Electronic Journal of Graph Theory and Applications 10 (1) (2022), 181-197

, Electronic Journal of
Graph Theory and Applications

The matrix Jacobson graph of finite commuta-
tive rings

Siti Humaira*?, Pudji Astuti®, Intan Muchtadi—Alamsyahb, Ahmad Erfanian®

«Doctoral Program of Mathematics, Faculty of Mathematics and Natural Sciences,

Institut Teknologi Bandung, Indonesia

bAlgebra Research Group, Faculty of Mathematics and Natural Sciences,

Institut Teknologi Bandung, Indonesia

“Department of Pure Mathematics and the Center of Excellence in Analysis on Algebraic Structures,
Ferdowsi University of Mashhad, Mashhad, Iran

sitthumaira2610@ gmail.com, pudji @itb.ac.id, ntan @itb.ac.id, erfanian@um.ac.ir

*Corresponding author.

Abstract

The matrix Jacobson graph was introduced in 2019 as a generalization of Jacobson graph and n-
array Jacobson graph. Let R be a commutative ring and J(R) be the Jacobson radical of the ring
R. The matrix Jacobson graph of the ring R of size m x n, denoted by J(R)™*", is defined as
a graph where the vertex set is R™*™\ J(R)™*" such that two distinct vertices A, B are adjacent
if and only if 1 — det(A*B) is not a unit in the ring R. Here we obtain some graph theoretical
properties of J(R)™*™ including its connectivity, planarity and perfectness.
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1. Introduction

The concept of a Jacobson graph of a commutative ring was first introduced by Azimi (2013).
Let R be a finite commutative ring. We denote U (R) as the group of units of R and m as a maximal
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ideal of R. The Jacobson radical J(R) of R is the intersection of all maximal ideals of R. Jacobson
graph of R, denoted by Jg, is a graph where the vertex set is R\ J(R) and two distinct vertices x, y
are adjacent if 1 — xy ¢ U(R) (see [1]). The work of Azimi is further continued for other graph
theoretical aspects (see [2],[3],[6],[9]).

Ghayour (2018) generalized the notion of Jacobson graph of a ring to n array Jacobson graph.
We denote by J7 the graph where the vertex set is the set of column vector of size n in R™\ J(R)"
and two distinct vertices a, b are adjacent if 1 — a'b ¢ U(R). We call this graph the n-array
Jacobson graph of R (see [5]).

In this paper, R will stand for a finite commutative ring. We define the notion of a matrix
Jacobson graph as an extension of the notions a Jacobson graph and an n-array Jacobson graph.
We denote by J " the graph having vertex set R™*"\J(R)™*" and two distinct vertices are
adjacent if 1 — det(A'B) ¢ U(R). We call this graph the matrix Jacobson graph. As a result,
the every n-array Jacobson graph of R can be considered as a matrix Jacobson graph of R of size
n x 1.

For the rest of this note, we consider that the elements of R™ are in the form of row vectors
with entries in R. Note that R" is a free R-module of rank n. Let {é4,...,¢é,,} be the standard
basis of R™ and {ey, . ..,e,} be the standard basis of R™. Let A € R™*". Any A € R™*™ can be
written down as

a a
a . a -
A=(ag)=In| . | =@ )| T [ =D éa
: : i=1
an, an,

where a; = (a;1, @iz, - - ., ain) € R™.

A local ring is a ring with a unique maximal ideal. A local ring R with maximal ideal m is
denoted by (R.m). It is well known that for a local ring (R, m), the quotient ring R/m is a field. If
a ring has two or more maximal ideals then it is called a non local ring. Let R be a finite non local
commutative ring. In this case, the ring R can be decomposed as a direct sum of finite local rings

R=R & - &Ry

for some local rings (Ry,my),. .., (R, my), (m; is the maximal ideal of R;) associated with quo-
tient fields Fi, ..., Fj. As aresult, the Jacobson radical and unit of R are

J(R)=J(R) @ ®J(Ry)
UR)=UR) @ - @U(Ry).

