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Abstract

A handicap distance antimagic labeling of a graph G = (V,E) with n vertices is a bijection
f̂ : V → {1, 2, . . . , n} with the property that f̂(xi) = i, the weight w(xi) is the sum of labels of
all neighbors of xi, and the sequence of the weights w(x1), w(x2), . . . , w(xn) forms an increasing
arithmetic progression. A graph G is a handicap distance antimagic graph if it allows a handicap
distance antimagic labeling. We construct r-regular handicap distance antimagic graphs of order
n ≡ 4 (mod 8) for all feasible values of r.

Keywords: graph labeling, handicap labeling, regular graphs, tournament scheduling
Mathematics Subject Classification : 05C78
DOI: 10.5614/ejgta.2022.10.1.18

1. Introduction

A complete round robin tournament of n teams is a tournament in which every team plays each
of the remaining n − 1 teams. Complete round robin tournaments are generally considered to
be fair. However, when we look at them more closely, we may realize that they in fact favor the
strongest teams.

The reason is that when the teams are ranked 1, 2, . . . , n according to their standings, then
the sum of rankings of all opponents of the i-th ranked team, called weight and denoted w(i),
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is w(i) = n(n + 1)/2 − i, and the sequence w(1), w(2), . . . , w(n) is a decreasing arithmetic
progression with difference one. Therefore, the strongest team plays only lower ranked opponents
and thus has the easiest schedule. On the other hand, the weakest team plays only stronger teams
and thus has the most difficult schedule.

This property can be generalized for tournaments where each team plays the same number
r < n − 1 games as follows. A tournament of n teams in which every team plays precisely r
opponents, where r < n − 1 and the sequence w(1), w(2), . . . , w(n) is a decreasing arithmetic
progression with difference one is called a fair incomplete round robin tournament and denoted
FIT(n, r). Again, as in complete tournaments, strong teams play weaker teams, and weak teams
play stronger teams.

This can be eliminated by scheduling tournaments where each team plays in aggregate oppo-
nents of the same total strength. Such tournaments are called equalized incomplete round robin
tournaments (denoted EIT(n, r)) and were introduced by the first author in [4] and [9].

We can take it one step further and try to design tournaments where weak teams have a better
chance at winning than in equalized incomplete tournaments. Hence, we want to schedule tour-
naments where the sequence w(1), w(2), . . . , w(n) would be an increasing arithmetic progression.
Such a tournament in which every team plays r < n − 1 games is called a handicap incomplete
round robin tournament. The case of n teams where n ≡ 0 (mod 8) was completely solved by
the authors in [12]. A summary of results of handicap tournaments obtained by the authors and
other researchers can be found in [10]. More detailed overview of these and other related results is
provided in Section 3.

In this paper we provide a detailed construction for n ≡ 4 (mod 8) for all feasible regularities.
Remark. Since this paper is a direct continuation of [12], this and the following section were
adopted from that paper. Therefore, the reader may find here many similarities or even identical
parts.

2. Basic Notions

By G = (V,E) we mean a finite simple graph of order n. To simplify notation where possible,
we identify vertex names with their labels, thus by stating i we refer to the vertex labeled i.

Our constructions are based on magic- and antimagic-type labelings defined below. Namely,
distance magic and distance antimagic labeling. The distance magic labeling was originally coined
as a sigma labeling by Vilfred [20] in 1994, and then by Miller et. al. [17] using the name 1-vertex
magic vertex labeling.

Definition 2.1. A distance magic labeling of a graph G of order n is a bijection f : V →
{1, 2, . . . , n} with the property that there is a positive integer µ such that∑

y∈N(x)

f(y) = µ ∀x ∈ V.

The constant µ is called the magic constant of the labeling f , and N(x) denotes the set of all
vertices adjacent to v. The sum

∑
y∈N(x) f(y) is called the weight of vertex x and is denoted w(x).

A graph that admits a distance magic labeling is called a distance magic graph.
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Definition 2.2. A distance d-antimagic labeling of a graph G with n vertices is a bijection f̄ :
V → {1, 2, . . . , n} with the property that there exists an ordering of the vertices of G such that the
weights w(x1), w(x2), . . . , w(xn) forms an arithmetic progression with difference d. When d = 1,
then f̄ is called just distance antimagic labeling. A graph G is a distance d-antimagic graph if it
allows a distance d-antimagic labeling, and a distance antimagic graph when d = 1.

