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aDepartment of Mathematics,
Faculty of Mathematics and Natural Sciences, Universitas Pendidikan Ganesha,
Jalan Udayana 11 Singaraja-Bali, Indonesia
bDepartment of Appl. Mathematics and Informatics, Technical University,
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Abstract

We solve the open problem posed in Modular irregularity strength of graphs, Electron. J. Graph
Theory and Appl. 8 (2020), 435–433, asking about the modular irregularity strength of the com-
plete graph Kn for all n ≥ 3. Furthermore, we establish also the exact values of the modular
irregularity strength of complete bipartite graphs Kn,n+t for any positive integer n and t = 0, 1, 2.
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1. Introduction

Let G be a finite simple undirected graph. A mapping from a set of elements of G to a set of
numbers is called a labeling for the graph G. The numbers (usually non-negative integers) which
are in the range of the mapping are called labels. The name of labelings depend mainly on the
domains of the mapping. In this paper we focus on edge labelings, labelings that have edge-set as
their domain. Some specific type of edge labelings were introduced by Chartrand, Jacobson, Lehel,
Oellerman, Ruiz and Saba in [6], where the label of every edge is a positive integer such that the
sum of all edge labels incident to a vertex is different for all vertices. Such labelings are called
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irregular assignments. The irregularity strength of a graph G, denoted by s(G), is the minimum
k for which a graph admits an irregular assignment using the number k as the largest edge label.
There are a lot of results regarding with irregularity strength of graphs. Among them can be seen
in [1, 2, 5, 7, 8, 9, 10, 11].

Irregularity strength of graphs inspired Bača, Muthugurupackiam, Kathiresan, Ramya in [4] to
introduce a new graph parameter, so called modular irregularity strength which is explained in the
following way.

Consider a graph G(V,E) of order n having no component of order 2. An edge labeling
τ : E(G)→ {1, 2, . . . , k}, for some positive integer k, is called k-labeling of the graph G. Let Zn

be the set of integers modulo n and the function σ : V (G)→ Zn, be defined by

σ(u) =
∑

τ(uv),

over all vertices v adjacent to u. The value of σ(u) is called the modular weight of the vertex u. If
σ is a bijective function, then the function τ is called modular irregular k-labeling. Furthermore,
the minimum k for which the graph G admits a modular irregular k-labeling is named the modular
irregularity strength and is denoted by ms(G). It is defined as ms(G) =∞ in the case when there
is no modular irregular labeling of G. As it is noted in [4], we can easily observe that irregularity
strength of graph is defined only for graphs containing at most one isolated vertex and no connected
component of order 2. Modular irregularity strength of some classes of graph has been established
(see e.g. [3, 4, 12]).

For positive integers n and d, n > d, let us denote by Z∗
n := Zn − {0} and let (n, d) be the

greatest common divisor of n and d. From basic number theory we can immediately see that if
(n, d) = 1, then {d, 2d, 3d, . . . , (n− 1)d} = Z∗

n, where s stands for the least residue of s modulo
n. By using this equality, it is easy to see the following theorem.

Theorem 1.1. Let G = (V,E) be a graph of order n with s(G) = k. Assume that there exists
an irregular assignment of G with edge values at most k, where weights of vertices form the set
{a, a + d, a + 2d, . . . , a + (n − 1)d} for some positive integers a and d < n. If (n, d) = 1, then
s(G) = ms(G) = k.

If d = 1 in the above theorem, we obtain the following corollary which was proposed as
Lemma 2.2 in [4].

Corollary 1.1. Let G = (V,E) be a graph with no component of order ≤ 2 and let s(G) = k.
If there exists an irregular assignment of G with edge values at most k, where weights of vertices
constitute a set of consecutive integers, then s(G) = ms(G) = k.