Further, the matrix over R of size m X n can be denoted as
RmXTL — R71n><n @ ... @ R’ZIXTL
Particularly, for A € R™*", we have

A:Alezx---xAk:xleAi
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where A; € R["*". For the case m = n, the determinant of A can be written as
det(A) = det(x"_| A;) = xF_ det(A,).
For A, B € R™*", we also have
A'B = xF (AL.B;)and A+ B = x*_ (A, + B;).

Let F be a field and A € F™ ™. An index set of A, denoted by I(A), is defined as a set that
contains the indexes of the row vectors of A that form a basis of ™. That is

1(A) = {(jl,jz,---,jn) | 1< i < jig1 < m, det (Zegaﬁ> 20 } (1)

i=1

The aim of this paper is to identify some characteristics of the matrix Jacobson graphs for finite
commutative rings. In section 2, we discuss about the connectivity of the graph. In section 3, we
characterize the matrix Jacobson graphs which are planar. Finally, we identify rings such that the
matrix Jacobson graphs are perfect.

2. Connectivity

One of properties that is usually investigated to understand a graph is the connectivity. In this
topic, there are some results concerning Jacobson graphs [1, Theorem 2.2] and the matrix Jacobson
graph of fields [10, Theorem 4] that will be utilized to derive our result.

Let R be a finite local commutative ring with maximal ideal m. Let R be the quotient field of
R with respect to the maximal ideal m, R = {a| a 6 R} with@ = {a + z| x € m}. Since Ris a
field, then U(R) = R\0. Letu(R) = {a € R|a ! =a} and W' (R) = {a € R|a ! # a}. The
vertex set of the square matrix Jacobson graph, J;*" can be decomposed into

VERE") = Ve UVim YU Vem):

with Vg = {A € V™) |det(4) = 0}, Vi = {4 € V(35™)[det(4) € u(R)}, and Vyy(z) =
{A e V(IE")|det(A) e W(R)}.
We may write

U Vfﬁ

zcu(R)
with VT € u(R),Vz = {A € Vi@ ldet(A) € T}, and
U VE?
zew' (R)

with VZ € W' (R), Vz = {A € Vg |det(A) € T}.
We generalize the matrix Jacobson graph to the class of local rings by grouping the vertices
based on the determinant of its quotient field, as shown in the following theorem.
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~NM XN

Theorem 2.1. Let (R, m) be a local ring. The graph 3" consists of subgraphs:

o |V5| empty subgraphs,

o |u(R)| components complete subgraphs, where for any T € u(R) the set Vi forms a complete
subgraph.
|[w'R| Rl

components complete bipartite subgraphs, where for any T € W' (R), the set Vy U Vo
forms a complete bipartite subgraph.

Proof. Let (R, m) be a local ring.

o Let A € Vywithdet(A) € 0 =m. Takeany B € V(J5*"). Then det(A'B) = det(A").det(B)
€ m. We obtain 1 — det(A*B) € 1 —m. Thus 1 —det(A*B) € U(R). Hence A is an isolated

vertex and V{ has an isolated vertex set in J5*"

e Take 7 € u(R). Take A, B € V. Then det(A*B) € 1 +m. We have 1 — (det(A'B)) €
1 —(1+m) =m. So Ais adjacent to B. Take any vertex C' € V(J%")\Vz Then
1—det(A'C) ¢ m. So A is not adjacent to C'. Hence V% is a vertex set that forms a complete
subgraph K|y-|. The number of components of the complete subgraph is [u(R)|.

o Let7 € W(R). Itsinverse is 7! = z—1 € w/(R). Take X € Vzand Y € Vi1. Then
det(X'Y) = det(X").det(Y) € 1 + m. We have 1 — det(X'Y) € m. So X is adjacent to
Y Without loss of generality, take any A € V; and B € V(J")\V;z-1, then det(A'B) ¢
z? +m, so that 1 — det(A'B) ¢ m. So A is not adjacent to B. In other words, we can say
that all vertices in V% is only adjacent to V-1, and all vertices in V-1 is only adjacent to V%.
Hence the set V5 U V-1 forms a complete bipartite subgraph Ky, v, |. The number of its

components is |/ (R)]/2.