A survey on distance magic graphs can be found in [1], while an often updated overview of
results of all types of labelings can be found in [13].

The term handicap labeling is due to Kovářová [16]; it was previously referred to as ordered
distance antimagic labeling by Froncek in [5]. We provide a more general version of the definition,
as there was recently significant development in this direction.

Definition 2.3. A handicap distance d-antimagic labeling or simply d-handicap labeling of a
graph G with n vertices is a bijection f̂ : V → {1, 2, . . . , n} with the property that f̂(xi) = i and
the sequence of the weights w(x1), w(x2), . . . , w(xn) forms an increasing arithmetic progression
with difference d. A graph G is a handicap distance d-antimagic graph if it allows a distance
d-antimagic labeling, and a handicap distance antimagic graph when d = 1.

Observe that in a handicap labeling a vertex with a lower label has a lower weight than a vertex
with higher label. Thus, if we think of the vertices as teams and label them according to their
strength, an r-regular handicap distance antimagic graph is in fact a representation of a handicap
incomplete round robin tournament.

3. Preliminary and Related Results

An overview of results on fair and equalized tournaments FIT(n, r) and EIT(n, r) obtained
in [4] and [9] can be found in [12].

Handicap tournaments of even order have been studied extensively and the following results
with detailed constructions were published so far.

Theorem 3.1. [12] There exists an r-regular 1-handicap graph of order n where n ≡ 0 (mod 8)
if and only if r is odd and 3 ≤ r ≤ n− 5.

Theorem 3.2. [11, 15] There exists an r-regular 1-handicap graph of order n where n ≡ 2
(mod 4) if and only if r ≡ 3 (mod 4) and 3 ≤ r ≤ n − 7 except when r = 3 and n ∈
{10, 12, 14, 18, 22, 26}.

In an unpublished manuscript, Kovář, Kovářová, Krajc, Kravčenko, and Krbeček [15] indepen-
dently proved a result that partially overlaps with our main result. However, their methods were
different from those presented in the next section.

Theorem 3.3. [15] There exists an r-regular 1-handicap graph of even order n for all n ≥ 28 and
3 ≤ r ≤ n− 11 if not both n ≡ 2 (mod 4) and r ≡ 1 (mod 4).

For the small values n < 28, we only list their results relevant to our case.
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Lemma 3.1. [15] There exist 3- and 5-regular 1-handicap graphs on 20 vertices and a 5-regular
1-handicap graph on 12 vertices. On the other hand, a 3-regular 1-handicap graph on 12 vertices
does not exist.

The main result of this paper was published in [10] without proof. Therefore, we provide a
detailed constructive proof in this paper. Since our construction presented in the next section only
covers regularities greater than five, we state the case of n ≡ 0 (mod 4) and r = 3, 5 that follows
from Theorem 3.3 and Lemma 3.1 separately.

Corollary 3.1. [15] There exists a 3-regular 1-handicap graph of order n where n ≡ 4 (mod 8)
if and only if n ≥ 20 and a 5-regular such graph if and only if n ≥ 12.

For graphs of odd order, much less is known. The following result was proved by the first
author.

Theorem 3.4. [8] There exists an r-regular handicap graph of an odd order n for at least one
value of r if and only if n = 9 or n ≥ 13.

Recently, some results on handicap distance d-antimagic graphs where d = 2 were obtained by
the first author, including a full characterization for n ≡ 0 (mod 16).

Theorem 3.5. [6] If G is an r-regular 2-handicap graph, then r is even.

Theorem 3.6. [7] There exists an r-regular 2-handicap graph of order n ≡ 0 (mod 16) if and
only if n ≥ 16 and 4 ≤ r ≤ n− 6.

Theorem 3.7. [6] There exists an r-regular 2-handicap graph of order n for every positive n ≡ 8
(mod 16), n ≥ 56 and every even r satisfying 6 ≤ r ≤ n− 50.

Theorem 3.6 also follows from a more general result by Freyberg [3].

Theorem 3.8. [3] Let d > 1 be given and let n ≡ 0 (mod 2d+2). Then an r-regular d-handicap
graph of order n exists if and only if d+ 2 ≤ r ≤ n− d− 4 and r ≡ d (mod 2).

