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Abstract

For a graph G = (V,E), a double Roman dominating function (DRDF) f : V → {0, 1, 2, 3} has
the property that for every vertex v ∈ V with f(v) = 0, either there exists a neighbor u ∈ N(v),
with f(u) = 3, or at least two neighbors x, y ∈ N(v) having f(x) = f(y) = 2, and every
vertex with value 1 under f has at least a neighbor with value 2 or 3. The weight of a DRDF is
the sum f(V ) =

∑
v∈V f(v). A DRDF f is an independent double Roman dominating function

(IDRDF) if the vertices with weight at least two form an independent set. The independent double
Roman domination number idR(G) is the minimum weight of an IDRDF on G. In this paper, we
show that for every tree T with diameter at least three, i(T ) + iR(T ) − s(T )

2
+ 1 ≤ idR(T ) ≤

i(T )+ iR(T )+ s(T )−2, where i(T ), iR(T ) and s(T ) are the independent domination number, the
independent Roman domination number and the number of support vertex of T , respectively.
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1. Introduction

In a graph G = (V,E), the open neighborhood of a vertex v ∈ V is N(v) = {u ∈ V | uv ∈
E}, and the closed neighborhood is N(v)∪{v}. The degree of a vertex v denoted by degG(v) is the
cardinality of its open neighborhood. The maximum degree of a graph G is denoted by ∆ = ∆(G).
A leaf of a tree T is a vertex of degree one, while a support vertex of T is a vertex adjacent to a
leaf. A strong support vertex is a support vertex adjacent to at least two leaves. We denote the set
of leaves and support of G by L(G) and S(G), respectively. The distance between two vertices u
and v in a connected graph G is the length of a shortest uv-path in G. The diameter of G, denoted
by diam(G), is the maximum value among minimum distances between all pairs of vertices of G.
For a vertex v in a rooted tree T , let C(v) and D(v) denote the set of children and descendants of
v, respectively and let D[v] = D(v) ∪ {v}. Also, the depth of v, depth(v), is the largest distance
from v to a vertex in D(v). The maximal subtree Tv at v is the subtree of T induced by D[v]. A
double star DSp,q is a tree containing exactly two vertices that are not leaves, where one of which
is adjacent to p leaves and the other is adjacent to q leaves. A healthy spider is a tree obtained from
the star K1,k for k ≥ 2 by subdividing each edge once, while a wounded spider Sk,t is obtained
from a star K1,k by subdividing t edges exactly once, where 1 ≤ t ≤ k − 1.

A set S ⊆ V is a dominating set of G if every vertex V − S has a neighbor in S. The inde-
pendent domination number i(G) is the minimum cardinality of a set that is both independent and
dominating.

A function f : V (G) → {0, 1, 2} is a Roman dominating function (RDF) on G if every vertex
u ∈ V for which f(u) = 0 is adjacent to at least one vertex v with f(v) = 2. The weight of an
RDF f is f(V (G)) =

∑
u∈V (G) f(u). Roman domination was introduced by Cockayne et al. in

[14], and has been intensively studied in recent years [2, 3, 6, 11, 15, 19].
An independent Roman dominating function (IRDF) on G is an RDF such that the set {u ∈

V (G) | f(u) ≥ 1} is independent set. The independent Roman domination number iR(G) is the
minimum weight of an IRDF on G. The concept of independent Roman dominating function was
first defined in [14] and studied by several authors, see [12, 13].

In [10], Beeler et al. introduced double Roman domination defined as follows. A double
Roman dominating function (DRDF) on G is a function f : V → {0, 1, 2, 3} having the property
that if f(v) = 0, then vertex v has at least two neighbors assigned 2 under f or one neighbor
w with f(w) = 3, and if f(v) = 1, then vertex v has at least one neighbor w with f(w) ≥ 2.
The double Roman domination number γdR(G) is the minimum weight of a DRDF on G. For
a DRDF f , let Vi = {v ∈ V | f(v) = i} for i = 0, 1, 2, 3. Since these four sets determine
f , we can equivalently write f = (V0, V1, V2, V3) (or f = (V f

0 , V
f
1 , V

f
2 , V

f
3 ) to refer f ). We

note that ω(f) = |V1| + 2|V2| + 3|V3|. Double Roman domination is studied for example in
[1, 4, 5, 8, 9, 16, 18, 21, 22, 23], and elsewhere.

A DRDF f = (V0, V1, V2, V3) is an independent double Roman dominating function (IDRDF)
if V2 ∪ V3 is an independent set. The independent double Roman domination number idR(G) is the
minimum weight of an IDRDF on G. Clearly, for all G we have the following,

γdR(G) ≤ idR(G). (1)

448



www.ejgta.org

Lower and upper bounds on independent double Roman domination in trees | M. Kheibari et al.

In this paper, we prove that for any tree T with diameter at least three,

i(T ) + iR(T )−
s(T )

2
+ 1 ≤ idR(T ) ≤ i(T ) + iR(T ) + s(T )− 2.

We make use of the following results in this paper.

Proposition A ([17]). Let G be a graph. There exists an idR-function f = (V0, V1, V2, V3) such
that V1 = ∅.

By Proposition A, we assume no vertex needs to be assigned the value 1 for any idR(G)-
function f .

Proposition B ([17]). Let T be a tree of order n ≥ 3. Then

(i) T has an idR(T )-function f = (V0, ∅, V2, V3) such that L(T ) ∩ V3 = ∅.

(ii) For any IDRDF f = (V0, ∅, V2, V3) of T , V2 ∩ S(T ) = ∅.

