Electronic Journal of Graph Theory and Applications 11 (1) (2023), 329-341

, Electronic Journal of
Graph Theory and Applications

On decompositions of complete graphs into uni-
cyclic disconnected bipartite graphs on nine edges

Alan Bohnert, Luke Branson, Patrick Otto

Department of Mathematics and Statistics,
University of Minnesota Duluth,
Duluth, MN 55812, U.S.A.

alanbohnert]1 @gmail.com, brans109 @d.umn.edu, otto0149 @d.umn.edu

Abstract

We use Rosa-type labelings to decompose complete graphs into unicyclic, disconnected, bipartite
graphs on nine edges — namely, those featuring cyclic component Cy, Cg, or Cs. For any such
graph H, we prove there exists an H-design of Kg;.1 and K for all positive integers k.
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1. Introduction

All graphs considered within are without loops, parallel edges, and isolated vertices. A de-
composition of a graph G is a set of pairwise edge-disjoint subgraphs H; such that every edge
of GG belongs to exactly one H,;. More precisely, we say that a decomposition of G is a set
¢ ={H, Hy,...,H,} where

E(G)=|J E(H,) and E(H;) N E(H;)=0, forall i # j.

=1

When the complete graph of order p is decomposed into £ with all H; isomorphic to some graph
H, we refer to € as an H-design of K, or a (K, H)-design.
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For such a graph H on n edges with labeling f : V(H) — Zs, 1, the term clicking refers to the
application of the isomorphism ¢ — 7 4 1 to the image of f. When a design is formed by clicking,
it is said to be cyclic; a formal definition will be given in the following section.

If a graph contains exactly one cycle, it is said to be unicyclic. This study concerns graphs H
that are unicyclic, bipartite, and disconnected with exactly nine edges. We then need only consider
those H which are supergraphs of Cy, Cs, or Cs. Moreover, when decomposing K, into copies of
H, the number of edges in the complete graph is necessarily a multiple of nine. Thus,

p(p—1)
9

This narrows our search down to those p with p = 0,1 (mod 9). It follows that only four values of
p demand our attention: p = 18k, p = 18k + 1, p = 18k + 9, and p = 18k + 10. The tools in this
paper allow us to address the first two values for £ > 1, leaving the latter cases subject to further
study.

For completeness, we note that the spectrum for graphs with at most eight edges has been
determined almost completely; for a comprehensive overview, see [5] and [6]. In concurrence with
our effort, another group of authors classified connected, unicyclic graphs on nine edges for which
Kig, and Kigi1 admit H-designs, see [1]. We aim to settle the bipartite, disconnected case. To
do this, we will use various tools developed by A. Rosa and many other researchers.

= 9k, for some k£ € N.

2. Tools and Methods

We begin by introducing some tools that will be used frequently in this paper. The first of
which will be Rosa’s p-labeling defined in [9].

Definition 2.1. Let H be a graph on n edges. A p-labeling f, is an injective (one-to-one) function
f:V(H)—{0,1,2,...,2n} inducing the mapping ( : E(H) — {1,2,...,n} defined as

((uv) = min{|f(u) = f(v)], 2n+1 = [f(u) = f(v)[},

where the image satisfies

{l(uv) : (w) € E(H)} ={1,2,...,n}.

We assign the elements of the integer group Zo, ., to the vertices of H such that we yield
{1,2,...,n} as the image of /, often called the length function.

All Rosa-type labelings are special cases of Definition 2.1. One is the o-labeling and it arises
when the conditions of the p-labeling are satisfied using a restrictive length function ¢'. This
labeling was also presented by Rosa in [9].

Definition 2.2. If f, can instead be constructed using the restrictive length function {'(uwv) =
|f(u) — f(v)|, then it is called a o-labeling (denoted f,).

Most of the results in this paper are cyclic designs generated by clicking o-labelings. While
we have briefly discussed this idea, we will now provide a formal definition courtesy of Froncek
and Kubesa in [6].
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Definition 2.3. An H-design £ of the complete graph K, is cyclic if there exists an ordering
(20,21, ...,%p_1) Of the vertices of K, and a permutation ¢ : V (K,) — V (K,) defined by
o(xj) = xj41 for j = 0,1,....p — 1 inducing an automorphism on &, where the addition is
performed modulo p.

A slight modification of this idea allows us to decompose the odd-regular Kgi, but we first
define another variant of the p-labeling, formed when the domain of f, is altered to include oo.
Under certain conditions, such a labeling is said to be /-rotational and will be denoted fp. It must
be noted that this idea has been known for decades. While the following definition was given by
Bunge in [2], its origins can be traced back to Huang and Rosa in [8].