Additional results have been obtained for more general d-handicap tournaments by Freyberg in
[2]. These include a variety of results for even d, a partial characterization of order n that permits
d odd, and multiple restrictions on the feasible regularities based on n and d.

For any graph with a given regularity r and order n a simple counting argument shows the
weight of each vertex i is already known as in the following lemma (see [10]).

Lemma 3.2. In an r-regular handicap graph with n vertices the weight of every vertex is w(i) =
(r − 1)(n+ 1)/2 + i.

Each vertex weight is an integer value obtained as a sum of integers. The previous lemma
is used in a number of non-existence results. The following can be found amongst other non-
existence results, see, e.g., [10] or [18].

Lemma 3.3. If n is even, n > 2, and G is an r-regular 1-handicap graph, then r is odd and
3 ≤ r ≤ n− 5.

More restrictive bounds may apply to some specific values of n, as can be seen in Theorem 3.2.
We now proceed to the primary focus of this paper. Since from now on we only deal with

1-handicap graphs, we will be using just the term handicap graph instead.
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4. Construction for n ≡ 4 (mod 8)

We use the following convention. When i is joined to k by an edge, we will use the notation
[i | k]. Further, [a, b | c, d] will denote the complete bipartite graph K2,2 where a and b are in one
partite set and c and d in the other.

Our basic building block in the construction will be the complete bipartite graph [a, b|c, d]
in which a + b = c + d. The actual sum will differ in various parts of our construction. A
graph in which every edge is in exactly one K2,2 can be viewed as the lexicographic product or a
composition of graphs H and 2K1

∼= K2, denoted H[K2]. This graph can be constructed from H
by replacing each vertex u by two vertices u′, u′′ and each edge uv be the complete bipartite graph
[u′, u′′ | v′, v′′]. A composition H[K2] is sometimes called a blown up graph H .

We will also use the notion of a bubble graph. When one has a graph H[K2], then the graph H
can be viewed as an inverse image of it with respect to the composition with K2. The bubble graph
is a slight generalization of such inverse. An illustration can be seen in Figures 5 and 6. For a
detailed description of the construction and usage of the bubble graph, we refer the reader to [12].

Definition 4.1. Let J be a graph on 2m vertices with the vertex set {u′1, u′′1, u′2, u′′2, . . . , u′m, u′′m}
which contains no edge u′iu

′′
i for any i. Then the bubble graph of J , denoted B(J) or just simply

B, is a graph on m vertices with the vertex set {u1, u2, . . . , um} in which uiuj is an edge if and
only if at least one of the four edges u′iu

′
j, u
′
iu
′′
j , u

′′
i u
′
j, u
′′
i u
′′
j is present in J .

In our construction, we will need a result on 1-factorization of certain regular graphs. Recall
that a 1-factor of a graph H is a 1-regular spanning subgraph, also often called a perfect matching.
Then a 1-factorization of H is a decomposition of the edge set of H into disjoint 1-factors.

If H has m vertices, then the length of an edge [k | j] is the minimum of the set {|k − j|,m−
|k − j|}. This can be visualized as follows. Place the vertices at uniform distance in a circle,
starting with 1 at the top-center position, in a clock–wise fashion. Then the length of [k | j] is the
“circular distance” between the vertices k and j, i.e., the number of steps we need to take around
the circle to get from k to j using the shorter of the two paths between them.

Definition 4.2. Let m be a positive integer and D a non-empty subset of {1, 2, . . . , bm/2c}. The
circulant graph Cm(D) is the graph with vertex set {1, 2, 3 . . . ,m} and edge set consisting of all
edges whose length is in D.

There is a very specific requirement for when a circulant graph admits a 1-factorization. The
following lemma is due to Stern and Lenz [19].

Lemma 4.1. [19] Let n be a positive integer and D a non-empty subset of {1, 2, . . . , bn/2c}. If
D contains an element d where n/gcd(d, n) is even, then the circulant graph Cn(D) admits a
1-factorization.

In other words, to see if Cn(D) has a 1-factorization, all we need to do is find an edge length
d ∈ D so that n/gcd(d, n) is an even integer.

We want to prove the following.