Proposition C ([20]). Let T be a tree of order at least three. Then

(i) T has an iR(T )-function f = (V0, V1, V2) such that L(T ) ∩ V2 = ∅.

(ii) For any IRDF f = (V0, V1, V2) of T , V1 ∩ S(T ) = ∅.

Proposition D. Let G be a graph of order n ≥ 4. Then iR(G) = 3 if and only if (a) ∆(G) = n− 2
or (b) n = 3 and ∆(G) ≤ 1.

Proposition E ([7]). For any graph G, i(G) ≤ iR(G) ≤ 2i(G), with equality in lower bound if
and only if G = Kn.

The next result is easy to establish, and so we omit the proof.

Proposition 1.1. For any graph G, iR(G) ≤ idR(G).

2. Trees

In this section, we present bounds on independent double Roman domination of a tree in terms
of the sum its independent domination and independent Roman domination numbers. We start
with the following lemmas.

Lemma 2.1. Let r, s, t, ℓ be non-negative integers and let T be a tree and T ′ a subtree of T .

1. If idR(T ) ≤ idR(T
′) + 3s+ 2t− ℓ, iR(T ′) + 2s+ t− ℓ ≤ iR(T ), i(T ′) + s+ t− r ≤ i(T ),

s(T ′) ≤ s(T )−r, and idR(T
′)−iR(T

′)−s(T ′)+2 ≤ i(T ′), then idR(T )−iR(T )−s(T )+2 ≤
i(T ).

2. If idR(T ) ≥ idR(T
′)+3s+2t−ℓ, iR(T ′) ≥ iR(T )−2s−t+ℓ, i(T ′) ≥ i(T )−s−t−r, s(T ′) ≤

s(T )−2r, and i(T ′) ≤ idR(T
′)− iR(T

′)+ s(T ′)
2

−1, then i(T ) ≤ idR(T )− iR(T )+
s(T )
2

−1.
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Proof. (1) By the assumptions we have

i(T ) ≥ i(T ′) + s+ t− r

≥ idR(T
′)− iR(T

′)− s(T ′) + 2 + s+ t− r

≥ (idR(T )− 3s− 2t+ ℓ)− (iR(T )− 2s− t+ ℓ)− (s(T )− r) + 2 + s+ t− r

≥ idR(T )− iR(T )− s(T ) + 2.

(2) By the assumptions we obtain

i(T ) ≤ i(T ′) + s+ t+ r

≤ idR(T
′)− iR(T

′) +
s(T ′)

2
+ s+ t+ r − 1

≤ (idR(T )− 3s− 2t+ ℓ)− (iR(T )− 2s− t+ ℓ) +
s(T )− 2r

2
+ s+ t+ r − 1

< idR(T )− iR(T ) +
s(T )

2
− 1

Lemma 2.2. Let T be a tree. Then
(i) idR(T ) = iR(T ) + 1 if and only if T is a star.
(ii) idR(T ) = iR(T ) + 2 if and only if T is a wounded spider with only one foot or T is a tree
obtained from a double star by subdividing its central edge once or twice.

Proof. (i) If T is a star, then clearly idR(T ) = 3 and iR(T ) = 2 and we are done. Let idR(T ) =
iR(T ) + 1. We show that T is a star. Let f = (V0, ∅, V2, V3) be an idR-function of T such that |V3|
is as large as possible. We consider two cases.

Case 1. V3 ̸= ∅.
Let v ∈ V3. If T = NT [v], then T is a star and we are done. Suppose T ̸= NT [v] and let
T ′ = T − NT [v]. Assume T1, T2, . . . , Tq (q ≥ 1) are the components of T ′. Clearly, the function
f , restricted to T ′ is an IDRDF of T ′ and hence

idR(T
′) = idR(T1) + idR(T2) + · · ·+ idR(Tq) ≤ idR(T )− 3. (2)

On the other hand, any idR-function of T ′ can be extended to an IDRDF of T by assigning a 3 to v
and a 0 to vertices in NT (v) and so

idR(T ) ≤ idR(T
′) + 3 = idR(T1) + idR(T2) + . . .+ idR(Tq) + 3. (3)

By (2) and (3), we have

idR(T ) = idR(T1) + idR(T2) + . . .+ idR(Tq) + 3. (4)

Similarly, we have
iR(T ) = iR(T1) + iR(T2) + . . .+ iR(Tq) + 2 (5)
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and
i(T ) = i(T1) + i(T2) + . . .+ i(Tq) + 1 = i(T ′) + 1. (6)

By (4), (5) and Proposition 1.1, we obtain idR(T )− iR(T ) ≥
∑q

i=1(idR(Ti)− iR(Ti)) + 1 ≥ q+1
which contradicts the assumption idR(T ) = iR(T ) + 1.

Case 2. V3 = ∅.
Then all leaves of T are assigned 2 under f . Since V3 = ∅, diam(T ) = 3 is impossible. So, let
diam(T ) ≥ 4 and u, v be two leaves at distance diam(T ), then the function g : V (T ) → {0, 1, 2}
defined by g(u) = g(v) = 1 and g(x) = f(x) for x ∈ V (T ) − {u, v}, is an IRDF of T of weight
at most idR(T )− 2 which is a contradiction. Therefore diam(T ) ≤ 2 and so T is a star.

(ii) Let idR(T ) = iR(T ) + 2. Assume that f = (V0, ∅, V2, V3) is an idR-function of T such that
|V3| is as large as possible. First let V3 ̸= ∅. As above, we have

idR(T )− iR(T ) ≥
q∑

i=1

(idR(Ti)− iR(Ti)) + 1 ≥ q + 1.