Definition 2.4. Let H be a graph on n edges, one of which is incident with a vertex x of degree one
(called a pendant vertex). A 1-rotational p-labeling fp of H is an injective (one-to-one) function
f:V(H)—{0,1,2,...,2n — 2} U {oo} where f(z) = oo with the property that | constitutes a
p-labeling of H — x.

The 1-rotational p-labeling is used to form 1-rotational designs by clicking. By assigning co to
a pendant vertex, this node is able to bypass the operation. As a consequence, the modulus on the
clicking operator is reduced and the resulting design is instead called 1-rotational.

The tools presented above are not of much interest to us by themselves, but when their condi-
tions are strengthened as in [4], they can prove quite useful.

Definition 2.5. A labeling of a graph H with bipartition V(H) = X UY is said to be ordered
if f(x) < f(y) forall vy € E(H) where x € X andy € Y. When a labeling is ordered, it is
common to indicate this using a “+” superscript.

We now introduce several theorems that will be used throughout this paper. The following
result was proved by El-Zanati, Vanden Eynden, and Punnim in [3] and has been reconfigured to
the context of our inquiry.

Theorem 2.6 (El-Zanati, Vanden Eynden, and Punnim, 2001). Let H be a graph on 9 edges. If H
admits a p*-labeling, then there exists a cyclic (Kig,11, H)-design for all positive integers k.

A stronger result was proved by Fahnenstiel and Froncek in [5]. We now take their general
result and apply it to graphs on nine edges.

Theorem 2.7 (Fahnenstiel and Froncek, 2019). Let H be a graph with a o™ -labeling on 9 edges
such that the edge of length 9 is a pendant edge. Then there exists a I-rotational (Ksy, H)-design
for all positive integers k.

The proof of Theorem 2.7 is based on the amalgamation of k edge-disjoint copies of H into one
graph H*. This graph can then be shown to admit a p-labeling. We then find that Kz, allows an
H*-decomposition, which can be further decomposed into copies of /. This result builds upon one
in [4], which is loosely based on Definition 2.4 above. Since max{f,(z) # oo : z € V(H)} = 16,
we add the additional restriction that if some nonempty subset of {17, 18} is in the image of f.F, it
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is a singleton and is necessarily the image of a pendant vertex on the edge of longest length. This
change refines the proof in [5].

We end this section by noting that any such labeling is also capable of invoking Theorem 2.6;
this fact will greatly reduce computational costs in the following sections. For the remainder of this
paper, such a labeling will be called a o*- labeling and it will be the primary tool in our analysis.

3. Labeling Graphs Containing Cy

We will now begin labeling. It is natural to start with the simplest of the three families — namely,
those H featuring cyclic component Cs. For unicyclic, disconnected graphs on nine edges, we can
exhaust this family (up to isomorphism) by considering one graph.

Using the tools defined in the previous section, the process is simple — we find a o*-labeling
then convert the result into one that is 1-rotational. This allows us to show that H decomposes
Kigx+1 and K, using one labeling. For illustrative purposes, we will now demonstrate this pro-
cess, though it will be omitted from following sections.

2 2

’3

008 g 0o

4 B
3| ey 3 e | ey

2 2

5 5

9e—0—we |38 D6—00—e x
Figure 1: o - labeling Figure 2: 1-rotational p* - labeling

Figure 1 depicts an ordered p-labeling and thus can be used to invoke Theorem 2.6 directly.
However, since it was formed using the restrictive length function ¢’ and features a pendant edge
of length 9, it is in fact a o*-labeling. This allows us to use Theorem 2.7 by transforming the result
into a 1-rotational p*-labeling by mapping 18 — oc.

We now turn our attention to Figure 2 for the results of this process. Notice there is no longer
an edge of length 9; consequently, the omission of pendant vertex x yields a p*-labeling of the
induced subgraph. In terms of Definitions 2.1 and 2.2, we have a labeling of H — x given by
f:V(H—-1z)—{0,1,2,3,4,5,7,8} inducing an image of {1,2,3,4,5,6,7,8} under ¢'.

Again, the transformation from Figure 1 to Figure 2 was demonstrated for illustrative purposes
only. For the remainder of this paper, we will only be providing the o*-labelings of A without their
1-rotational p*-counterparts. The argument above can be applied to any of the following results.
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4. Labeling Graphs Containing Cg

The class involving cycle Cg is only slightly more involved. Once the cycle is established, there
are three edges to be placed — one of which must be in a separate component. With our restriction
of unicyclicity, we have eleven cases to consider.

We now show o*-labelings for all graphs H, up to isomorphism. We sort them in increasing
order of the number of trees attached to the cycle. Within each category, we prioritize those with
fewer components. Partite sets are vertically oriented and edge labels are omitted.

