality of a maximum clique will by cl(G). Let A, B
be non-empty subsets of V . A and B are disconnected if there is no a ∈ A and b ∈ B such that
ab ∈ E. We will denote by |X| the cardinality of set X , ⟨a, b⟩ the canonical scalar product of a
and b in Rn and ||x|| the canonical norm of vector x.

We define the set

D =

{
w = (w1, . . . , wn) ∈ Rn

∣∣∣∣∣wi ≥ 0 e
n∑

i=1

wi = 1

}
. (3)

Let G be a finite graph. All proofs of the following results were based on maximizing the
function fG : D → R such that
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fG(w) =
∑

vivj∈E(G)

wiwj. (4)

Each wi represents the weight of the vertex vi and w = (w1, . . . , wn) is the (discrete) probabil-
ity distribution over V (G). If ψG(ek) = vivj we say that wiwj is the weight of the edge ek. In this
way, fG(w) gives the sum of all the weights of the edges of G. For the rest of the article, we will
only consider graphs with at least one edge. The weight of a non-empty set A ⊂ V (G) is the sum
of all weights of the vertices v ∈ A. Furthermore, denote by sr the sum of the weights of N(vr)
for r ∈ {1, . . . , n}.

3. Procedures

In this section let w = (w1, . . . , wn) be a probability distribution over V (G). We present two
Theorems indicating finite procedures on the weights of a distribution w that forms the base for
the proof of our main results.

Lemma 3.1. Let G be a non-complete graph with V (G) = {v1, v2, . . . , vn}. Take w and w′ =
(w′

1, . . . , w
′
n) two probabilities distributions over V (G) and vi, vj two non-adjacent vertices such

that si ≥ sj in w distribution. Let w′
j = 0, w′

i = wi + wj and w′
k = wk for k ̸= i, j. Then

fG(w
′) ≥ fG(w).

Proof. Note that fG(w′) is the same as fG(w) plus wj multiplied by all weights related to the
adjacencies of vi (since w′

i = wi + wj), and plus −wj multiplied by all weights related to the
adjacencies of vj (since w′

j = 0), then:

fG(w
′) = fG(w) + wjsi − wjsj = fG(w) + wj(si − sj). (5)

As si ≥ sj then wi(si − sj) ≥ 0 and we conclude that

fG(w
′) ≥ fG(w). (6)

Theorem 3.1. Let G be a simple graph with n vertices. For all probability distribution w on
V (G), there is a k-clique, say Clk(G), and a probability distribution w = (w1, . . . , wn) with
fG(w) ≥ fG(w) and wi = 0 for all vi /∈ Clk(G).

Proof. The proof is based on a finite procedure. If G is complete, we will consider that there is
nothing to do and the theorem is proved. Suppose then that G is a non-complete graph. Take si the
weight of N(vi) for all vi ∈ V (G). Reorder the vertices of G such that s1 ≥ s2 ≥ · · · ≥ sn. Since
G is not complete, let vi1 be the first vertex in the chosen order that does not have all the vertices of
G connected to it. For each vertex disconnected with vi1 create a new distribution w′ as explained
in Lemma 3.1. Note that in all steps the relation si1 ≥ sj is still valid for vertices vj disconnected
to vi1 . At the end all the vertex disconnected to vi1 has zero weight. If all vertices of N(vi1)
are connected to each other, then N(vi1) is a |N(vi1)|-clique satisfying the thesis of this theorem.
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Otherwise, among all the vertices connected to vi1 find one, say vi2 , such that it is not connected
to all vertices of N(vi1) whose value of si2 is maximum between those vertices in N(vi1). Repeat
the procedure now with vertex vi2 . Make this until we have a probability distribution w such that
the only weights wi ̸= 0 are concentrated in a k − clique, Clk(G). By Lemma 3.1 we have
fG(w) ≥ fG(w).

If w = (w1, . . . , wn) is a probability distribution on V (G), we will say that w is also a proba-
bility distribution on a k-clique Clk(G) = {vi1 , . . . , vik} if wj = 0 for all vertices vj not in Clk(G).
Remember that a homogeneous probability distribution has all weights equal. The next lemma
shows that for all probability distributions w on a k-clique Clk(G), the homogeneous probability
distribution w on the k-clique Clk(G) satisfies fG(w) ≥ fG(w).

Lemma 3.2. Let G be a simple graph with n vertices and consider w a probability distribution
over a k-cliqueClk(G). Let vi, vj be two vertices ofClk(G) satisfyingwi ≥ wj , moreover consider
ε ∈ R such that 0 ≤ ε ≤ wi−wj . The probability distribution w′ on Clk(G) such that w′

i = wi−ε,
w′

j = wj + ε and w′
k = wk for all i ̸= k ̸= j satisfies fG(w′) ≥ fG(w).

Proof. It is easy to see that

fG(w
′) = fG(w) + ε(wi − wj − ε). (7)

and then we conclude fG(w′) ≥ fG(w).