We deduce from the assumption idR(T )− iR(T ) = 2 that q = 1 and idR(T
′)− iR(T

′) = 1, that is
T ′ is a star (by (i)). Using (6) we obtain

2 = idR(T )− iR(T ) = idR(T
′)− iR(T

′) + 1 = i(T ′) + 1 = i(T ).

It follows from Proposition E that 3 ≤ iR(T ) ≤ 4. If iR(T ) = 3, then by Proposition D, we have
∆(G) = n − 2 and so T is a wounded spider with only one foot. Assume that iR(T ) = 4. Then
iR(T ) = 2i(T ) and using the constructive characterization given by Chellali and Jafari Rad [13]
we can see that the only trees satisfying idR(T )− iR(T ) = 2 are trees obtained from a double star
by subdividing its central edge once or twice.

Theorem 2.1. Let T be a tree with s(T ) ≥ 2 support vertices. Then

iR(T ) + i(T )− s(T )

2
+ 1 ≤ idR(T ) ≤ iR(T ) + i(T ) + s(T )− 2.

Proof. It is enough to prove idR(T )− iR(T )− s(T )+2 ≤ i(T ) ≤ idR(T )− iR(T )+
s(T )
2

− 1. The
proof is by induction on t = idR(T ) − iR(T ). Since T is not a star, we have t > 1 by Lemma 2.2
(item (i)). If t = 2, then the result holds by Lemma 2.2 (item (ii)). Assume that t ≥ 3 and statement
holds for each tree T ′ with idR(T

′)−iR(T
′) < t. Let T be a tree with t = idR(T )−iR(T ). It follows

from Lemma 2.2 (item (i)) that diam(T ) ≥ 3. If diam(T ) = 3, then T = DSp,q (q ≥ p ≥ 1)
and hence idR(T ) = 3 + 2p, iR(T ) = 2 + p and i(T ) = 1 + p, and clearly the inequalities hold.
Assume that diam(T ) ≥ 4 and v1v2 . . . vk (k ≥ 5) is a diametral path in T such that deg(v2) is as
large as possible. We consider the following cases.

Case 1. deg(v2) ≥ 3 and v3 is not a support vertex and has a child a with depth 1 and degree 2
.
Let v3aa′ be a path in T and let T ′ = T − {a, a′, v1}. First we show that idR(T )− 4 ≤ idR(T

′) ≤
idR(T ) − 3. To proved the left side, suppose that f = (V0, ∅, V2, V3) is an idR(T

′)-function such
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that V3 ∩ L(T ′) = ∅. By Lemma B, f(v2) = 3 or f(v2) = 0. If f(v2) = 3, then f(v3) = 0
and the function g : V (T ) → {0, 1, 2, 3} define by g(a) = 3, g(x) = 0 for x ∈ {v1, a′} and
g(x) = f(x) for x ∈ V (T ′), is an IDRDF of T yielding idR(T ) ≤ idR(T

′) + 3. If f(v2) = 0, then
f(v3) ≥ 2 and the function g : V (T ) → {0, 1, 2, 3} define by g(v1) = g(a′) = 2, g(a) = 0 and
g(x) = f(x) for x ∈ V (T ′), is an IDRDF of T and we have idR(T ) ≤ idR(T

′) + 4. To proved
the right side, suppose that f = (V0, ∅, V2, V3) is an idR(T )-function such that V3 ∩ L(T ) = ∅. By
Lemma B, f(v2) = 3 or f(v2) = 0. If f(v2) = 3, then f(v3) = 0 and f(a) + f(a′) = 3 and the
function f restricted to T ′ is an IDRDF of T and we have idR(T ) ≥ idR(T

′) + 3. If f(v2) = 0,
then f(v3) ≥ 2 and f(v1) = f(a′) = 2 and the function f restricted to T ′ is an IDRDF of T and
we have idR(T ) ≥ idR(T

′) + 4.
Using Proposition C and a similar argument we can see that iR(T ′) = iR(T )−2. Now we show

that i(T ) = i(T ′) + 1. To show i(T ′) + 1 ≥ i(T ), let S be an i(T ′)-set. If v3 ̸∈ S, then we may
assume v2 ∈ S and clearly S ∪ {a′} is an IDS of T and so i(T ) ≤ i(T ′) + 1. Assume that v3 ∈ S.
If NT ′(v4) ∩ S ̸= {v3}, then (S −NT ′(v2)) ∪ {v2} is an independent dominating set of T ′ smaller
than S which is a contradiction. Hence, NT ′(v4)∩S = {v3}. Now (S−NT ′(v2))∪{v2, v4, a} is an
independent dominating set of T which implies that i(T ) ≤ i(T ′) + 1. To prove i(T ) ≥ i(T ′) + 1,
let S be an i(T )-set. Clearly |S ∩ {a, a′}| = 1 and either v2 ∈ S or Lv2 ⊆ S. In both cases,
(S − ({a, a′} ∪ Lv3)) ∪ {v2} is an IDS of T ′ and so i(T ) ≥ i(T ′) + 1. Thus i(T ) = i(T ′) + 1.
Therefore

idR(T
′)− iR(T

′) ≤ idR(T )− 3− (iR(T )− 2) = idR(T )− iR(T )− 1 ≤ t− 1.

