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Abstract

Other than Cy there are 239 connected unicyclic graphs with exactly 9 edges. We use established
graph labeling results to prove that every one of them decomposes the complete graph K, if n =
Oor1l (mod 18).
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1. Introduction

The idea of labeling graphs in order to decompose larger graphs was first introduced by Rosa
and has been used extensively since its initial development [2]. First, one must understand the
basic definition of graph decomposition.

Definition 1.1. Ler K be a simple graph, and let G = {G,, G, -+ , G} be a family of pairwise
edge-disjoint subgraphs of K. We say that G is a decomposition of K when every edge of K
belongs to exactly one member of G. If all G; € G are mutually isomorphic, then we say K allows
a G-decomposition or a G-design.

Furthermore, a unicyclic graph is a simple graph containing exactly one cycle. A bipartite
graph is a graph whose vertex set can be partitioned into two disjoint sets so that no two vertices
within the same set are adjacent. A tripartite graph is a graph whose vertex set can be partitioned
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into three disjoint sets such that no two vertices within the same set are adjacent. In this article, we
focus our attention on unicyclic graphs with nine edges.

Now, let G be a unicyclic graph on nine edges. If a GG-decomposition of K, exists, then it
is necessary that n = 0,1,9, or 10 (mod 18). However, we only consider complete graphs of
order n = 0 or 1 (mod 18) as our tools do not apply to complete graphs with order n = 9 or 10
(mod 18). Furthermore, we restrict our attention to connected graphs. In Section 2, we discuss the
definitions and tools that we use to find our decompositions. In Section 3, we discuss results and
previous research related to this article. In Section 4, we discuss our main findings. Finally, we
include an appendix of our labeled graphs used in this research.

2. Definitions and Tools

The decompositions we will be using belong to the following well-known types.

Definition 2.1. (El-Zanati, Vanden Eynden [13]) A G-decomposition of the complete graph K, is
cyclic if there exists an ordering ug, uy, . .., u,_1 of the vertices of K,, and a permutation o of the
vertices of K, defined by ¢(u;) = w41 for j = 0,1,...,n — 1 inducing an automorphism on G,
where the addition is performed modulo n.

Definition 2.2. (Bunge [11]) A G-decomposition of the complete graph K, is I-rotational if there
exists an ordering (ug, Uy, . . . , un_1) of the vertices of K, and a permutation v of the vertices of K,
defined by p(u;) = wjyq for j =0,1,....n — 2 and p(u,_1) = U, inducing an automorphism
on G, where the addition is performed modulo n — 1.

Rosa discovered the following labeling techniques to create cyclic graph decompositions [2].

Definition 2.3. (Rosa [2]) Consider the vertex set of a simple graph G on n edges, say V (G), and
the edge set E(G). A p-labeling is a one-to-one function f : V(G) — {0,1,2,...,2n} such that
the induced length function ( : E(G) — {1,2,...,n} is used to label the edge set E(G) such that

l(uv) = minf|f(u) = f(0)|,2n + 1= |f(u) = f(v)[},
where u,v € V(G) and uwv € E(G).
Definition 2.3 leads to the following theorem.

Theorem 2.1. (Rosa [2]) Let G be a graph with n edges. There exists a cyclic G-decomposition of
Ky, 11 if and only if G admits a p-labeling.

The next several definitions and theorems apply to bipartite graphs.

Definition 2.4. (Rosa [2]) A o-labeling of a graph G is a p-labeling such that {(uwv) = |f(u) —
f()| for all uv € E(G).

Definition 2.5. (El-Zanati, Vanden Eynden [14]) A p- or o-labeling of a bipartite graph G with
bipartition (A, B) is called an ordered p- or o-labeling and denoted p*, o™, respectively, if f(a) <
f(b) for each edge ab with a € A and b € B.
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Theorem 2.2. (El-Zanati, Vanden Eynden [14]) Let G be a graph with n edges which has a p*-
labeling. Then G decomposes Koy, 1 for all positive integers k.

Definition 2.6. (Freyberg, Tran [5]) A o~ -labeling of a bipartite graph G with n edges and
bipartition (A, B) is a o -labeling with the property that f(a) — f(b) # n for all a« € A and
be B, and f(x) & {2n,2n — 1} for any v € V(G).

Theorem 2.3. (Freyberg, Tran [5]) Let G be a graph with n edges and a o~ -labeling such that
the edge of length n is a pendant edge e. Then there exists a G-decomposition of both K, and
Kokt for every positive integer k.

The next set of definitions and theorems apply to tripartite graphs.