Theorem 3.2. Let G be a simple graph with n vertices. For any probability distribution w on a
clique, say Clk(G), the homogeneous probability distribution w satisfies fG(w) ≥ fG(w).

Proof. Consider an enumeration of the vertices of Clk(G) = {v1, . . . , vk} satisfying w1 ≤ w2 ≤
. . . ≤ wk and define the set A0 = {v1, . . . , vr} ⊂ Clk(G) such that wj = w1 for j ∈ {1, . . . , r}.
If A0 = Clk(G) there is nothing to do, else, consider the vertex vr+1 with weight wr+1. Take
ε = wr+1−w1

r+1
> 0. Consider a probability distribution w1 such that w1

r+1 = wr+1 − ε, w1
r = wr + ε

and w1
k = wk for all k ̸= r ̸= r + 1. By Lemma 3.2 fG(w1) ≥ fG(w). Consider a probability

distribution w2 such that w2
r+1 = w1

r+1 − ε = wr+1 − 2ε, w2
r−1 = wr−1 + ε, w2

r = w1
r and

w2
k = w1 for k ∈ {1, . . . , r − 2}. Again by Lemma 3.2, we have fG(w2) ≥ fG(w). At the end

of this process we have a set A1 = {v1, . . . , vr, vr+1} ⊃ A0 where all vertices have weights equal
to w1 + ε. If A1 = Clk(G) there is nothing to do, otherwise repeat the process until we have a
homogeneous probability distribution w on the clique Clk(G). According Lemma 3.2, we have
fG(w) ≥ fG(w).

4. Results

Equations (1) and (2) can estimate, respectively, the number of edges and the spectral radius
of a simple graph based on the maximum clique. We will show how the number of edges can also
depend on the number of cliques of the graph (maximum or not). Consequently, based on the proof
of Theorem 1.2, we improve the results as long as we previously know some disconnected cliques
in the graph.
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4.1. Generalization of Turán’s Theorem
Theorem 4.1. Let G be a simple graph with n vertices. Assume the following conditions:

i) G contains a collection CL = {Ai| i ∈ {1, . . . , r}} of disconnected cliques Ai with cardi-
nality ki;

ii) v is a vertex of maximum degree in G;
iii) Star N(v) is disconnected from any clique Ai in CL.

Then

|E| ≤

[
(1− γ)2

(
1− 1

k

)
+

r∑
i=1

(
ki
n

)2(
1− 1

ki

)]
n2

2
, (8)

where k is the cardinality of a k-clique Clk(G) from G containing v and γ =
1

n

r∑
i=1

ki;

Proof. Take a homogeneous probability distributionw on V (G). We have fG(w) = |E| 1
n2 . Clearly

the vertices v such that the weight of N(v) are maximum are those with maximum degree. Let A
be the set of all vertices of G that are not vertices of any of the cliques in the CL collection. Apply
then the procedure described in Theorem 3.1 in vertex v with the vertices of set A until there is
a probability distribution over A that is null in A ∖ Clk(G), where Clk(G) is a k-clique from G
containing v. Apply then the procedure described in Theorem 3.2 on Clk(G) until all the vertices
weights in Clk(G) be equal. After these procedures, all vertex weights in CL are equal to 1

n
and

all vertex weights in Clk(G) are equal to 1−γ
k

.
By Lemmas 3.1 and 3.2 we have then a new distribution w′ on G, such that |E| 1

n2 = fG(w) ≤
fG(w

′) = B1 +B2, where B1 =
1
2
· (1− γ)2

(
1− 1

k

)
represents the contribution from Clk(G) and

B2 = 1
2
·

r∑
i=1

[(
ki
n

)2

·
(
1− 1

ki

)]
represents the contribution from CL. Solving the inequality

the result follows.

In Equation (8), note that
∑r

i=1

(
ki
n

)2 (
1− 1

ki

)
n2

2
=

∑r
i=1

ki(ki−1)
2

, i.e, the amount of the edges
considering all the cliques in CL.

If there are no cliques on CL the previous theorem is reduced to Theorem 1.1.
We can obtain a shorter inequality from Theorem 4.1, taking account that

(
1− 1

k

)
≤

(
1− 1

cl(G)

)
for all clique Clk(G). Then we have

Corollary 4.1. With the same hypotheses as the previous theorem, we have

|E| ≤ ς

(
1− 1

cl(G)

)
n2

2
, (9)

where ς =
[
(1− γ)2 +

∑r
i=1

(
ki
n

)2]
.

It is clear that γ and ki
n
∈ [0, 1], ∀i = 1, . . . , r, moreover γ +

∑r
i=1

(
ki
n

)
= 1, then ς < 1 and

inequality (9) is better than inequality (1).
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4.2. Generalization of Nikiforov’s Theorem
Theorem 4.2. With the same hypotheses as Theorem 4.1 we have that the spectral radius λ satisfies

λ ≤
√
ς

(
1− 1

cl(G)

)
n, (10)

where ς =
[
(1− γ)2 +

∑r
i=1

(
ki
n

)2]
.