The modular irregularity strength of some graphs was recently established in [4]. There we can
find the following results: For a path Pn of n ≥ 3 vertices, ms(Pn) = dn

2
e if n 6≡ 2 (mod 4) and

ms(Pn) = ∞ otherwise; For a star K1,n of order n + 1 with n ≥ 2, ms(K1,n) = n if n ≡ 0, 2
(mod 4), ms(K1,n) = n + 1 if n ≡ 3 (mod 4), and ms(K1,n) = ∞ if n ≡ 1 (mod 4); For a cycle
Cn of order n ≥ 3, ms(Cn) = dn

2
e if n ≡ 1 (mod 4), ms(Cn) = dn

2
e + 1 if n ≡ 0, 3 (mod 4),

and ms(Cn) = ∞ if n ≡ 2 (mod 4); For a gear graph Gn of order 2n with n ≥ 3, ms(Gn) = n+2
2
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if n ≡ 0 (mod 2), and ms(Gn) = ∞ if n ≡ 1 (mod 2); and for a triangular graph Tn of order
2n − 1 with n ≥ 2, ms(Tn) = n+4

2
if n ≡ 0 (mod 2) and ms(Tn) = n+3

2
if n ≡ 1 (mod 2). For

n ≥ 3 the gear graph Gn is constructed from the cycle Cn by replacing each edge of the cycle with
a triangle C3. Whereas, the triangular graph Tn, n ≥ 2, is constructed from the path on n vertices
by replacing each edge of the path with a triangle C3.
At the closing discussion in [4], an open research problem is proposed which is about the modular
irregularity strength of complete graph Kn, n ≥ 3. In this paper we solve this problem. Besides,
we also derive the modular irregularity strength of three families of complete bipartite graphs:
Kn,n, Kn,n+1 and Kn,n+2.

Before continuing to the discussion of our main results, we recall the following two theorems
proved in [4]. The first of them gives a lower bound of the modular irregularity strength and the
second of them gives a condition when no modular irregular labeling of a graph exists.

Theorem 1.2. [4] Let G be a graph with no component of order ≤ 2. Then

s(G) ≤ ms(G).

Theorem 1.3. [4] If G is a graph of order n, n ≡ 2(mod 4), then G has no modular irregular
labeling i.e., ms(G) =∞.

2. Main Results

A graph G(V,E) is called dense, if 1
2
< D(G) ≤ 1, with

D(G) =
2|E|

|V |(|V | − 1)
, (1)

and it is called sparse graph if 0 ≤ D(G) ≤ 1
2
.

For the complete graph Kn, n ≥ 2, it is well known that |E(Kn)| =
(
n
2

)
. Therefore, we have

D(Kn) = 1, and hence the graph Kn is dense.
Now, we observe the density of complete bipartite graphs. Let Kn,n+t be the complete bipartite

graph of 2n+ t vertices, 0 ≤ t < n. It is clear that |E(Kn,n+t)| = n(n+ t). Then, we have

D(Kn,n+t) = 2(n(n+t))
(2n+t)(2n+t−1)

= n(2n+t)
(2n+t)(2n+t−1)

+ nt
(2n+t)(2n+t−1)

= n
(2n+t−1)

+ nt
(2n+t)(2n+t−1)

> n
2n+t

+ nt
(2n+t)(2n+t−1)

= 2n2+2nt−n
(2n+t)(2n+t−1)

= 2n2+2nt−n
4n2+4nt−2n−t

≥ 2n2+2nt−n
4n2+4nt−2n

= 1
2
.

From the last inequality we conclude that the complete bipartite graph Kn,n+t, with 0 ≤ t < n,
is a dense graph.
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Assume thatKn,n+t is the complete bipartite graph of 2n+t vertices, 0 ≤ t < n, with maximum
degree ∆(Kn,n+t) = n + t and ϕ is an irregular assignments. Let s(Kn,n+t) = k. Consider the
weights of vertices in Kn,n+t. The smallest among these weights is at least n. The largest weight
must be at least n + |V (Kn,n+t)| − 1 = 3n + t − 1 and at most ∆(Kn,n+t)k = (n + t)k. Thus,
3n+ t− 1 ≤ (n+ t)k and

k = s(Kn,n+t) ≥
⌈

3n+ t− 1

n+ t

⌉
.

Evidently, s(Kn,n+t) ≥ 3 for t = 0, 1, 2.

2.1. The modular irregularity strength of complete graph Kn

Next theorem gives the precise value of the modular irregularity strength of complete graph
Kn, n ≥ 3, and presents a solution of the Problem 1 in [4].