]

~NNMXN

Based on Theorem 2.1, we can conclude that I% is a subgraph of J3,*".

Lemma 2.2. Let F be a finite field where |F| = q. The graph 33" has vertex set V (J") =
ann\onxn Let
VIE") =VoU Vi

with Vypy = {A € V(IF")|det(A) € U(F)}. Let
Vo) = Uieum) Vi,

where Vi € U(F), V; = {A € Vy(p)|det(A) = i}.
Then |V (3™ = ¢"° — 1 consists of

'n,—l ’I’Z—l n __ ’L
Vol =" —1—[](¢" — ¢') and Vi U(F),|Vi| = Hi:0q<z 1 2
=0
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Proof. First, we obtain that |V (3%*")| = ¢ — 1 since V (J2*") = F"X"\O”X" and |F""| = ¢
Second, we will prove that |V )| =115 (¢ — ¢') sothat |[Vp| = ¢"° — 1 — [y (¢" — ¢).
Let A € Vy(r), with
a
a2

A=
an

Then det(A) # 0, which implies that the row vector set of A, {ay,...,a,} is a linear independent
set. Vector a; is a non zero vector. Since there are ¢" — 1 non zero vectors in F™, there are ¢" — 1
ways to choose a;. Assume a; is selected, a non zero vector a, must be linear independent with
a;, ap must be outside of the subspace (a;). So a; can be chosen from¢" — 1 —¢—1=¢" —¢q
vectors outside subspace (a;). If a;, a; have been chosen, the non zero vector ag must be linear
independent with {a;, a;}, so that ag must be outside of the subspace (a;, a;). Therefore, we can
choose ¢" — 1 — ¢*> — 1 = ¢" — ¢* vectors outside subspace (a;, a,). In the same way we may
count the number of ways to choose a, etc. until a non zero vector a,, can be chosen from ¢" — 1 —

¢" ' —1 = ¢" — ¢" " vectors outside subspace (ay, ..., a, ;). Hence |Vi )| = [1' (¢" — ¢')-
Since Vo = V(3" \Vu). Vol = [VIF)] = Vo) | = ¢ —1-[5 (" =)
Third, we will prove that Vi € U(F), |V;| = %.

Let i € U(F). Consider the map

ap ial

ag ay

>
a, a,

Note that the mapping \; can be considered as a multiplication of any matrix in V; by the matrix

i 0 0 0
01 0 0
N=| 00 1 0
00 0 ... 1

Since det(\;) = @ # 0, A; is an bijective map, so that |V;| = |V;|. Based on the second part, we
obtain that Vi (py = H?:_Ol(q” — ¢") and Viy(r) = Ujep () Vi. Then

Vol = D Vil = (g =Dl

I€U(F)

Therefore |V}| = % with [ € U(F). O
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The theorems describing the connectivity of the matrix Jacobson graph of size m x n of a field
have been discussed in [10, Theorem 6,7]. Let (R, m) be a local ring with its maximal ideal m. Let
R be the quotient field of R by the maximal ideal m. Let A = (a;;) € R™ ™. We define A as a
matrix with the element @;; = a;; + m.

Theorem 2.3. Let (R, m) be a local ring with its maximal ideal m. Let A,B € V(J%*") and
A#B.

1. If A+ B, then A is adjacent to B if and only if A is adjacent to B.
2. If Ais not injective, then A is an isolated vertex in J7 "
3. If Ais injective and A = B, then d(A, B) < 2.

Proof.

1. Let A be adjacent to B. Then T — det(A'B) = 0 = m if and only if 1 — det(A'B) € m
Hence A is adjacent to B.
2. Let A be not 1nJectlve Take any vertex B € V

then 1 — det(A B) #m. Then 1 —det(A'B) € 1 — det(A B) # m. Hence A is not adjacent
to B. We can conclude that A is an isolated vertex.