Proof. If |E(G)| = 0 then λ = 0 and the result is obvious. Suppose from now on that |E(G)| ≥ 1.

Fix an enumeration of the vertices of G. Let A be its respective adjacency matrix and y =

 y1
...
yn


a unit eigenvector related to λ that is, ||y|| = 1. We know that:

λ = ⟨y, Ay⟩ . (11)

Take z =

 z1
...
zn

 = Ay. Each entry zi is exactly the sum of the y entries associated with the

vertices adjacent to vi.
Let l = |E(G)| and consider an enumeration e1 < . . . < el of the l edges of G. For each

k = 1, . . . , l, let ek = vki v
k
j the k-th edge of G associated with the number yki · ykj such that

yki , y
k
j ∈ {y1, . . . , yn} which are the coordinates of the y vector. Then in the inner product (11) we

have:

λ = 2
∑

vki v
k
j ∈E(G)

yki y
k
j = 2

∑
vivj∈E(G)

yiyj. (12)

The number 2 comes from symmetry of A. We can then rewrite Equation (12) as the inner product

between the vector r =

 2
...
2

 ∈ Rl and the vector s =

 z1
...
zl

 ∈ Rl whose entries are the values

zt = ytiy
t
j:

λ = ⟨r, s⟩ . (13)

We also have:

||r|| =
√
22 + ...+ 22 =

√
4|E|, (14)

as long as:

||s|| =
√ ∑

vivj∈E(G)

y2i y
2
j . (15)
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By Cauchy-Schwartz inequality, we have:

⟨r, s⟩2 ≤ ||r||2.||s||2. (16)

Replacing Equation (13), (14) and (15) in Equation (16), we get:

λ2 ≤ 4|E|.
∑

vivj∈E(G)

y2i y
2
j . (17)

Because y is unitary, w = (y21, . . . , y
2
n) is a probability distribution on V (G).

Through combinatorial analysis it is easy to see that the number of edges Ek in the complete
graph induced by a k-clique is equal to:

|Ek| =
k(k − 1)

2
. (18)

Then a k-clique with homogeneous probability distribution w′ satisfies

fG(w
′) = |Ek|

1

k2
. (19)

Replacing Equation (18) in Equation (19), we get:

fG(w
′) =

(
1− 1

k

)
1

2
. (20)

According procedures explained in Theorem3.1 and Theorem 3.2, for any probability distribu-
tion w, there is a k-clique such that:

fG(w) ≤
(
1− 1

k

)
1

2
. (21)

We have k ≤ cl(G), so we conclude that:∑
vivj∈E(G)

y2i y
2
j ≤

(
1− 1

cl(G)

)
1

2
, (22)

Replacing Equation (22) in Equation (17), we get:

λ2 ≤ 2|E|
(
1− 1

cl(G)

)
. (23)

As discussed in Corollary 4.1: |E| ≤ ς
(
1− 1

cl(G)

)
n2

2
and the result follows.

If there are no clique on CL the previous theorem is reduced to Theorem 1.2. The next corollary
is straightforward.
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Corollary 4.2. With the same hypotheses as Theorem 4.1, we have that the cardinality of the
maximum clique cl(G) satisfies

cl(G) ≥ n

n− λ√
ς

, (24)

where ς =
[
(1− γ)2 +

∑r
i=1

(
ki
n

)2]
.

Here is an example. Let G be the graph with 12 vertices and 14 edges of Figure 1. Its spectral
radius λ = 2.6729197, the cardinality of the maximum clique is cl(G) = 3 and the maximum
degree in the graph is equal to 4.

Figure 1. Graph G.

In blue, we have a 2-clique Cl2(G), a 3-clique Cl3(G) and in red a star N(v7) all disconnected.
With this sets we have ς = 31

72
and according Equation (9) in Corollary 4.1, |E| ≤ 20.6666667

(Equation (1) gives |E| ≤ 48 ). According Equation (10) in Theorem 4.2, λ ≤ 5.249339 (Equa-
tion (2) gives λ ≤ 8).

It follows another example. Let H be the graph with 30 vertices and 33 edges of Figure 2.
Its spectral radius λ = 2.9883861, the cardinality of the maximum clique is cl(H) = 2 and the
maximum degree in the graph is equal to 6.

Figure 2. Graph H .
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In blue, we have four 2-cliques and in red a star N(v16) all disconnected. With this sets we
have ς = 5

9
and according Equation (9) in Corollary 4.1, |E| ≤ 125 (Equation (1) gives |E| ≤ 225

). According Equation (10) in Theorem 4.2, λ ≤ 11.180340 (Equation (2) gives λ ≤ 15).
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