Using the induction hypothesis on T ′ and setting s = t = r = ℓ = 1, Proposition 2.1 leads
to i(T ) ≥ idR(T ) − iR(T ) − s(T ) + 2 and using the induction hypothesis on T ′ and setting
s = 1, t = r = ℓ = 0, Proposition 2.1 leads to i(T ) ≤ idR(T )− iR(T ) +

s(T )
2

− 1.
Case 2. deg(v2) ≥ 3 and v3 is not a support vertex and any child of v3 has degree at least 3 .

Let T ′ = T − Tv3 . Clearly, s(T ′) ≤ s(T ) and any idR(T
′)-function (resp. iR(T

′)-function) can
be extended to an IDRDF (resp. IRDF) of T by assigning a 3 (resp. a 2) to each child of v3 and a
0 to remaining vertices and hence idR(T ) ≤ idR(T

′) + 3|C(v3)| and iR(T ) ≤ iR(T
′) + 2|C(v3)|.

Likewise we have i(T ) ≤ i(T ′) + |C(v3)|. Now we show that idR(T ) ≥ idR(T
′) + 3|C(v3)|. Let f

be an idR(T
′)-function. By Proposition B, f(v2) = 3 or f(v2) = 0. If f(v2) = 3, then f(v3) = 0

and f must assign a 3 to each child of v3 and the function f restricted to T ′ is an IDRDF of T ′

implying that idR(T ) ≥ idR(T
′) + 3|C(v3)|. If f(v2) = 0, then f(v3) ≥ 2 and f assigns 2 to each

leaf of Tv3 . If N(v4) ∩ ((V2 ∪ V3) − {v3}) ̸= ∅ and z ∈ N(v4) ∩ ((V2 ∪ V3) − {v3}), then the
function g : V (T ′) → {0, 1, 2, 3} defined by g(z) = 3 and g(x) = f(x) otherwise, is an IDRDF of
T ′ implying that idR(T ) ≥ idR(T

′)+ 1+4|C(v3)| and if N(v4)∩ ((V2 ∪V3)−{v3}) = ∅, then the
function g : V (T ′) → {0, 1, 2, 3} defined by g(v4) = 3 and g(x) = f(x) otherwise, is an IDRDF
of T ′ yielding idR(T ) ≥ idR(T

′) + 4|C(v3)|. Thus idR(T ) = idR(T
′) + 3|C(v3)|. Similarly we can

see that iR(T ) = iR(T
′) + 2|C(v3)| and i(T ) = i(T ′) + |C(v3)|. It follows that

idR(T
′)− iR(T

′) ≤ idR(T )− 3|C(v3)| − iR(T ) + 2|C(v3)| = idR(T )− iR(T )− |C(v3)| ≤ t− 1.

Applying the induction hypothesis on T ′ and setting s = 1 and t = r = ℓ = 0, Proposition 2.1
leads to idR(T )− iR(T )− s(T ) + 2 ≤ i(T ) ≤ idR(T )− iR(T ) +

s(T )
2

− 1.
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Case 3. deg(v2) ≥ 3 and v3 is a support vertex.
Let v′ ∈ Lv3 . We distinguish the following subcases.

Subcase 3.1. |Lv3| ≥ 2.
Let T ′ = T − {v1, v′}. Obviously s(T ) = s(T ′). Now we show that idR(T ′) = idR(T ) − 2. Let
f = (V0, ∅, V2, V3) be an idR(T

′)-function such that L(T ′) ∩ V3 = ∅. By Proposition B, f(v2) = 3
or f(v2) = 0. If f(v2) = 3 then f can be extended to an IDRDF of T by assigning a 2 to v′

and a 0 to v1, and if f(v2) = 0 then to double Roman dominate v2 and the leaf adjacent to v2
and nothing that f is a idR(T

′)-function, we must have f(v3) = 3, and f can be extended to an
IDRDF of T by assigning a 2 to v1 and a 0 to v′, and hence idR(T ) ≤ idR(T

′) + 2. To prove
the inverse inequality, let f = (V0, ∅, V2, V3) be an idR(T )-function such that L(T ) ∩ V3 = ∅.
As above f(v2) = 3 and f(v3) = 0 or f(v2) = 0 and f(v3) = 3. In each case, the function
f restricted to T ′ is an IDRDF of T ′ of weight idR(T ) − 2 and so idR(T ) ≥ idR(T

′) + 2. Thus
idR(T ) = idR(T

′) + 2. Similarly, we can verify that iR(T ) = iR(T
′) + 1 and i(T ) = i(T ′) + 1. It

follows that idR(T ′)− iR(T
′) = idR(T )− 2− iR(T )+ 1 = idR(T )− iR(T )− 1 = t− 1. Applying

the induction hypothesis on T ′ and setting t = 1 and s = r = ℓ = 0, Proposition 2.1 leads to
idR(T )− iR(T )− s(T ) + 2 ≤ i(T ) ≤ idR(T )− iR(T ) +

s(T )
2

− 1.
Subcase 3.2. |Lv3| = 1.