3. Let A be injective. Write A = Y7, éla; with {&y,, ..., a,} is a linear independent set in
R". Since A = B, we have {by,, ..., by, } is a linear independent set.
Letdet() ;" €. a,) = @ with o ¢ m, then there is anm; € msuch thatdet(} " € a;,) =
o + my. Note that det( ", €} ay,) — det(d ", € by,) € m, so there is an my € m such
that det(D 7, e by,) = a + my. If @ = o' then A is adjacent to B. If o« # o™, we can
choose {aj, }7, such that det(}""" , e aj ) = o~ '. Therefore,

an

(JR™). Since A is an isolated vertex in Iz

det(At(Z é ay ) = det Zek ay, )’ .det( Zek ap)=(a+m)a "t €l+m

i=1
Meanwhile, we also obtain
det(B*( Zek ay ) = det( Zek by, )" .det(( Zek aj, ) = (a+mg)at €1 +m.

So
n
§ -t /
=1

Therefore, d(A, B) < 2

Based on the above theorem, we have the following corollary:

Corollary 2.4. Let (R, m) be a local ring associated with its quotient field of order 2. If m > 3,
then diam((J7*%)*) = 2.
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The next theorem will help us figuring out the form of the matrix Jacobson graph in specific
cases.

Theorem 2.5. Let I be a field of order 2. Let A, B € V(J;?H)Xn). The following statements are
true:

1. If|I(A) N I(B)| is odd, then A is adjacent to B
2. If |[I(A) N I(B)] is zero or even, then A is not adjacent to B.

Proof. We know that multiplying a matrix by a permutation matrix on the left equals exchange
rows according to the permutation. Let A, B € V(3'7*™). Note that det(A' B) = det(A! P! PB)
for any P permutation matrix of size (n + 1) x (n + 1). If [[(A) N I(B)| = k, then there is a
P such that I(PA)NI(PB) = {(1,...,n),(2,...,n+1),(1,3,4,...,n+1),...,(1,.... k —
2k,...,n+ 1)}

Let two distinct vertices in V(3V"™), A, B, where rank(A) = rank(B) = n. We may
write A = S " éta;, B =3 etb We divide the relation between A and B by two cases:
First,let I(A)NI(B) = 0. Let{a;,...,a,} and {by,...,b,_1, b, } be linear independent in F™.
It is clear that if a,,.; = 0, then A ~ B. Since I(A)NI(B) =0,{ay,...,a, 1,a,,1} is linearly
dependent. Thus, a,,,1 = Z;le a;a;, b, = Z?:_ll Bib;fora;, f;=0o0r1,Vi=1,...,n—1. We
have ; = 0and B; = 1Vi = 1,...,n — 1. Assume that oy,...,a¢ = l and By41,...,8,-1 = 1
forsome / € {1,...,n — 1}. Then

det(A'B) = det (> ;- 3 "a'b; +alb, +al, bnt1)
= det <Zz 1 atb +an21 l+1b _'_Zz 19y TL+1>

t

a by + b,
=l b; + b,
= det aj by
Ap—1 bnfl
an bl+1 + -+ bn—l-

Since {bj;1 + - -+ + b,_1} is a linear combination of b, 1, -+ ,b,_1, then det(A'B) = 0. So A is
not adjacent to B.