Theorem 2.1. Let Kn be a complete graph on n vertices with n ≥ 3. Then

ms(Kn) =

{
3, if n 6≡ 2 (mod 4),
∞, if n ≡ 2 (mod 4).

Proof. The exact value of the irregularity strength of complete graphs is determined in [6] and it
is s(Kn) = 3, n ≥ 3. According to Theorem 1.2 we have that ms(Kn) ≥ 3 for n ≥ 3.

Name the vertices of the complete graph Kn with v1, v2, . . . , vn. Consider an edge labeling
φ : E(Kn) → {1, 2, 3}. Moreover, let matrix A = [aij] be the (n × n)-matrix whose entry
aij = φ(vivj), and Ai be the ith row of the matrix A. Let us consider the following four cases,
according to the order of the graph Kn.

Case 1. n ≡ 0 (mod 4). In this case, we set a function φ as follows.

φ(vivi) = 0, if i = 1, 2, . . . , n,
φ(vivj) = 1, if i+ j ≤ n+ 1, i 6= j,

φ(vivn) = φ(vnvi) = 3, if i = n+2
2

φ(vivi+1) = φ(vi+1vi) = 3, if n+4
2
≤ i ≤ n− 2; i even, n ≥ 8,

φ(vivj) = 2, otherwise.

Using the mapping φ we can see the following properties of the matrix A:

(i) For every i, 1 ≤ i ≤ n
2
, Ai contains no integer 3, i− 1 integers 2, and n− i integers 1. This

implies that the weight of vertex vi, w(vi), is equal to

w(vi) = 3(0) + 2(i− 1) + 1(n− i) = n+ i− 2.

(ii) For each i, n
2

+ 1 ≤ i ≤ n, Ai contains exactly one integer 3, i− 3 integers 2, and n− i+ 1
integers 1. Therefore the weight of vertex vi, w(vi), is equal to

w(vi) = 3(1) + 2(i− 3) + 1(n− i+ 1) = n+ i− 2.
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From (i) and (ii) it follows that the weights of vertices vi, i = 1, 2, . . . , n, constitute the set of
consecutive integers W = {n− 1, n, n+ 1, . . . , 3n

2
− 2, 3n

2
− 1, . . . , 2n− 2}.

Case 2. n ≡ 1 (mod 4). Now, we define a function φ in the following way.

φ(vivi) = 0, if i = 1, 2, . . . , n,
φ(vivj) = 1, if i+ j ≤ n+ 1, i 6= j,

φ(vivn) = φ(vnvi) = 3, if i = n+3
2
,

φ(vivi+1) = φ(vi+1vi) = 3, if n+5
2
≤ i ≤ n− 2, i odd, n ≥ 9,

φ(vivj) = 2, otherwise.

Observe that under the previous labeling φ from the matrix A follows:

(i) For every i, 1 ≤ i ≤ n+3
2
− 1, Ai has no integer 3, has i− 1 integers 2 and n− i integers 1.

Based on this condition, we obtain that the weight of vertex vi, w(vi), is equal to

w(vi) = 3(0) + 2(i− 1) + 1(n− i) = n+ i− 2.

(ii) For each i, n+3
2
≤ i ≤ n, Ai consists of exactly one integer 3, i− 3 integers 2, and n− i+ 1

integers 1. Hence, the weight of vertex vi, w(vi), is equal to

w(vi) = 3(1) + 2(i− 3) + 1(n− i+ 1) = n+ i− 2.

Again, from (i) and (ii), we can conclude that the set of weights of vertices of Kn, namely
W = {n− 1, n, n+ 1, . . . , 3n−1

2
− 1, 3n−1

2
, . . . , 2n− 2} contains n consecutive integers.

Case 3. n ≡ 3 (mod 4). We construct a function φ such that

φ(vivi) = 0, if i = 1, 2, . . . , n,
φ(vivj) = 1, if i+ j ≤ n, i 6= j,

φ(vivj) = φ(vjvi) = 3, if n+1
2
≤ i ≤ 3n−1

4
; j = 3(n+1)

4
,

φ(vivj) = 2, otherwise.