Let T ′ = T − {v1, v′}. Obviously, s(T ′) = s(T ) − 1 and as above we can see that idR(T ′) ≤
idR(T )− 2, iR(T ′) ≤ iR(T )− 1 and i(T ′) = i(T )− 1. Next we show that idR(T ) ≤ idR(T

′) + 3.
Suppose that f = (V0, ∅, V2, V3) is an idR(T

′)-function such that V3 ∩ L(T ′) = ∅. By Lemma
B, f(v2) = 3 or f(v2) = 0. If f(v2) = 3, then as in Subcace 3.1, we can see that idR(T ) ≤
idR(T

′) + 2. If f(v2) = 0, then f(v3) ≥ 2 and the function g : V (T ) → {0, 1, 2, 3} define by
g(v1) = 2, g(v′) = 0, g(v3) = 3 and g(x) = f(x) for x ∈ V (T ′), is an IDRDF of T and so
idR(T ) ≤ idR(T

′) + 3. Hence idR(T
′) + 2 ≤ idR(T ) ≤ idR(T

′) + 3.
Likewise, we can see that iR(T ) ≤ iR(T

′) + 1 and so iR(T ) = iR(T
′) + 1. Hence

idR(T
′)− iR(T

′) = idR(T )− 2− iR(T ) + 1 = idR(T )− iR(T )− 1 ≤ t− 1.

Using the induction hypothesis on T ′ and setting s = 0, t = 2, r = ℓ = 1, Proposition 2.1
leads to i(T ) ≥ idR(T )− iR(T )− s(T ) + 2 and using the induction hypothesis on T ′ and setting
t = 1, s = r = ℓ = 0, Proposition 2.1 leads to i(T ) ≤ idR(T )− iR(T ) +

s(T )
2

− 1.
Considering Cases 1, 2, and 3 we may assume that deg(v2) = 2 and by the choice of diametral

path any child of v3 whit depth one will be of degree two. We proceed with further cases.
Case 4. deg(v2) = 2.

Let T ′ = T − Tv3 . Clearly s(T ′) ≤ s(T )− 1 and any idR(T
′)-function (resp. iR(T ′)-function) can

be extended to an IDRDF of T by assigning a 3 (resp. a 2) to v2 and a 0 to remaining vertices and
so idR(T ) ≤ idR(T

′) + 3 and iR(T ) ≤ iR(T
′) + 2. Also any i(T ′)-set can be extended to an IDS

of T by adding v2 and so i(T ) ≤ i(T ′) + 1. Now let f = (V0, ∅, V2, V3) be an idR(T )-function.
By Proposition B we have f(v2) = 3 or f(v2) = 0. If f(v2) = 3, then the function f restricted to
T ′ is an IDRDF of T ′ yielding idR(T ) ≥ idR(T

′) + 3. Assume that f(v2) = 0. Then f(v1) = 2
and f(v3) ≥ 2. If f(v3) = 3, then clearly (N(v4) − {v3}) ∩ (V2 ∪ V3) = ∅ and the function
g : V (T ′) → {0, 1, 2, 3} defined by g(v4) = 2 and g(x) = f(x) is an IDRDF of T ′ yielding
idR(T ) ≥ idR(T

′) + 3, and if f(v3) = 2, then clearly (N(v4) − {v3}) ∩ (V2 ∪ V3) ̸= ∅ and the
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function g : V (T ′) → {0, 1, 2, 3} defined by g(z) = 3 for some z ∈ (N(v4)−{v3})∩(V2∪V3) and
g(x) = f(x) is an IDRDF of T ′ implying that idR(T ) ≥ idR(T

′) + 3. Hence idR(T ) ≥ idR(T
′) + 3

and thus idR(T ) = idR(T
′) + 3. Likewise we have iR(T ) = iR(T

′) + 2 and i(T ) = i(T ′) + 1.
Hence idR(T

′)− iR(T
′) = t− 1.

Applying the induction hypothesis on T ′ and setting s = 1 and t = r = ℓ = 0, Proposition 2.1
leads to idR(T )− iR(T )− s(T ) + 2 ≤ i(T ) ≤ idR(T )− iR(T ) +

s(T )
2

− 1.
Case 5. v3 is a support vertex and v3 has two children a and b with depth 1 and degree 2.

Suppose v3aa
′ and v3bb

′ are paths in T . Let T ′ = T − {a, a′, b′}. It is easy to verify that s(T ′) =
s(T )−2, idR(T ′) = idR(T )−4, iR(T ′)+2 ≤ iR(T ) ≤ iR(T

′)+3 and i(T ′)+1 ≤ i(T ) ≤ i(T ′)+2.
Hence idR(T

′)− iR(T
′) ≤ idR(T )− 4− iR(T ) + 2 = idR(T )− iR(T )− 2 ≤ t− 1.

Using the induction hypothesis on T ′ and setting s = ℓ = 0, t = 2, r = 1, Proposition 2.1
leads to i(T ) ≥ idR(T )− iR(T )− s(T ) + 2 and using the induction hypothesis on T ′ and setting
s = 1, t = r = ℓ = 0, Proposition 2.1 leads to i(T ) ≤ idR(T )− iR(T ) +

s(T )
2

− 1.
Case 6. v3 is a support vertex and v3 has exactly one child with depth 1 and degree 2.

First let deg(v4) = 2. Suppose T ′ = T−Tv4 . If T ′ is a star, then the result can be seen easily. Let T ′

is not a star. Clearly s(T ′) ≤ s(T )−1 and as above we can see that idR(T ) = idR(T
′)+5, iR(T ) =

iR(T
′) + 3, i(T ) = i(T ′) + 2. Hence idR(T ′)− iR(T

′) = t− 1. Using the induction hypothesis on
T ′ and setting s = t = r = 1, t = 0, Proposition 2.1 leads to i(T ) ≥ idR(T ) − iR(T ) − s(T ) + 2
and using the induction hypothesis on T ′ and setting s = t = 1, r = ℓ = 0, Proposition 2.1 leads
to i(T ) ≤ idR(T )− iR(T ) +

s(T )
2

− 1.
Assume now that deg(v4) ≥ 3 and v′ ∈ Lv3 . Consider the following subcases.
Subcase 6.1. v4 has a child a with depth 1 and degree 2.