Second, let |/(A) N I(B)| = k for k € N. We may assume that {a;,...,a,} and {by,...,b,}
are independent sets of F", and a,41 = Y., aa;, by = > o, fibi for o, 5; = 0 or 1,
Vi=1,...,n. Since |[I(A) N I(B)| = k, we also may assume o, ..., 01 = 1, fB1,...,0k_1 =
1, ; =0and §; =1Vi =k,...,n. Hence, assumethatak,...,oq =1land fB41,...,0, = 1for
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some ! € {k,...,n}. Then

A'B = Y ab;+a; by

= Yr,ab,+(aj+-+ag1+ag+---+a) (b + -+ by + b +by)
t

a, by+---+b,y + by +---+b,
a by +bs3+ -+ b —+ b1+ -+ b,
aAk—1 b1+b2+"'—|—bk_2 -+ bl+1+"'+bn

ag by+---+bgy +by +b1+---+b,
ay byt +byy +b +byi -+ by
Aj+1 b1

a, b,

A b3

From the above equation, if & is odd, then rank(B’) = n such that det(A'B) = det(A’).det(B’)
1. Thus A ~ B. If k is even, then rank(B’) = n — 1 such that det(A'B) = det(A’).det(B’) = 0.
Thus A ~ B.

IS

Example 2.6. Based on Theorem 2.5, we can easily describe the matrix Jacobson graph of size
(n+ 1) X n over F of order 2 by grouping it into indexes. For example, see the matrix Jacobson
graph over Zs, 3%;2 in Figure 1. There are 7 groups of vertices with different indexes. Let A €
V(Cj%;?). If |I(A)| = 1,3, the vertices in the same index will form a complete induced subgraph,

and if |I(A)| = 2, the vertices in the same index will form an empty induced subgraph.

We generalize the above result on the diameter of the matrix Jacobson graph to the case of non
local commutative rings, as shown in the following theorem.

Theorem 2.7. Let R be a non local commutative ring. The following statements about the matrix

Jacobson graph of R, 3", are true.

~M XN

o Ifm <mn, then J,"" is an empty graph,

o If m = n, there are two components consisting of empty subgraphs for every A € V(J}*")
with rank(A) < n and connected subgraphs with diam(J%")* < 2,

e If m > n, then there are two components consisting of empty subgraphs for every A &
V(IE™") with rank(A) < n and connected subgraphs with diam(J5")* < 4.

Proof. Let R=R1 & --- P Ry, k> 2.

e Letm <nand A € V(JE*") then A will be isolated because VC € V (J5™"), det(A'C) =
0.
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{AllAY={(1,2),(1.3)1

{AIlA)={(1,2 TAINA)={(2,3)}) (A)={(1,3)1

{AllA)={(1,2),(2,3)}} {A|I(A)={(7,3),(2,3')}}

AllA)={(1,2),(1,3).(2.3)1

)
{AllA)=}

Figure 1. graph 3%“

o Letm = nand A € V(JE™"). In case rank(A) < n, then A is an isolated vertex. In
other cases, let B € V(33 "),A # B. If rank(A) = rank(B) = n, then there are
i,j € {1,...,k} such that det(A;) € U( ;) and det(B;) € U(R;).

Ifi =7, then
A~ (Ox - x A7 x -+ x0) ~ B.

(3

If ¢ # j, assuming ¢ < 7, then
Anv(0x - X AT X x Bt x - x 0) ~ B,
So diam(J")* < 2.

o Letm > nand A € V(JR™"). If rank(A) < n, then A is isolated. Otherwise, let B €
V(IE*"), A # B and for rank(A) = rank(B) = n, then there are 7, j such that det(A;) €
U(R;) dandet(B;) e U(R;).

If i = j, by Theorem 2.3, for A; = B; then d(A;, B;) < 2. Obviously d(A, B) < 2. For
A; # B; then there are Cy, Cy, C5 € V(J1") thus
AiNclNCQN03NB
Hence we have
A~ (0% xCpx---x0)~(0x---xCyx--+x0)~(0x---xC3x---x0)~ B.

If i # j, then there are A} € R\ J(R;)™"" such that det(AjA]) = 1 and B} €

R\ J(R;)™*" such that det(BtB’) = 1. Thus
A~ (00X o x Al x -+ x Bj' x -+ x0)~ B.