In this case we describe weights of the vertices vi as follows:

(i) For every i, 1 ≤ i ≤ n+1
2
− 1, Ai has no integer 3. But it has i integers 2 and n − i − 1

integers 1. This implies that for i, 1 ≤ i ≤ n+1
2
− 1, the weight of vertex vi, w(vi), is equal

to
w(vi) = 2(i) + 1(n− i− 1) = n+ i− 1.

(ii) For all i in the set {n+1
2
, n+3

2
, . . . , 3n−1

4
}, row Ai consists of exactly one integer 3, i − 2

integers 2 and n− i integers 1. Therefore the weight of vertex vi is equal to

w(vi) = 3(1) + 2(i− 2) + 1(n− i) = n+ i− 1.

(iii) If i runs over the set {3n+7
4
, 3n+11

4
, . . . , n}, row Ai consists only of n− i integers 1 and i− 1

integers 2. This leads to the weight of vertex vi as

w(vi) = 2(i− 1) + 1(n− i) = n+ i− 2.
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(iv) For i = 3n−1
4

+ 1 = 3(n+1)
4

, Ai contains n − i = n−3
4

integers 1, n−1
2

integers 2, and n+1
4

integers 3. This gives the following weight of vertex vi

w(vi) = 3(
n+ 1

4
) + 2(

n− 1

2
) + 1(

n− 3

4
) = 2n− 1.

By combining the weight sets expressed in (i) - (iv), we get the set of weights of vertices of Kn

W = {n, . . . , 3(n− 1)

2
,
3n− 1

2
, . . . ,

7n− 5

4
,
7n− 1

4
, 2n− 2, 2n− 1},

which contains consecutive integers.
In any of the previous three cases we get a set of consecutive integers as the set of vertex

weights of Kn and by Corollary 1.1 it proves that s(Kn) = ms(Kn) = 3 for n 6≡ 2 (mod 4).

Case 4. n ≡ 2 (mod 4). The result follows immediately from Theorem 1.3.

2.2. The modular Irregularity strength of Kn,n

In this section we derive the modular irregularity strength of Kn,n for every positive integer
n ≥ 2.

Theorem 2.2. Let Kn,n be a complete bipartite graph on 2n vertices with n ≥ 2. Then

ms(Kn,n) =

{
3, if n is even,
∞, if n is odd.

Proof. Let U and V be the partitions of vertices of Kn,n, say U = {u1, u2, . . . , un} and V =
{v1, v2, . . . , vn}. We discuss the following three cases.

Case 1. Let n be odd, n ≥ 3. It is clear that in this case |V (Kn,n)| ≡ 2 (mod 4) and according to
Theorem 1.3 the modular irregularity strength of Kn,n is infinity.

Case 2. Let n = 2. For j = 1, 2 define a function τ : E(K2,2)→ {1, 2, 3} as follows.

τ(u1vj) = 1 and τ(u2vj) = j + 1.

The weights of the vertices u1, u2, v1 and v2 of the complete bipartite graphK2,2 under the labeling
τ admit the values

w(u1) = τ(u1v1) + τ(u1v2) = 2,

w(u2) = τ(u2v1) + τ(u2v2) = 5,

w(v1) = τ(u1v1) + τ(u2v1) = 3,

w(v2) = τ(u1v2) + τ(u2v2) = 4.

We can see that all edge labels are at most 3 and the vertex weights are consecutive.
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Case 3. Let n be even, n ≥ 4. For 1 ≤ i, j ≤ n, we set an edge labeling τ : E(Kn,n) → {1, 2, 3}
as follows.

τ(u2vn) = 2,
τ(un−1v1) = 2,
τ(uivj) = 2, if i+ j = n+ 1, i = n

2
+ 1, n

2
+ 2, . . . , n

τ(uivj) = 3, if i+ j > n+ 1, i = 3, 4, . . . , n
τ(uivj) = 1, otherwise.