Theorem 4.1. For n ≡ 4 (mod 8) and r odd, there exists an r-regular handicap graph G for
7 ≤ r ≤ n− 5.
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Proof. By construction. To simplify our terminology and increase clarity, we split the edges up
into three color classes. Suppose r = 2s + 7. We will have one red edge, six blue edges, and 2s
black edges. We build our graph by first constructing the red subgraph, then adding blue edges,
and finally the black ones. Since we have six blue edges we will break that stage up into three
parts.

Step 1: Set n = 8k + 4 and start with the red edges as follows. First we draw edges between
lower vertices as

[1 | 2k + 2], [2 | 2k + 3], [3 | 2k + 4], . . . , [2k + 1 | 4k + 2],

followed by edges between upper vertices,

[4k + 3 | 6k + 4], [4k + 4 | 6k + 5], . . . , [6k + 3 | 8k + 4].

Let wr(i) denote the partial weight of vertex i obtained from the red edges. We have

wr(i) = 2k + 1 + i for i ∈ [1, 2k + 1] ∪ [4k + 3, 6k + 3]

and
wr(i) = i− (2k + 1) for i ∈ [2k + 2, 4k + 2] ∪ [6k + 4, 8k + 4] .

Step 2.1: In the first stage of adding blue edges, we construct multiple copies of K2,2 that
include exactly half of the vertices. Namely

[1, 6k+3 | 2, 6k+2], [2, 6k+2 | 3, 6k+1], . . . , [2k, 4k+4 | 2k+1, 4k+3], [2k+1, 4k+3 | 1, 6k+3].

We will call the set of vertices used U , so U = {1, 2, . . . , 2k + 1, 4k + 3, 4k + 4, . . . , 6k + 3}.
Step 2.2: Similar to the first stage, we add K2,2’s to the other half of the vertices, specifically

[2k+2, 8k+4 | 2k+3, 8k+3], . . . , [4k+1, 6k+5 | 4k+2, 6k+4], [4k+2, 6k+4 | 2k+2, 8k+4]

and name the set of vertices used here W . Hence, W = {2k + 2, 2k + 3, . . . , 4k + 2, 6k + 4, 6k +
5, . . . , 8k + 4}.

Step 2.3: The graph induced by the blue edges is currently 4-regular. To add the last two edges
we intertwine the copies of K2,2 already created. For each new K2,2 one partite set comes from U
and one partite set comes from W . For example, we take the first partite set from Step 2.1, and
connect it to the second partite set from Step 2.2. In general, connect

[1, 6k + 3|2k + 3, 8k + 3], [2, 6k + 2|2k + 5, 8k + 1], . . . , [2k + 1, 4k + 3|2k + 2, 8k + 4].

Let wb(i) denote the partial weight of vertex i obtained from the blue edges. We have that

wb(i) = 22k + 14 for i ∈ [1, 2k + 1] ∪ [4k + 3, 6k + 3]

and
wb(i) = 26k + 16 for i ∈ [2k + 2, 4k + 2] ∪ [6k + 4, 8k + 4] .
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Then for i ∈ [1, 2k + 1] ∪ [4k + 3, 6k + 3] we obtain

wb(i) + wr(i) = 22k + 14 + 2k + i = 24k + 15 + i

and for i ∈ [2k + 2, 4k + 2] ∪ [6k + 4, 8k + 4] we have

wb(i) + wr(i) = 26k + 16 + i− (2k + 1) = 24k + 15 + i .

So we have a 7-regular handicap graph. If we can have the black edges contribute the same weight
µ to each vertex, we will not be affecting the arithmetic progression of our weights, and therefore,
still have a handicap graph with higher regularities.

Step 3: Recall that r = 2s + 7. Our goal now is to show that we can add 2s black edges such
that the graph induced by the black edges is distance magic. Pair the vertices 1 with 8k+ 4, 2 with
8k+ 3, . . . , and 4k+ 2 with 4k+ 3, so that sum of these pairs is 8k+ 5. Each pair can be thought
of as a graph K2 with no edges and becomes a vertex in our bubble graph B. In B, there will be
an edge between two bubbles X = (x1, x2) and Y = (y1, y2) if and only if there would be a red or
blue edge (or both) between either x1 or x2 and y1 or y2.

To more easily understand the structure of the bubble graph, we look at the edge lengths. We
refer to each bubble by the minimum of the two labels it contains. Place the bubbles at uniform
distance in a circle, starting with 1 at the top-center position, in a clock–wise fashion.