Definition 2.7. (Bunge et al. [12]) Let G be a tripartite graph on n edges and with vertex partition
A, B, C. A p-tripartite labeling of G is a p-labeling f of G such that:

* f(a) < f(v) for any edge av € E(G) where a € A.

* For every edge bc € E(G) where b € B, ¢, € C, there exists a complementary edge b'c €
E(G) where V' € B, ¢ € C such that

£ (b) = f(e)] + [f(V) = f()] = 2n.
e Forallbe B, c e C,
£ (b) = f(e)] # 2n.
This definition leads to the following useful theorem.

Theorem 2.4. (Bunge et al. [12]) Let G be a tripartite graph on n edges which admits a p-tripartite
labeling. Then there exists a cyclic G-decomposition of Kopgq forall k > 1.

We have a similar set of definitions to help address the case of complete graphs of even order.
However, we note here that the following definition and theorem only apply to graphs with a
pendant vertex.

Definition 2.8. (Bunge [11]) Let G be a graph on n edges. A I-rotational p-labeling of G is a
one-to-one function f : V(G) — [0,2n — 2] U {cc} such that:

* For some pendant vertex w, f(w) = oo.
* fisa p-labeling of G — w.

Theorem 2.5. (Bunge [11]) Let G be a graph with n edges. There exists a I-rotational G-
decomposition of K, if and only if G admits a 1-rotational p-labeling.

Much like with p-labeling, Definition 2.8 and Theorem 2.5 only help us decompose the com-
plete graph /(5. However, we can again tighten our restrictions on the definition and obtain a
stronger theorem that applies to a wider range of cases.
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Definition 2.9. (Bunge [11]) A I-rotational p-tripartite labeling of a graph G is a one-to-one
function h : V(G) — [0,2n — 2] U {co} such that:

* his a I-rotational p-labeling of G with h(w) = oo, where w has degree of one.
* Ifthe edge av € E(G)\uw, where a € A, then h(a) < h(v).

* Ifbc € E(G) withb € B, ¢ € C, then there exists an edge '’ € E(G) withb' € B, ¢ € C
such that
|h(b) — h(c)| + |h(b') — k()| = 2n.

This definition prompts the following theorem.

Theorem 2.6. (Bunge [11]) Let G be a tripartite graph with n edges and a vertex of degree 1. If
G admits a I-rotational p-tripartite labeling, then there exists a I-rotational G-decomposition of
Kok for any integer k > 1.

3. Related Results

The decomposition spectrum of graphs with up to eight edges has been widely studied, which
is what led to this study of graphs with nine edges. We direct the reader to [4], [5], [6], [7], [8],
[9], and [10] for more information on graphs with up to eight edges.

To our knowledge, graphs on nine edges are largely unexplored. It is discussed in [13] that trees
with up to 20 edges permit a 57 -labeling, and if a graph G with n edges permits a 57 -labeling, then
G decomposes Ko7 for any positive integer k. Thus, trees on nine edges decompose Kigp41. It
is also discussed in [10] that a graph on n edges with a o™ -labeling such that the edge of length
n is a pendant edge decomposes K5, for any positive integer k. Therefore, we can consider
any tree on nine edges, remove one pendant edge, then assign the induced eight-edged tree a 5+-
labeling. Reattaching the ninth edge and assigning it length 9, we obtain a o -labeling, so the
graph decomposes Kgy.

While there are a plethora of theorems that provide information on trees, we did not find previ-
ous research on forests with nine edges, and we thus believe forests on nine edges to be unexplored.
Furthermore, there is another group of students from the University of Minnesota Duluth that is
studying decompositions of complete graphs Kyg; and Kygx+1 into unicyclic, disconnected, bipar-
tite graphs on nine edges [1].

4. Main Result

Let F = {G : G is a unicyclic connected graph with 9 edges}. There are 240 members of this
family (see Appendix). An exceptional member of this family is Cy which obviously does not
decompose K, if n = 0 (mod 18) and is known to decompose K, if » = 1 (mod 18) [3]. Our
main result shows that all of the remaining members of F decompose /K, whenever n = 0 or 1
(mod 18).

Theorem 4.1. Let G € F \ {Cy}. There exists a G-decomposition of K, ifn = 0or 1 (mod 18).
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Proof. 1f G is bipartite, the proof follows from Theorem 2.3 and the labelings given in Section 5.1.
If G is tripartite, the proof follows from Theorem 2.5 or Theorem 2.6 and the labelings given in
Section 5.2. O
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5. Appendix

5.1. Bipartite graphs

The following subsection shows a o™~ —labeling of every bipartite unicyclic graph with 9
edges. We use the naming convention G;(n;t1, s, ..., t,) to denote a unicyclic graph which con-
tains C), and a tree of size ¢; appended to the j™ vertex of the cycle. We let ¢; be the size of the
largest such tree. The index ¢ is used to distinguish between non-isomorphic graphs with the same

n + 1-tuple.