We split the vertex set of Kn,n into four mutually disjoint subsets
A = {u1, u2, v1, v2},
B = {ui : i = 3, 4, . . . , n

2
} ∪ {vj : j = 3, 4, . . . , n

2
},

C = {vj : j = n
2

+ 1, n
2

+ 2, . . . , n− 2} ∪ {ui : i = n
2

+ 1, n
2

+ 2, . . . , n− 2},
D = {vn−1, vn, un−1, un}.
Clearly, A ∪B ∪ C ∪D = V (Kn,n).
Observe that under the edge labeling τ the weights of the vertices

(i) from the set A are equal to

w(u1) =
∑n

j=1 τ(u1vj) =
∑n

j=1 1 = n,

w(u2) =
∑n−1

j=1 τ(u2vj) + τ(u2vn) =
∑n−1

j=1 1 + 2 = n+ 1,

w(v1) =
∑n−2

i=1 τ(uiv1) +
∑n

i=n−1 τ(uiv1) =
∑n−2

i=1 1 +
∑n

i=n−1 2 = n+ 2,

w(v2) =
∑n−2

i=1 τ(uiv2) + τ(un−1v2) + τ(unv2) =
∑n−2

i=1 1 + 2 + 3 = n+ 3,

and they create the corresponding set of weights WA = {n, n+ 1, n+ 2, n+ 3}.
(ii) from the set B admit the integers

w(ui) =
∑n−i+1

j=1 τ(uivj) +
∑n

j=n−i+2 τ(uivj) =
∑n−i+1

j=1 1 +
∑n

j=n−i+2 3 = n+ 2i− 2,

w(vj) =
∑n−j

i=1 τ(uivj) + τ(un−j+1vj) +
∑n

i=n−j+2 τ(uivj)

=
∑n−j

i=1 1 + 2 +
∑n

i=n−j+2 3 = n+ 2j − 1,

and they form the common set of consecutive integers WB = {n + 4, n + 5, n + 6, n +
7, . . . , 2n− 4, 2n− 3, 2n− 2, 2n− 1}.

(iii) from the set C receive the integers

w(vj) =
∑n−j+1

i=1 τ(uivj) +
∑n

i=n−j+2 τ(uivj)

=
∑n−j+1

i=1 1 +
∑n

i=n−j+2 3 = n+ 2j − 2,

w(ui) =
∑n−i

j=1 τ(uivj) + τ(uivn−i+1) +
∑n

j=n−i+2 τ(uivj)

=
∑n−i

j=1 1 + 2 +
∑n

j=n−i+2 3 = n+ 2i− 1,
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and they are consecutive elements of the set WC = {2n, 2n + 1, 2n + 2, 2n + 3, . . . , 3n −
8, 3n− 7, 3n− 6, 3n− 5}.

(iv) from the set D obtain the integers

w(vn−1) =
∑2

i=1 τ(uivn−1) +
∑n

i=3 τ(uivn−1) =
∑2

i=1 1 +
∑n

i=3 3 = 3n− 4,

w(vn) = τ(u1vn) + τ(u2vn) +
∑n

i=3 τ(uivn) = 1 + 2 +
∑n

i=3 3 = 3n− 3,

w(un−1) =
∑2

j=1 τ(un−1vj) +
∑n

j=3 τ(un−1vj) =
∑2

j=1 2 +
∑n

j=3 3 = 3n− 2,

w(un) = τ(unv1) +
∑n

j=2 τ(unvj) = 2 +
∑n

j=2 3 = 3(n− 1) + 2 = 3n− 1,

and they create the associated set of weights WD = {3n− 4, 3n− 3, 3n− 2, 3n− 1}.

Evidently, all edge labels are at most 3 and the weights of the vertices form the resulting set
W = WA ∪WB ∪WC ∪WD of consecutive integers. Thus the function τ is the desired modular
irregular 3-labeling.

2.3. The modular irregularity strength of Kn,n+1

We partition the vertex set ofKn,n+1 intoU = {u1, u2, . . . , un} and V = {v1, v2, . . . , vn, vn+1}.
Here we have E(Kn,n+1) = {uivj : 1 ≤ i ≤ n, 1 ≤ j ≤ n+ 1}.

It is clear that for all positive integers n ≥ 1 there is |V (Kn,n+1)| = 2n+ 1 6≡ 2 (mod 4).