Suppose v4aa
′ is a path in T and let T ′ = T − {v1, v2, a, a′}. Clearly, s(T ) = s(T ′) − 2 and

it is easy to verify that idR(T ) = idR(T
′) + 5, iR(T ) = iR(T

′) + 3, i(T ) = i(T ′) + 2. Hence
idR(T

′)−iR(T
′) ≤ t−1 and using the induction hypothesis on T ′ and setting s = t = 1, r = t = 0,

Proposition 2.1 leads to iR(T ) + i(T )− s(T )
2

+ 1 ≤ idR(T ) ≤ iR(T ) + i(T ) + s(T )− 2.
Subcase 6.2. v4 is a strong support vertex.

First let |Lv3| ≥ 2. Suppose that w ∈ Lv4 . Suppose that T ′ = T − {v′, w}. Clearly, s(T ) = s(T ′)
and one can easily see that idR(T ′) = idR(T ) + 2, iR(T ) = iR(T

′) + 1, i(T ) = i(T ′) + 1. Hence
idR(T

′)− iR(T
′) ≤ t− 1 and using the induction hypothesis on T ′ and setting t = 1, s = r =

ℓ = 0, Proposition 2.1 leads to iR(T ) + i(T )− s(T )
2

+ 1 ≤ idR(T ) ≤ iR(T ) + i(T ) + s(T )− 2.
Now, let |Lv3| = 1. Assume that T ′ = T − Tv3 . Clearly s(T ′) = s(T ) − 2 and any idR(T

′)-
function (resp. iR(T

′)-function) can be extended to an IDRDF of T by assigning a 3 (resp. a
2) to v3, a 2 (resp. a 1) to v1 and a 0 to remaining vertices and so idR(T ) ≤ idR(T

′) + 5 and
iR(T ) ≤ iR(T

′) + 2. Also any i(T ′)-set can be extended to an IDS of T by adding v2, v
′ and so

i(T ) ≤ i(T ′) + 2. Now let f = (V0, ∅, V2, V3) be an idR(T )-function such that L(T ) ∩ V3 = ∅. By
Proposition B, we have f(v2) = 3 or f(v2) = 0. If f(v2) = 3, then f(v′) = 2 and the function
f restricted to T ′ is an IDRDF of T ′ yielding idR(T ) ≥ idR(T

′) + 5. Assume that f(v2) = 0.
Then f(v1) = 2 and f(v3) = 3 since v3 is a support vertex and so f(x) = 2 for each x ∈ Lv4 .
Hence the function f restricted to T ′ is an IDRDF of T ′ yielding idR(T ) ≥ idR(T

′) + 5. Thus
idR(T ) = idR(T

′)+5. Likewise we have iR(T ) = iR(T
′)+3 and i(T ) = i(T ′)+2. It follows that

idR(T
′)−iR(T

′) = t−1 and using the induction hypothesis on T ′ and setting s = t = 1, r = ℓ = 0,
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Proposition 2.1 leads to iR(T ) + i(T )− s(T )
2

+ 1 ≤ idR(T ) ≤ iR(T ) + i(T ) + s(T )− 2.
Subcase 6.3. v4 is adjacent to at most one leaf, any child of v4 with depth 1 is of degree at least

3 and for any child y of v4 with depth 2 we have Ty = DS1,deg(y)−1 where deg(y) ≥ 3 or Ty is a
healthy spider. We consider the following.

• |Lv3| = 1.
Let T ′ = T − Tv3 . Clearly, s(T ′) = s(T ) − 2, idR(T ′) + 4 ≤ idR(T ) ≤ idR(T

′) + 5,
iR(T

′) + 2 ≤ iR(T ) ≤ iR(T
′) + 3 and i(T ′) + 1 ≤ i(T ) ≤ i(T ′) + 2.

It follows that idR(T ′)− iR(T
′) ≤ t−1 and using the induction hypothesis on T ′ and setting

t = 3, ℓ = 1, r = 2, s = 0, Proposition 2.1 leads to i(T ) ≥ idR(T )− iR(T )− s(T ) + 2 and
using the induction hypothesis on T ′ and setting s = t = 1, r = ℓ = 0, Proposition 2.1 leads
to i(T ) ≤ idR(T )− iR(T ) +

s(T )
2

− 1.

i(T ) ≤ i(T ′) + 2

≤ idR(T
′)− iR(T

′) +
s(T ′)

2
+ 1

≤ idR(T )− 4− iR(T ) + 3 +
s(T )− 2

2
+ 1

= idR(T )− iR(T ) +
s(T )

2
− 1.

• |L(v3)| ≥ 2
Let T ′ = T − Tv4 . If T ′ is a star, then the result is immediate. Assume T ′ is not a star.
Suppose that A is the set of children of v4 of depth 1, B is the set of children of v4 of depth 2
and C is the set of vertices x ∈ D(v4)∩L(T ) satisfying d(v4, x) = 3. Let B1 = B∩s(T ) and
B2 = B − B1. Clearly, s(T ′) ≤ s(T )− 2, and it is not hard to see that idR(T ′) = idR(T )−
3|A| − 3|B1| − 2|B2| − 2|C| − 2|Lv4|, iR(T ′) = iR(T )− 2|A| − 2|B1| − 2|B2| − |C| − |Lv4|
and i(T ′) = i(T )− |A| − |B1| − |C| − |Lv4|. Hence

idR(T
′)− iR(T

′) ≤ idR(T )− 3|A| − 3|B1| − 2|B2| − 2|C| − 2|Lv4|
−(iR(T )− 2|A| − 2|B1| − 2|B2| − |C| − |Lv4|)

= idR(T )− iR(T )− (|A|+ |B|+ |C|+ |Lv4|) ≤ t− 1.