In Step 1, we define our red edges, all of which are of length 2k + 1. In Step 2.1, we see blue
edges come in a couple different lengths, namely 1 and 2k. In Step 2.2, we see blue edges also
come in length 1 and 2k. In Step 2.3, we have blue edges of lengths 1 and 2k as well. Thus, in
B, the edges are all of length 1, 2k, and 2k + 1. Since n = 8k + 4 we have exactly n′ = 4k + 2
bubbles. For any given bubble, there are 2 bubbles at length 1 away (one clockwise and one
counter-clockwise), 2 bubbles at length 2k away, and exactly one bubble at length 2k + 1 away. If
all edges of lengths 1, 2k, and 2k + 1 are used in B, B is 5-regular. Thus, B will have all edges of
the lengths that are not present in B, so B is isomorphic to a circulant graph Cn′({3, . . . , 2k− 1}).

Recall Lemma 4.1, which says that B can be 1-factored if there exists an edge length d of B
so that n′/ gcd (d, n′) is an even integer. This can be done as follows. Let d be an odd edge length
in the edge set of B. Such a d exists since 3 will always be an edge length used in B. Recall that
n′ = 4k + 2. Let n′′ = n′/2 = 2k + 1, thus n′′ is odd. Now, since d is odd and n′ is even we have
that

gcd (d, n′) = gcd (d, n′/2) = gcd (d, n′′)

is an odd integer since both d and n′′ are odd. Now, since the gcd (d, n′′) divides both n′′ and d,
n′′/ gcd (d, n′′) is an integer. Thus,

n′′

gcd (d, n′′)
=

n′′

gcd (d, n′)
⇒ n′

gcd (d, 2n′′)
=

n′

gcd (d, n′)

is an even integer. And so, by Lemma 4.1, B can be 1-factored.
Each black edge in B equates to a K2,2 in the blown up graph B[K2]. Therefore, each 1-factor

inB contributes a 2-regular distance magic graph to the red and blue edges. We can add 2(n
2
−6) =

n− 12 black edges to increase regularity, if desired, for a max of n− 12 + 1 + 6 = n− 5.
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The reader my find it useful to see an example of the construction for Theorem 4.1, so we
present one here.

5. Example Construction of 7-regular Handicap Graph on n = 28 Vertices

In this example, n = 28 = 8(3) + 4, so k = 3. The resulting graph is just 7-regular, but with
28 vertices it is somewhat dense for the human eye to digest. Thus at the end of the example we
offer an alternative view of the graph by seperating red and blue edges. This more clearly indicates
what the structure of these graphs look like.

Step 1: We start with the red edges by connecting [1 | 2k + 2], [2 | 2k + 3], [3 | 2k + 4], . . . ,
and [2k + 1 | 4k + 2], followed by [4k + 3 | 6k + 4], [4k + 4 | 6k + 5], . . . , and [6k + 3 | 8k + 4].
So for the lower vertices we have [1 | 8], [2 | 9], [3 | 10], . . . , and [7 | 14]. For the upper vertices
we have [15 | 22], [16 | 23], . . . , and [21 | 28]. This is shown in Figures 1 and 7. Let wr(i) denote
the weight of vertex i obtained from the red edges. We have that

wr(i) = 7 + i for i ∈ [1, 7] ∪ [15, 21]

and
wr(i) = i− 7 for i ∈ [8, 14] ∪ [22, 28] .

1 2
3

4

5

6

7

8

9

10

11

12

13
141516

17

18

19

20

21

22

23

24

25

26

27
28

Figure 1. Step 1 on 28 vertices

Step 2.1: We now add the first set of blue copies ofK2,2. Namely [1, 21 | 2, 20],
[2, 20 | 3, 19], . . . , [6, 16 | 7, 15], [7, 15 | 1, 21]. See Figure 2. Thus, in this example U =
{1, 2, . . . , 7, 15, 16, . . . , 21}.
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Step 2.2: We now add the second set of blue copies of K2,2, [8, 28 | 9, 27], . . . ,
[13, 23 | 14, 22], [14, 22 | 8, 28]. See Figure 3. In this example W = {8, 9, . . . , 14, 22, 23, . . . , 28}.