Theorem 2.3. Let Kn,n+1 be a complete bipartite graph on 2n+ 1 vertices with n ≥ 1. Then

ms(Kn,n+1) =

{
2, if n = 1,
3, if n ≥ 2.

Proof. It is evident that ms(K1,2) = 2.
For n ≥ 2 define a mapping f : E(Kn,n+1)→ {1, 2, 3} as follows.

f(uivj) = f(vjui) = 1 if i+ j ≤ n+ 1,
f(uivj) = f(vjui) = 2 if i+ j = n+ 2,
f(uivj) = f(vjui) = 3 otherwise.

Since

w(ui) =
n−i+1∑
j=1

f(uivj) + f(uivn−i+2) +
n+1∑

j=n−i+3

f(uivj) =
n−i+1∑
j=1

1 + 2 +
n+1∑

j=n−i+3

3 = n+ 2i,

for 1 ≤ i ≤ n, so the vertex weights form the arithmetic sequence of difference 2 with the initial
weight n+ 2 and the last weight 3n.
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For the weight of the vertex v1 we get

w(v1) =
n∑

i=1

f(uiv1) =
n∑

i=1

1 = n

and for weights of the vertices vj , j = 2, 3, . . . , n+ 1, we have

w(vj) =

n−j+1∑
i=1

f(uivj) + f(un−j+2vj) +
n∑

i=n−j+3

f(uivj) =

n−j+1∑
i=1

1 + 2 +
n∑

i=n−j+3

3 = n+ 2j − 3.

We can see that these vertex weights create the arithmetic sequence of difference 2 with the initial
weight n+ 1 and the last weight 3n− 1.

By combining both arithmetic sequences of vertex weights of difference 2 with w(v1) = n we
obtain the resulting set of consecutive integers from n to 3n and according to Corollary 1.1 the
function f is a suitable modular irregular 3-labeling and ms(Kn,n+1) = 3 for n ≥ 2.

2.4. The modular irregularity strength of Kn,n+2

Here, we partition the vertex set of Kn,n+2 into U = {u1, u2, . . . , un} and V = {v1, v2, . . . ,
vn, vn+1, vn+2}. Then for the edge set we have E(Kn,n+2) = {uivj : 1 ≤ i ≤ n, 1 ≤ j ≤ n+ 2}.

Theorem 2.4. Let Kn,n+2 be a complete bipartite graph on 2n+ 2 vertices with n ≥ 1. Then

ms(Kn,n+2) =


4, if n = 1,
3, if n ≥ 3 is odd,
∞, if n is even.

Proof. In [4] is stated that for the graph K1,3 as a star on 4 vertices and with edge labels 1,2,3,
the irregularity strength is 3. But this irregular 3-labeling is not modular. The modular irregularity
strength of K1,3 is 4 with edge values 1,2 and 4.

On can see that for even positive integer n, |V (Kn,n+2)| ≡ 2 (mod 4) and according to Theo-
rem 1.3 the modular irregularity strength of Kn,n+2 is infinity.

For n odd, n ≥ 3, we define a function g : E(Kn,n+2)→ {1, 2, 3} in the following way

g(uivj) = g(vjui) = 1 if i+ j ≤ n+ 1,
g(uivj) = g(vjui) = 1 if i+ j = n+ 2, i ≤ n− 3, and i even,
g(uivj) = g(vjui) = 2 if n+ 2 ≤ i+ j ≤ n+ 4, and i odd,

g(un−1vj) = g(vjun−1) = 2 if j = 3, 4,
g(uivj) = g(vjui) = 3 otherwise.

Let us split the vertex set of Kn,n+2 into five mutually disjoint subsets
A = {u1, un−1, v1, v2, v3, v4, vn+2},
B = {ui : i = 3, 5, 7, . . . , n− 4, n− 2, n},
C = {ui : i = 2, 4, 6, . . . , n− 5, n− 3},
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D = {vj : j = 5, 7, 9, . . . , n− 4, n− 2, n},
E = {vj : j = 6, 8, 10, . . . , n− 3, n− 1, n+ 1}.
Clearly, A ∪B ∪ C ∪D ∪ E = V (Kn,n+2).
Observe that under the edge labeling g the weights of the vertices