By the induction hypothesis we have

i(T ) = i(T ′) + |A|+ |B1|+ |C|+ |Lv4 |
≥ idR(T

′)− iR(T
′)− s(T ′) + 2 + |A|+ |B1|+ |C|+ |Lv4|

> idR(T )− iR(T )− s(T ) + 2,
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and

i(T ) = i(T ′) + |A|+ |B1|+ |C|+ |Lv4|

≤ idR(T
′)− iR(T

′) +
s(T ′)

2
+ |A|+ |B1|+ |C|+ |Lv4| − 1

< idR(T )− iR(T ) +
s(T )

2
− 1.

Case 7. deg(v3) ≥ 3 and v3 is not a support vertex.
Then Tv3 is a healthy spider and by that choice of diametral path and considering above cases we
may assume that the maximal subtree at any child of v4 with depth two is a healthy spider with at
least two feet. We distinguish the following situations.

Subcase 7.1. deg(v3) ≥ 4.
First let deg(v4) = 2 and let T ′ = T−Tv4 . If T ′ is a star then the results can be verified easily. Let t′

is not a star. Clearly, s(T ′) ≤ s(T )−2, idR(T ′)+2+2|C(v3)| ≤ idR(T ) ≤ idR(T
′)+3+2|C(v3)|,

iR(T ) = iR(T
′) + 2 + |C(v3)| and i(T ′) + |C(v3)| ≤ i(T ) ≤ i(T ′) + |C(v3)|+ 1. Hence

idR(T
′)−iR(T

′) ≤ idR(T )−2|C(v3)|−2−iR(T )+2+|C(v3)| = idR(T )−iR(T )−|C(v3)| ≤ t−1,

and by the induction hypothesis on T ′ and setting t = |C(v3)|, ℓ = 0, r = 1, s = 1, Proposition 2.1
leads to i(T ) ≥ idR(T )− iR(T )− s(T )+ 2. On the other hand, by the induction hypothesis on T ′,
we obtain

i(T ) ≤ i(T ′) + |C(v3)|+ 1

≤ idR(T
′)− iR(T

′) +
s(T ′)

2
+ |C(v3)|

≤ idR(T )− 2− 2|C(v3)| − iR(T ) + 2 + |C(v3)|+
(s(T )− 2)

2
+ |C(v3)|

= idR(T )− iR(T ) +
s(T )

2
− 1

Now let deg(v4) ≥ 3. Considering above cases and subcases, we may assume that any child of v4
with depth 2, is the center of a healthy spider. Assume a, b ∈ C(v3)− {v2} and let v3aa′ and v3bb

′

be paths in T . We distinguish the following.

• v4 has a child w with depth 1 and degree 2.
Suppose v4ww′ is a path in T . Let T ′ = T −{v1, a, a′, w, w′}. Obviously, s(T ′) = s(T )−2.
We show that idR(T ) = idR(T

′) + 6. To prove idR(T ) ≤ idR(T
′) + 6, let f = (V0, ∅, V2, V3)

be an idR(T
′)-function such that L(T ) ∩ V3 = ∅. By Lemma B, f(v3) = 3 or f(v3) = 0.

If f(v3) = 3, then f(v4) = f(v2) = 0 and the function g : V (T ) → {0, 1, 2, 3} define
by g(w) = 3, g(v1) = g(v3) = g(a′) = 2, g(a) = g(w′) = 0 and g(x) = f(x) for
x ∈ V (T ′), is an IDRDF of T , and so idR(T ) ≤ idR(T

′) + 6. If f(v3) = 0, then f(v2) = 2
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and f(v4) ≥ 2 and the function g : V (T ) → {0, 1, 2, 3} define by g(a) = 3, g(w′) = 2,
g(a′) = g(w) = g(v1) = 0, g(v2) = 3 and g(x) = f(x) for x ∈ V (T ′), is an IDRDF of T ,
and we have idR(T ) ≤ idR(T

′) + 6. To prove idR(T ) ≥ idR(T
′) + 6, let f = (V0, ∅, V2, V3)

be an idR(T )-function such that L(T ′) ∩ V3 = ∅. By Lemma B, f(v2) = 3 or f(v2) = 0.
If f(v2) = 3, then we may assume f(a) = f(b) = 3 and that f(w) + f(w′) ≥ 2 and the
function g defined on T ′ by g(v2) = 2 and g(x) = f(x) otherwise, is an IDRDF of T ′ of
weight idR(T )− 6, and if f(v2) = 0, then f(v1) = f(a′) = 2, f(v3) ≥ 2, f(w) + f(w′) = 3
and the function g defined on T ′ by g(v3) = 2 and g(x) = f(x) otherwise, is an IDRDF
of T ′ of weight idR(T ) − 6 and so idR(T ) ≥ idR(T

′) + 6. Thus idR(T ) = idR(T
′) + 6.

Likewise, we can see that iR(T ′) = iR(T ) − 4 and i(T ′) = i(T ) − 2. It follows that
idR(T

′) − iR(T
′) ≤ idR(T ) − 6 − iR(T ) + 4 = idR(T ) − iR(T ) − 2 ≤ t − 1. Using the

induction hypothesis on T ′ and setting s = 2, t = ℓ = r = 0, Proposition 2.1 leads to
iR(T ) + i(T )− s(T )

2
+ 1 ≤ idR(T ) ≤ iR(T ) + i(T ) + s(T )− 2.