5.1.1. Graphs containing a 4-cycle
A 0 1 2 *3 'Y

Figure 1. G1(4;5,0,0,0)
A 0 1 2 3 o/

Figure 3. G3(4;5,0,0,0)
A IO\N2 e3 o4
B 9 8 7 ®5
Figure 5. G'5(4;5,0,0,0)

A W3 o4
B 9 8 7 5
Figure 7. G7(4;5,0,0,0)

B o7 9 8 10

Figure 9. Go(4;5,0,0,0)

A /!O\KQ i
B 9 8 7 6 LR
Figure 2. G»(4;5,0,0,0)

A ) m?)\
B o7 9 13 10 11

Figure 4. G4(4;5,0,0,0)

Figure 8. Gs(4;5,0,0,0)

A L X§) e5 3

B L 9 10 11 12

Figure 10. G10(4;5,0,0,0)
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A

B

A

B

e6 e5 0 3 2

L 8 10

Figure 11. G11(4;5,0,0,0)

Ml s
9 7«6 o5

Figure 13. G13(4;5,0,0,0)

Figure 15. G15(4;5,0,0,0)
9 8 7 o5
Figure 17. G17(4;5,0,0,0)
'MQ :
7 6 o4
Figure 19. G19(4;5,0,0,0)
14\&2 O\
5 6 7 L] 9
Figure 21. G1(4;4,1,0,0)
/ | .6/3N0
14 o7 9 10 8

Figure 23. G3(4;4,1,0,0)
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*3
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A L 1§] e5 4 1 2

B L 13 8

Figure 12. G15(4;5,0,0,0)

0 el [

7 6 5 o3

Figure 14. G14(4;5,0,0,0)

B o7 13 11 10

Figure 16. G14(4;5,0,0,0)

A F\NZ& o4 o5
B 9 o7 8 e

Figure 18. G15(4;5,0,0,0)

2 11 10 9

Figure 20. Goo(4;5,0,0,0)

A O\Il/r [ 35) 13
B 9 8 o7 4
Figure 22. G5(4;4,1,0,0)

A 0\N6 [ P 14
B 9 8 o7 5

Figure 24. G4(4;4,1,0,0)
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A ‘Wi% 05/6 A Wz °?>/7
B 9 8 7 B 4 6 8

Figure 25. G5(4;4,1,0,0) Figure 26. Gg(4;4,1,0,0)
A I\Kg 4\ A Y ; &
B 9 7 8 LI§) 5 B 8 L0 5 11 10
Figure 27. G7(4;4,1,0,0) Figure 28. Gs(4;4,1,0,0)
A 5 o6 T A ]O\KQ °3/4
B 4 3 12 11 o9 7 B 9 8 7 )
Figure 29. Gy(4:4, 1,0, 0) Figure 30. G4 (4:4,0,1,0)
A /N | \ ) N7 %5\[2
B 9 8 7 °6 *5 4 B 9 11 12 10
Figure 31. G3(4;4,0,1,0) Figure 32. G5(4;4,0,1,0)
A W3 04/5 A ol o3 T
B 9 8 6 B 9 8 7 6 5
Figure 33. G4(4;4,0,1,0) Figure 34. G5(4;4,0,1,0)
A W2 3\ A F\K3 .4/5
B 8 o7 L35} 4 B 7 9 8 6
Figure 35. Gg(4;4,0,1,0) Figure 36. G7(4;4,0,1,0)
A NQ .3/4 : ’%5 \
B 9 8 6 B 2 11 10 9 o7 15
Figure 37. Gs(4;4,0,1,0) Figure 38. Go(4;4,0,1,0)
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AIO/[1.24V5 AIO/FQF\
B 9 g8 o7 6 B 9 g8 o7 6 )

Figure 39. G1(4;3,2,0,0) Figure 40. G3(4;3,2,0,0)
B 9 oy 6 5} B 9 oy
Figure 41. G5(4;3,2,0,0) Figure 42. G4(4;3,2,0,0)

A Nl ; V4 A Nl ; r\
B 9 8 *6 ) B 9 8 *6 4 5
Figure 43. G5(4;3,2,0,0) Figure 44. Gg(4;3,2,0,0)

A 11\.5 \ A /!NG NO
B 10 9 o7 11 12 13 B 12 11 10 o7 9
Figure 45. G7(4;3,2,0,0) Figure 46. Gs(4;3,2,0,0)