(]

We conclude that diam(J3 ") < 4.
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3. Planarity

In this section we give conditions when the matrix Jacobson graph is planar. First, we review
the planarity of Jacobson graphs. By Theorem of Kuratowski (in [8] or [6, Theorem 5.14]), a graph
is planar if and only if there is no subgraph which is a subdivision of K5 or K33 .

Theorem 3.1. [1] Let R be a finite ring. Then J g is planar if and only if either R is a field or R is
isomorphic to one of the following rings:

o Ly, Lo ® T, Ls|z)/{x?) of order 4;
o Z¢ of order 6;

o Zs, Lo®ZLy, LoD lo®La, Lolz]/{(x3), Zylx]/ (22, 22), Zs|x] /(x> +2+1), Zs[z]/ (27, 2% —2),
Zolz,y]/{x,y)?* of order 8 ;

o Zg, L3 ® Zs, Ls[x]/{(x?) of order 9.
In the following we extend the above results to the square matrix case 5" with n > 1.
Theorem 3.2. Let R be a finite ring. Then 3" with n > 1 is not planar.

Proof. Let R be a finite ring with [R| = ¢ > 2andn > 2. Let V; = {A € V(JE")|det(A) = 1}.
By Lemma 2.2 we get

’%J:Iﬁ3@”—¢) (> = ") ¢* —¢")

> > (22— 1)2=6.
P 1 > )
As a result, we obtain a graph J'*", which contains the subgraph K. Then, based on Kuratowski
theorem, we have J%*" with n > 2 is not planar. O

Theorem 3.3 ([11]). Let R be a finite ring and n > 2. Then J'% is planar if and only if
o n = 2 and either R = 7 or Z3; or
e n=3and R = 7.

Theorem 3.4. Let R be a finite ring and m > n > 2. Then J}3, " is not planar.

Proof. Without loss of generality, we assume that /" is a field. For any X € V(J7*"), we may

write
X1

X = : where fori =1,...,m,x; € ™.

Xm
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X1
I(X): (]17]277]n)|1§]2<j1+1§m7 det #O
Xijn

Denote by Uy = {X € V(IJF™")I(X) ={(1,2,..,n)}}. Let A € U;. We may write

a

A a,

()]0

0
where A" € R"*" 0 € 0"~ "*". By Lemma 2.2, |V;| > 6, hence |U;| > 6. Since there is K¢ as a
subgraph of J'% ™" with its vertices in U;. Thus, ™" with m > n > 2 is not planar. [

4. Perfectness

Let G be a graph. A clique in G is a maximal complete subgraph and we denote w(G), the
number of cliques in (G, which is defined as the size of the largest clique in G. A k-vertex coloring
of (G is an assignment of & colors to the vertices of GG such that no two adjacent vertices have the
same color and the chromatic number of G is the smallest number & for which G has a k-coloring.
A graph G is called perfect if every induced subgraph S of G, the clique number of S is equal to
its chromatic number.

Theorem 4.1. [7] (Strong Perfect Graph Theorem) A graph G is perfect if and only if neither G
nor complement graph of G contains an induced odd cycle of length > 5.

By using the strong perfect graph theorem above we are able to determine the perfectness of
matrix Jacobson graphs. We have Jr is perfect if and only if Jr,s(r) is perfect and J'% is perfect if
and only if J7, JJ(R) is perfect. For the matrix Jacobson graph, we have the following relation.

Lemma 4.2. Let R be a finite local ring. Then 35 ™" is perfect if and only if I} /XJ" is perfect.

Proof. (=) By contraposition, let JTX” be not perfect. Without loss of generality, let the five ver-

tices Ay, As, Az, Ay, As induce a 5-cycle in JTX" Based on Theorem 2.3 the vertices A, As, Az,

Ay, As will induce a 5-cycle in 37 *". Thus, JmX” is not perfect.
(<) Suppose J5*" is not perfect. Let Ay, ..., Ay induce a k-cycle in IR with k > 5 and
odd. Based on Theorem 2.9 and since ‘ij” is perfect, A; = A; for some ¢ # j. We obtain:

o If A, = Ay and A, # Aj, then A, adjacent to A3, contradiction.

o If Ay = Ay, = A3 # Ay, then A, adjacent to A, and A, adjacent to A4, contradiction.
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o If A = Ay #* A, then A, adjacent to A3, contradiction.
Hence, A, ..., A is a k-cycle. [

The result about when the Jacobson graphs and n-array Jacobson graphs are perfect have ex-
plained in [1] and [5]. The ring such that the matrix Jacobson graphs are perfect is given in the
following theorem.