4 g 4 5 4 5 4 8
1§6 3§6 3 - 6
3 51 8 1 8§ 3 5
7 15 15 9<18 Py S——)
/ 7<13 15 9e———el5
9 18 16 20————o10 Te——8l6
3 5 3 503 503 5
4 8 4 g8 4 g8 4 8
1 6 1 6 1 6 1 6
7
9 9 9 0 9
7.<:13 10e———»16
16 20—l 20————eil Je—— I3
4 5 12 0
4 g8 4 8
3 6
1 6 1 6
1 8
3 5 03 5
0 7
9 9
2e———ell 20—l 20——e]|
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5. Labeling Graphs Containing C

Our final class consists of graphs H with cyclic component Cy. This section will contain o*-
labelings for all such graphs, up to isomorphism. This catalog is rather extensive — we will again
sort them in increasing order of the number of trees attached to the cycle, though those of similar
structure are grouped together. We prioritize those /' with fewer components.
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4 8 3 6 4 7 2 5

5 6 5 7 6 8 4 6

1 10 3 11 11
10 9

3 1 8 1 0 8
9

0 0 0 le—10

2 5 3 6 2 5 0 7

4 6 5 7 4 6 2 6
9 2 9 5

10
3~<11
12

10
11

le———10
3oe———o]]
12— e 14

go———09

4 5
3 7
10
12
1 6
0 8

11
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VAL A

2 6
5 7
8
11

3 9
4 5
11
7
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1 6 4 8 1 6 5 9
| % 5 3 % 5 3 % 5 | 6
4 11 2 10 4 11 4 11

2
N 0 7 8 Oo———8
2 8 9 Qe———o9 loe——10
1 4 2 5 4 7 4 7
3 5 4 6 6 8 6 8
0 6 1 7 1 9 3 9
7 8 0 0
10 L — ) — o
2 < ’ N 5 -<: 0 o
11 Qe— @9 11 Se—e12
1 4 3 5 1 4
3 5 1 4 3 5
9 6 9
11 7 11
12 8 12
— ’

[\

5 7
3 6

10
2 8

336



On decompositions of complete graphs into unicyclic disconnected. . .

| Alan Bonhert et al.

1 6 1 6 1
2 4 2 4 2
7 16 15 To—l4
7
/ 8<16 15 Se—— I3
8 15 17 Se———o17 Se—ol7
3 3 3 3
0 20 20 20 2
1 5 1 5 1 5 1 5
7 7 7 7
8 16 15 6'<:13 jo—o]1
— 8<16 14 6e——ol4
9 18 17 8e———o17 Se——ol7
1 501 5 2 2
1 3 1 3
0 30 3
6 ¢ O 50 5
6 6
2 7 2 7 7 7
16 4e———eI2 16  4e———oI2
8< 8<
17 Se——o17 17 Se——o17
2 6 2 6 9 9
0 30 3 2 3 2 3
1 501 5.0 40 4
8 8 1 6 1 6
7.<:15 do— ]2 8<16 Toe—l5
16 Te—l6 17 8e——el7
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1 5 1 6 1 6 1 6
0 3 0 8 0 8 0 8
3 4
6 7 3 4 3
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2 7 2
4 2 5
8 5

To———016

Toe——e016

2 4
1 6
0 9
8 7

1 3
0 5
4 8
2 7

1 3
0 5
4 8
2 9

4
1 2
0 5
7
6
8
3o—0]2

p—
9]

~ O
oo

Toe———e016

4 5
1 8
0 6
2
3

5 7
0 8
1 6
2 3

2
1 5
0 8
3
4 6

To——e16

2
1 5
0 8
4 6
7
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1 1 1 10 10
3 7 3 7 3 7 3 7
6 8 6 8 6 8 6 8
5 14 5 14 5 14 5 14

9.<:18 Qe———e9 11
16 4o——o]] 9e—————e16 0 9
10 14 1 10

3 7 6 7 3 7
6 8 3 8 6 8
12 5
5 14 2 10 5 14
0e———e9 Qe———o9 Qo————e9
6. Results

With these labelings, we have exhausted the 90 nonisomorphic unicyclic, bipartite, discon-
nected graphs on nine edges. We now discuss the significance of these labelings in our decompo-
sition of Kygxy1 and Kgy.

Each labeling is capable of invoking Theorem 2.6 and can then be used directly to form a
(K1sk+1, H)-design. This is done by clicking the labeling until the edge set is “complete.” In
decomposing Kgi1, the modulus on the clicking operator is taken to be 18k + 1. Moreover, the
utility of this operation is that it does not alter the edge lengths — that is,

i =gl =1G+1) =G+l

The repeated application of this idea will yield 18k? + k edge-disjoint copies of H and embed
them onto Kg;.1, eventually exhausting the edge set. The result is the desired cyclic H-design of
Kigk1 1, for any non-negative integer k.