B 8 7 9 10 B 9 8
Figure 47. G1(4;3,0,2,0) Figure 48. G5(4;3,0,2,0)

A O\T/g N4 ) %2 13\
B 9 o8 *6 5 B o3 L1§] 5 4
Figure 49. G5(4;3,0,2,0) Figure 50. G4(4;3,0,2,0)

B 12 9 10 B 9 8
Figure 51. G5(4;3,0,2,0) Figure 52. Gs(4;3,0,2,0)
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A ]4/3 \ A 7(2%5 x
B ) o3 *6 9 10 11 B 1 10 o7 ®9 14 15

Figure 53. G7(4;3,0,2,0)

B 9 8 3
Figure 55. G1(4;3,1,1,0)

B 9 8 4
Figure 57. G5(4;3,1,1,0)

A ]0/[1 .\2\[4\
B 9 8 o7 6 3
Figure 59. G1(4;3,1,0,1)

i /6 %1
B 12 o7 10 8
Figure 61. G3(4;3,1,0,1)

B 11 9 7 8

Figure 63. G1(4;2,2,1,0)

A/5%
B 0 11 e7 &0 el5 ey

Figure 65. G3(4;2,2,1,0)
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Figure 54. Gs(4;3,0,2,0)

Figure 56. G3(4;3,1,1,0)

A (%5 \KII\.
B 3 12 10 9 7 15

Figure 58. G4(4;3,1,1,0)

! WQ .3/4
B 9 8 6

Figure 60. G3(4;3,1,0,1)

B 4 13 12 9

Figure 62. G4(4;3,1,0,1)

A %5 ]1\
B 13 12 7 9 10

Figure 64. G5(4;2,2,1,0)

’ /[6 ﬂ\§<1
B 14 15 o9 7 12

Figure 66. G4(4;2,2,1,0)
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0 2 L) 6 1
\I’z rg/I{Lo
Figure 68. G5(4;2,1,2,0)
2 ) 6 1

Figure 70. G1(4;2,1,1,1)
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A 13\.5 §<2\ A
B 12 9 7 13 10 B

Figure 67. G1(4;2,1,2,0)

A /[6 %2\\, A
B 15 14 9 7 11 12 B

Figure 69. G3(4;2,1,2,0)

A ><6 xﬁl
B 15 7 9 12 13
Figure 71. G5(4;2,1,1,1)

5.1.2. Graphs containing a 6-cycle

A ]5/[8 e o0 o/ A /KO e o4
B 14 10 o7 9 B 12 15 8 o7 ®5

Figure 72. G1(6;3,0,0,0,0,0)

Figure 73. G2(6;3,0,0,0,0,0)

A Nl o2 oG o4 A ./[2 o) o]
B 14 10 e7 o9 B 1 ) 3 o4 e8 o7
Figure 74. G5(6;3,0,0,0,0,0) Figure 75. G4(6;3,0,0,0,0,0)

A /2 o0 %6 A Il °2 o4 ]6\
B 11 e4 o8 7 9 B 10 9 o7 8 12
Figure 76. G1(6;2,1,0,0,0,0) Figure 77. G5(6;2,1,0,0,0,0)

g 1\? el ’ Rél ; .2/8

B 10 9 11 B 9 e7 10

Figure 78. G1(6;2,0,1,0,0,0)
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S N N 5%
B 14 10 e7 o9 13 B 9 L 10 8

Decomposing Kig, and Ki8,+1

Figure 80. G1(6;2,0,0,1,0,0) Figure 81. G5(6;2,0,0,1,0,0)
A §<6 «2& A 8\0\02 o4 F
B 12 10 9 o7 11 B 10 9 o7 12
Figure 82. G1(6;1,1,1,0,0,0) Figure 83. G1(6;1,1,0,1,0,0)

' xz IO :47./6.1
B 10 9
Figure 84. G1(6;1,0,1,0,1,0)

5.1.3. Graphs containing an 8-cycle
A o7 o]0 el12 e 4
B *9 el5 eoI16 C{g//,
Figure 85. G1(8;1,0,0,0,0,0,0,0)

5.2. Tripartite graphs

The following subsection contains a p-tripartite labeling (left hand side of each figure) and a
I1-rotational p-tripartite labeling (right hand side of each figure) of every tripartite unicyclic graph
with 9 edges.