~NNXTY

Theorem 4.3. Let R be a finite local ring. The square matrix Jacobson graph over R, 33" is a
perfect graph.

Proof. We know from Theorem 2.4 that a square matrix Jacobson graph over R consists of an
empty subgraph, a complete subgraph, and a complete bipartite subgraph. It is clear that this
graph does not have an odd cycle induced subgraph length > 5 and neither does the complement.

~NMXN

Therefore graph J}"" is a perfect graph. [

Theorem 4.4. Let F' be a field. The following statements are true:
1. If |F| = 2 then

o 3% is perfect,

e forn > 3, the graph "™ is not perfect,

~MXn

e form > n + 1, the graph I " is not perfect.

2. If|F| > 3, m > n then 33" is not perfect.
3. If m < nthen J7*" is perfect.
Proof. 1. Let |F| = 2.

e Letus look at graph J3.°° on Figure 1. There is no k-cycle induced subgraph with £ is
odd > 5. So 33 is a perfect graph.

~3X2

o Let |[F| =2 and n > 3. Let {ay,.. an} be a standard basis of F. Then we may
choose A; = Z" az, A2 = Z ela, + e ja;, A3 = Y- 11 ela; + ela; +
el a3, Ay =ela; —{—Zl ,ea;_1, As=>"  ela;+e’ ja; +assothat Ay,..., A;

will induce a 5-cycle. Hence graph 37" is not perfect.

e Letm > n+ 1. Let {a;,...,a,} be a standard basis of /. Then we may choose
A1 Zz 1 Zaz, A2 Zz 1 Zaz—i—enﬂal, Ag Zz 9 Zal—i—enﬂal—i—enwag, A4
Yoroela; +el ja el ay, Ay =" ela;,+e ja;+e ,ar sothat Ay, ..., A;

will 1nduce a 5-cycle. Hence for m > n —1— 1, J7*" is not perfect.

2. Let « € Fwitha™! = a,a+1 = 0. Let {a;,ay,...,a,} be a basis of F". Then we
rnay choose A; = > 1 éla;, Ag =3 1 1é az + én+1a1, Ag =" éta; + e qay, Ay =
aécla; + ZZ 9 éta; + en+1a1, Ay = ZZ 1 éla; + aen+1a1, so that Ay, ..., A5 will induce a
5-cycle. Hence for m > n, J%"" is not perfect.
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(X2,X0) (XO’XZ)
X5 %) (X1:X0) X3X4) (X1:X5)
o0 X1) XXy (XyXo) XoXy) (XX g*1%o) ° o
XoXq) (X3:Xy) (X1:Xo)
) )
(Xg:Xo) Xo:Xo) Xo:Xo)
Figure 2. graph 3%;9?22 , 3%3%’22 and 32:6523
3. If m < n and since graph J7»*" is the empty graph, then neither J7+*" nor complement of
grapn Jp pty grap F p
JE™ contain an induced odd cycle of length > 5. We have J7=*" is perfect. If m = n then
by Theorem 2.1 the components of graph J-*" contain an empty subgraph, two complete
y p grapn pty grap p

~AMXT

subgraphs and complete bipartite graphs such that J7.*" is perfect.
O]

Let R=R & ---@® Ry, k> 2. Forany i € {1,...,k} and ¢; € R;, define X, = {A €
R}*"|det(A) = ¢;}. Using these notations, for any A = xF_ | A; we have A; € X, for some
¢; € R;. In this case, we denote A € (X, ..., X,,).