Steps 2.1 and 2.2 are shown in the alternative view in Figure 8.
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Figure 2. Step 2.1 on 28 vertices
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Figure 3. Step 2.2 on 28 vertices
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Step 2.3: In this step, each new K2,2 has one partite set that comes from U and one partite set
from W . For example, the first will be [1, 21 | 9, 27]. This can be seen in Figure 9. In a similar
fashion we complete the process, adding [2, 20 | 14, 22], . . . , [7, 15 | 8, 28]. The completion of this
process can be seen in Figures 4 and 10. Let wb(i) denote the weight obtained from the blue edges
for vertex i. Then

wb(i) = 22(3) + 14 for i ∈ [1, 7] ∪ [15, 21]

and
wb(i) = 26(3) + 16 for i ∈ [8, 14] ∪ [22, 28]

so we have that
for i ∈ [1, 7] ∪ [15, 21]

wb(i) + wr(i) = 22(3) + 14 + 2(3) + i = 24(3) + 15 + i

and
for i ∈ [8, 14] ∪ [22, 28]

wb(i) + wr(i) = 26(3) + 16 + i− (2(3) + 1) = 24(3) + 15 + i .

Thus we have a 7-regular handicap graph. For completeness, we will illustrate the process of
Step 3 even though we are not going to add any black edges to this example.
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Figure 4. Step 2.3 on 28 vertices

Step 3: Now we take a look at which black edges are available to use. First we construct the
bubble graph B by pairing the vertices to form bubbles so that the sum of each pair is 29. Then
we draw red or blue edges between bubbles for edges already used in Step 1 or 2. The beautiful
structure of this graph is shown in Figure 5.
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Figure 5. Bubble graph on 28 vertices

We then would take the complement of this to getB, shown in Figure 6. This is where we would
pull black edges from to increase regularity. B is 8-regular, and since each black edge equates to
a K2,2 in the blown up graph, we can have a handicap graph that has maximum regularity equal to
8(2) + 1 + 6 = 23, i.e. n− 5 = 28− 5 = 23, if desired.
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Figure 6. Complement of bubble graph on 28 vertices
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Figure 7. Construction of Step 1 on 28 vertices
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Figure 8. Construction of Step 2.1 and 2.2 on 28 vertices
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Figure 9. Construction of Step 2.3 on 28 vertices, adding first K2,2
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Figure 10. Construction of Step 2.3 on 28 vertices
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6. Conclusion

We can now summarize our result and other related results on handicap graphs with n vertices
where n ≡ 4 (mod 8) as follows.

Theorem 6.1. Let n be a positive integer, n ≡ 4 (mod 8). Then there exists an r-regular 1-
handicap graph G if and only if r is odd, n ≥ 12 and 3 ≤ r ≤ n − 5 except when r = 3 and
n = 12.

Proof. Follows directly from Theorem 3.3, Lemmas 3.1 and 3.3 and Theorem 4.1.
From Lemma 3.3 we have the necessary conditions that r is odd and 3 ≤ r ≤ n− 5. The only

odd-regular graph with n = 4, r odd, and r ≥ 3 is K4, which is obviously not a 1-handicap graph.
For n < 28 and r = 3, 5 the existence (including the exception for r = 3 and n = 12) follows

from Lemma 3.1. The lower part of the spectrum follows from Theorem 3.3, stating that such
graphs exist whenever n ≥ 28, n ≡ 0 (mod 4) and 3 ≤ r ≤ n− 11. Finally, the upper part of the
spectrum for 7 ≤ r ≤ n− 5 follows from our result in Theorem 4.1 proved in Section 4.

For the sake of completeness, below we also state the complete characterization of 1-handicap
graphs with even number of vertices, which was published with references to the original sources
([11, 12, 15]) in [10].

Theorem 6.2. Let n be an even positive integer. Then an r-regular handicap graphG on n vertices
exists if and only if n ≥ 8 and either

• n ≡ 0 (mod 4), 3 ≤ r ≤ n− 5 and r is odd, or

• n ≡ 2 (mod 4), 3 ≤ r ≤ n− 7 and r ≡ 3 (mod 4),

except when r = 3 and n ∈ {10, 12, 14, 18, 22, 26}.

The question of existence of 1-handicap graphs on odd numbers of vertices has been barely
touched in [8] and remains widely open.
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