The process is a bit more complex when we decompose the odd-regular K. After transform-
ing our o*-labeling into one that is 1-rotational, we repeatedly click the result (mod 18% — 1) to
form a 1-rotational decomposition of Kgy, for any £ € N. For more information on 1-rotational
decompositions, see [2].
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In this paper, we have shown o*-labelings for all unicyclic, bipartite, disconnected graphs on
9 edges — each with the special property that there exists a pendant vertex on the edge of longest
length. Combining these with Theorems 2.6 and 2.7, we are left with the following result.

Theorem 6.1. Let H be a unicyclic, bipartite, disconnected graph on 9 edges. Then there exists
H-designs of Kis+1 and Ky for all positive integers k.

Proof. For all nonisomorphic unicyclic, disconnected graphs on nine edges featuring Cy, Cg, or
Cs, we have presented o*-labelings. It follows from Theorems 2.6 and 2.7 that H decomposes
Kisk1 and Kgy, for all positive integers k. This completes the proof. [

7. Future Research

We note there are many classes of graphs that have not been cataloged. This paper focuses
on bipartite graphs, though decompositions of K, into non-bipartite /1 surely exist. Further study
may be conducted for those H featuring cycle C5, C’s, or C, though the former class may be large
enough to warrant its own paper. We also remind the reader that we omitted from consideration
K, for p = 18k + 9 and p = 18k + 10, as our tools are not suitable for these values.

For graphs with more than nine edges, the prospects of thorough research are slim. The com-
binatorial explosion involved makes it a rather unrealistic catalog, though perhaps some lemmata
could be introduced to expedite the process.

Furthermore, we note that surprisingly few papers have been published regarding the decom-
position of complete graphs into non-spanning, acyclic subgraphs (i.e. forests). Most of what is
known concerns the decomposition of complete graphs into isomorphic trees and can generally be
traced back to Huang and Rosa in [8], though we note some progress has been made in cataloging
forests F' on n edges for which K5, and K, ; admit F'-designs — namely, caterpillars in [7] and
linear forests in [10]. It may be worth further exploring this territory and expanding our catalog by
adding those on nine edges, should decompositions of Kg;.1 and Kg; be allowed.

Acknowledgement

This paper is the compilation of five projects from the University of Minnesota Duluth 2021
graph theory class. We would like to acknowledge Elijah Carlson, Holly Fearn, Alex Gran, Lucas
Harrison, Yao Kang, Alexander Lamannis, Jan Matas, Trevor Mihalchick, Hannah Pouliot, Rachel
Solarz, Fares Soufan, Karl Thorson, Ethan Turan, Dalena Vien, and Professor Dalibor Froncek for
their contributions to this work.

We would also like to thank Coy Schwieder for aid in image generation.

References

[1] G. Aspenson, D. Baker, and C. Schwieder, Decomposing Kg, and K;g,1 into isomorphic,
connected, unicyclic 9-edge graphs, Electron. J. Graph Theory Appl. 11(1) (2023), 275-318.

[2] R.C. Bunge, On I-rotational decompositions of complete graphs into tripartite graphs, Opusc.
Math. 39(5) (2019), 623-643.

340



On decompositions of complete graphs into unicyclic disconnected... | Alan Bonhert et al.

[3] S.I. El-Zanati, C. Vanden Eynden, and N. Punnim, On the cyclic decomposition of complete
graphs into bipartite graphs, Australas. J. Combin. 24 (2001), 209-219.

[4] S.I. El-Zanati and C. Vanden Eynden, On Rosa-Type Labelings and Cyclic Graph Decompo-
sitions, Math. Slovaca 59 (2009), 1-18.

[5] J. Fahnenstiel and D. Froncek, Decomposition of complete graphs into connected unicyclic
bipartite graphs with eight edges, Electron. J. Graph Theory Appl. 7(2) (2019), 235-250.

[6] D. Froncek and M. Kubesa, Decomposition of complete graphs into connected unicyclic
bipartite graphs with seven edges, Bull. Inst. Combin. Appl. 93 (2021), 52-80.

[7] D.X. Li, Isomorphic decomposition of complete graphs into graceful forests, J. Math. Res.
Exposition 12(4) (1992), 612-616.

[8] C. Huang and A. Rosa, Decomposition of complete graphs into trees, Ars Combin. 5 (1978),
23-63.

[9] A. Rosa, On certain valuations of the vertices of a graph. Theory of Graphs: Internat. Sym-
pos., Rome, 1966 (P. Rosenstiehl, ed.), Dunod/Gordon and Breach, Paris/New York, 1967,
349-355.

[10] S. Ruiz, Isomorphic decomposition of complete graphs into linear forests, J. Graph Theory 9
(1985), no. 1, 189-191.

341