(i) from the set A are equal to

w(u1) =
∑n

j=1 g(u1vj) +
∑n+2

j=n+1 g(u1vj) = n+ 4,

w(un−1) =
∑2

j=1 g(un−1vj) +
∑4

j=3 g(un−1vj) +
∑n+2

j=5 g(un−1vj)

= 1 · (2) + 2 · (2) + 3 · (n− 2) = 3n,

w(v1) =
∑n

i=1 g(uiv1) = 1 · (n) = n,

w(v2) =
∑n−1

i=1 g(uiv2) + g(unv2) = 1 · (n− 1) + 2 = n+ 1,

w(v3) =
∑n−2

i=1 g(uiv3) +
∑n

i=n−1 g(uiv3) = 1 · (n− 2) + 2 · (2) = n+ 2,

w(v4) =
∑n−3

i=1 g(uiv4) +
∑n

i=n−2 g(uiv4) = 1 · (n− 3) + 2 · (3) = n+ 3,

w(vn+2) = g(u1vn+2) +
∑n

i=2 g(uivn+2) = 2 + 3 · (n− 1) = 3n− 1,

and they create the corresponding set of weights WA = {n, n+ 1, n+ 2, n+ 3, n+ 4, 3n−
1, 3n}.

(ii) from the set B admit the integers

w(ui) =
∑n−i+1

j=1 g(uivj) +
∑n−i+4

j=n−i+2 g(uivj) +
∑n+2

j=n−i+5 g(uivj)

= 1 · (n− i+ 1) + 2 · (3) + 3 · (i− 2) = n+ 2i+ 1,

and they form the set of members of arithmetic sequence of difference 4, WB = {n+ 7, n+
11, n+ 15, . . . , 3n− 7, 3n− 3, 3n+ 1}.

(iii) from the set C receive the integers

w(ui) =
∑n−i+1

j=1 g(uivj) + g(uivn−i+2) +
∑n+2

j=n−i+3 g(uivj)

= 1 · (n− i+ 1) + 1 + 3 · i = n+ 2i+ 2,

and they create the associated set of members of arithmetic sequence of difference 4, WC =
{n+ 6, n+ 10, n+ 14, . . . , 3n− 12, 3n− 8, 3n− 4}.

(iv) from the set D obtain the integers

w(vj) =
∑n−j+1

i=1 g(uivj) + g(un−j+2vj) + g(un−j+3vj) +
∑n

i=n−j+4 g(uivj)

= 1 · (n− j + 1) + 1 + 2 + 3 · (j − 3) = n+ 2j − 5,

and they form the set of members of arithmetic sequence of difference 4, WD = {n+ 5, n+
9, n+ 13, . . . , 3n− 13, 3n− 9, 3n− 5}.
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(v) from the set E receive the integers

w(vj) =
∑n−j+1

i=1 g(uivj) + g(un−j+2vj) + g(un−j+3vj) + g(un−j+4vj) +
∑n

i=n−j+5 g(uivj)

= 1 · (n− j + 1) + 2 + 3 + 2 + 3 · (j − 4) = n+ 2j − 4,

and they create the associated set of members of arithmetic sequence of difference 4, WE =
{n+ 8, n+ 12, n+ 16, . . . , 3n− 10, 3n− 6, 3n− 2}.

Indeed, all edge labels are at most 3 and combining the previous sets of weights we obtain the
resulting set W = WA ∪WB ∪WC ∪WD ∪WE of consecutive integers. Thus the function g is the
desired modular irregular 3-labeling and we are done.

3. Discussion

We solved a very small portion of the modular irregularity strength of complete bipartite graphs.
The rest is still unsolved therefore for further investigation we propose the following problem.

Problem 1. For the complete bipartite graphs Kn,n+t, n ≥ 1, 3 ≤ t < n, determine the exact
value of the modular irregularity strength.

It seems to be interesting to investigate the modular irregularity strength of the complete tripar-
tite graphs Km,n,s for m,n, s ≥ 1. We conclude the paper with the following open problem.

Problem 2. For the complete tripartite graphs Km,n,s, m,n, s ≥ 1, determine the exact value of
the modular irregularity strength.
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