5.2.1. Graphs containing a 3-cycle

Figure 86. G1(3;6,0,0)
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Figure 91. G4(3;6,0,0)
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Figure 96. G11(3;6,0,0)
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A °(

B

Figure 101. G4(3;6,0,0)
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A o0 10 4 3

B

Figure 106. G21(3;6,0,0)

289



Decomposing Kisy, and K111 | G. Aspenson, D. Baker, B. Freyberg, and C. Schwieder

Figure 111. G4(3;6,0,0)
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A o0 8 10 4 12 13 o0 8 7
B o2 14
C 6

Figure 112. G27(3;6,0,0)

Figure 116. G31(3;6,0,0)
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°( 7 4 12 0 8 7

Figure 117. G32(3;6,0,0)

Figure 121. G34(3;6,0,0)
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A o0

B  e2

Figure 126. G41(3;6,0,0)
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o0

Figure 131. G44(3;6,0,0)
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A o0 6 7 8 10 4

B  e2

Figure 136. G5(3;5,1,0)
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Figure 141. Gs(3;5,1,0)
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Figure 146. G13(3;5,1,0)
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Figure 150. G17(3;5,1,0)

Figure 151. G15(3;5,1,0)
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Figure 153. G20(3;5,1,0)

Figure 156. G5(3;4,2,0)
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) ) \
B { P 8 10 12 13 00
C

Figure 157. G4(3;4,2,0)

Figure 158. G5(3;4,2,0)

’ i x
B ®2 18 3 17 8 L ) 8
C 11

Figure 159. G5(3;4,2,0)

Figure 161. Gs(3;4,2,0)
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Figure 165. G12(3;4,2,0)

A 15 O\Il
B e2 18 Se17 Se10 2 eg
c 41 6

Figure 166. G13(3;4,2,0)
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Figure 171. G15(3;4,2,0)
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Figure 175. G4(3;3,3,0)
4 ‘N‘L 7 800
17 | 2 11

Figure 176. G5(3;3,3,0)
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Figure 181. G1¢(3;3,3,0)
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12

Figure 186. G5(3;4,1,1)
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Figure 191. G1(3;3,2,1)
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Figure 196. G5(3;3,2,1)
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Figure 201. G5(3;2,2,2)
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Figure 202. G4(3;2,2,2)

5.2.2. Graphs containing a 5-cycle

A *9
B ]2
C ®16
Figure 203. G1(5;4,0,0,0,0)
A 9
B 12
C ®16
Figure 204. G2(5;4,0,0,0,0)
A 9
B ]2
C *16
Figure 205. G5(5;4,0,0,0,0)
A °0 o3 6 00
B e12 8
C 16 €10

Figure 206. G4(5;4,0,0,0,0)
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A ®9
B ®]2
C el6

®16

e9 e3 2 6

®16 10

®16

e16

Figure 211. Go(5;4,0,0,0,0)
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A
B
C

A ®9 6 8

B ]2 4 00

C 16 10

Figure 213. G5(5;3,1,0,0,0)

A o9 2 6
B 012 00
C 16 10

Figure 214. G5(5;3,1,0,0,0)

A e9 0 2
B e]12 00
C e16 10

®16

Figure 216. G1(5;3,0,1,0,0)

311



Decomposing Kisy, and K111 | G. Aspenson, D. Baker, B. Freyberg, and C. Schwieder

®16

16

®16

A e9 6 00
B 12 4 5
C 16 10

Figure 220. G1(5;2,2,0,0,0)

A 9 3 6
B e]2 4 5
C 16 10 00

Figure 221. G5(5;2,2,0,0,0)
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Figure 226. G1(5;2,1,1,0,0)
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16 10 0

A 13 4
C :60\1-8 .
Figure 228. G1(5;2,1,0,1,0)
A 13
B \)\IMH °
::Xg .
Figure 229. G5(5;2,1,0,1,0)
A 2 4 o9 3 6 00
b mu gt
=

Figure 230. G1(5;2,1,0,0,1)

Figure 231. G2(5;2,1,0,0,1)
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B e7 yo 12
C o6 1 °

Figure 232. G1(5;2,0,1,1,0)

C .6./1. i6 Lo

Figure 234. G1(5;1,1,1,1,0)

5.2.3. Graphs containing a 7-Cycle

°]l3 o8 o3 00

e16 o7 5 ol5 e12 4

C el5 6 o] 4 ®16 10

Figure 235. G1(7;2,0,0,0,0,0,0)

A el3 8 e3 00
B el5 e]2 4
C el6 10

Figure 236. G»(7;:2,0,0,0,0,0,0)
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e]3

i e

Figure 237. G1(7;1,1,0,0,0,0,0)

\: “f

Figure 238. G1(7;1,0,1,0,0,0,0)

5.2.4. The graph Cy

C ei4

Figure 240. Cy

316