• v4 is a strong support vertex.
Let w ∈ Lv4 , T ′ = T −{v1, a, a′, b, b′, w}. Clearly s(T ′) = s(T )− 2, and it is easy to verify
that idR(T ′) = idR(T )− 7, iR(T ′) + 4 ≤ iR(T ) ≤ iR(T

′) + 5, i(T )− 3 ≤ i(T ′) ≤ i(T )− 2
and this implies that

idR(T
′)− iR(T

′) ≤ t−1. Using the induction hypothesis on T ′ and setting s = 1, t = 2, ℓ =

0, r = 1, Proposition 2.1 leads to iR(T ) + i(T )− s(T )
2

+ 1 ≤ idR(T ) and also we have

i(T ) ≤ i(T ′) + 3

≤ idR(T
′)− iR(T

′) +
s(T ′)

2
+ 2

≤ idR(T )− 7− iR(T ) + 5 +
(s(T )− 2)

2
+ 2

= idR(T )− iR(T ) +
s(T )

2
− 1

• v4 is adjacent to at most one leaf, any child of v4 with depth 1 is of degree at least 3 and for
child y of v4 with depth 2 is the center of a healthy spider with at least two feet.
Suppose that T ′ = T−Tv4 . If T ′ is a star, then the result can be seen immediately. Assume T ′

is not a star. Let A, B and C be defined as in the Subcase 6.3. Clearly, s(T ′) ≤ s(T )− 2|B|
and it is not hard to verify that idR(T ′) = idR(T ) − 3|A| − 2|B| − 2|C| − 2|Lv4|, iR(T ′) =
iR(T )−2|A|−2|B|−|C|−|Lv4|, i(T )−|A|−|C|−|Lv4|−1 ≤ i(T ′) ≤ i(T )−|A|−|C|−|Lv4|.
These imply that

idR(T
′)− iR(T

′) ≤idR(T )− 3|A| − 2|B| − 2|C| − 2|Lv4|
− (iR(T )− 2|A| − 2|B| − |C| − |Lv4|)

=idR(T )− iR(T )− (|A|+ |C|+ |L4|) ≤ t− 1.
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Using the induction hypothesis on T ′ and setting s = |A|+ |B|, t = |C|+ |Lv4|, ℓ = 0, r =
2|B|, Proposition 2.1 leads to i(T ) ≥ idR(T )− iR(T )− s(T ) + 2 and also we have

i(T ) ≤ i(T ′) + |A|+ |C|+ |Lv4|+ 1

≤ idR(T
′)− iR(T

′) +
s(T ′)

2
+ |A|+ |C|+ |Lv4 |

≤ idR(T )− iR(T ) +
(s(T )− 2|B|)

2

≤ idR(T )− iR(T ) +
s(T )

2
− 1.

Subcase 7.2. deg(v3) = 3 and deg(v4) ≥ 3.
Assume that T ′ = T − Tv3 . If T ′ is a star, then one can check the result easily. Suppose T ′ is not
star. Obviously, s(T ′) = s(T ) − 2 and one can see that idR(T ′) + 5 ≤ idR(T ) ≤ idR(T

′) + 6,
iR(T

′) + 3 ≤ iR(T ) ≤ iR(T
′) + 4 and i(T ) = i(T ′) + 2. Hence idR(T

′) − iR(T
′) ≤ idR(T ) −

5 − iR(T ) + 3 = idR(T ) − iR(T ) − 2 ≤ t − 1. Using the induction hypothesis on T ′ and setting
s = ℓ = 0, t = 3, r = 1, Proposition 2.1 leads to i(T ) ≥ idR(T )− iR(T )− s(T ) + 2 and also we
have i(T ) = i(T ′) + 2 ≤ idR(T

′)− iR(T
′) + s(T ′)

2
+ 1 ≤ idR(T )− 5− iR(T ) + 4 + s(T )−2

2
+ 1 =

idR(T )− iR(T ) +
s(T )
2

− 1.
Subcase 7.3. deg(v3) = 3 and deg(v4) = 2.

Assume that T ′ = T −Tv4 . If T ′ is a star, then we can can check the result easily. Suppose T ′ is not
star. Obviously, s(T ′) ≤ s(T )− 1 and idR(T

′) + 6 ≤ idR(T ) ≤ idR(T
′) + 7, iR(T ) = iR(T

′) + 4
and i(T ′) + 2 ≤ i(T ) ≤ i(T ′) + 3. Hence idR(T

′) − iR(T
′) ≤ idR(T ) − 6 − iR(T ) + 3 ≤ t − 1.

Applying the induction hypothesis on T ′ and setting s = r = 1, t = 2, ℓ = 0, Proposition 2.1 leads
to i(T ) ≥ idR(T ) − iR(T ) − s(T ) + 2. On the other hand, by the induction hypothesis we have
i(T ) ≤ i(T ′) + 3 ≤ idR(T

′) − iR(T
′) + s(T ′)

2
+ 2 ≤ idR(T ) − 6 − iR(T ) + 4 + s(T )−1

2
+ 2 =

idR(T )− iR(T ) +
s(T )
2

− 1/2 and this implies i(T ) ≤ idR(T )− iR(T ) +
s(T )
2

− 1 because i(T ) is
an integer. This completes the proof.
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