Theorem 4.5. Let R= R, & ---® Ry, k > 2 be a non local ring. The matrix Jacobson graph of
R, 33", is perfect if and only if m < n or m = n and

1. fork =2, R= Ry ® Ry with |Ry|,|Rs| < 4 and R; is a field,
2.f0rk:3,RgZQ@ZQ@ZQOFRgZ,g@ZQ@ZQ
3. fork:4,R%‘Z2€BZQ@ZQ®Z2

Proof. e Let m < n. Since J ™" is an empty graph and its complement is a complete graph,

it is obvious that this graph is perfect.

e Let m = n. We divide this into four cases, k = 2,k =3,k =4,and k > 5.

I. Case kK = 2. Let R & R; @ Ry. Assume that R = Zs & Zs. Choose (X1, X»),
(X1, X4), (Xu, Xa), (X4, Xz), (X3, X3) such that a 5-cycle will be induced in 377 .
So R = Ry & R, is not perfect for |R;| > 5. If |Ry|,|Ra| < 5, we may calculate
for R = ZQ @D ZQ,Zg @D Z27Z3 @Zg,ZQ[ﬁ]/(ZL’z +x+ 1> D ZQ,ZQ[I]/<LL’2 +x+ 1> D
Ly, Lo|x]/(x* + x4+ 1) & Zo[a]/(a? + x + 1), Zs @ Zs[x]/{(z* + x + 1) in Figure 2,
Figure 3 and Figure 4. such that this graph is perfect.

2. Case k = 3. We will show that J;*" for k = 3 except for the case R = Zy$ZyBZ, and
R = 73 & Zs & Zo, it is not perfect. Assume that R = Zs @ Z3 & Z». Then, we choose
five vertices where each vertex is in the following sets: (X2, Xo, Xj), (X2, X3, Xo),
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XpXo) (XgX4)
(XpXq) (X4:X4) #(xrxo)
(Xa:Xo) (XpX1)
XX X, X
.( 0 Xg) .( 0Xo)

n

Figure 3. graph JZ:[Z]/@QHH)@ZQ and 32:[90}/<x2+m+1)®23

(XpXo) (XaXo)

(X Xp)

(XgX,) (XgXy)
XX
.( 0X0)

~ANXn

Figure 4. graph \522[93]/<z2+m+1)@z2 2]/ (x2+2+1)
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(X4:X1.Xp) (Xo-X4.Xo)
(X4:X0Xo) (Xo-X4:X4)

CORNESY (XgXgXy)
XoXoXo)

~ANXNn

Figure 5. graph 20 X2 X Ly

(Xo, X1, X1), (X1, X0, X1), (X1, X2, Xo) such that a 5-cycle is induced. So for R =
Ry @ Ry @ R3 for |Ry|, |R2| > 2 and |R3| > 1, the graph is not perfect. Otherwise, for
R =7Zy®7Zy®Zsyor R = Zs® Zy & Zy the longest cycle of graph J;*" is four. Then
Jhememn and J5dn o, s perfect. (see Figure 5 and Figure 6)

3. Case k = 4. We will show that J7,*" for k = 4 except R = Zy @ Zy & Zy & Zo, is not
perfect. Assume that R = Zg3 & Zy & Zo P Zo. Then choose five vertices where each
vertex is in the following sets: (X, X1, Xo, Xo), (X2, X0, X1, Xo), (X0, Xo, X1, X1),
(X1, Xo, Xo, X1), (X1, X1, Xo, Xo), such that a 5-cycle is induced. So for R = R, &
Ry ® Ry & Ry with |R;| > 2, i = 1,...,4, the graph is not perfect. Otherwise, for
R = 7y ® 7o @ Zy © Zs the longest cycle of graph J3*" is four. So 33 2 7 -, the
graph is perfect.

4. Case k > 5. We will show for R = R; @ --- @ Ry, the graph is not perfect. Assume
that R = Zy © Zy © Zy © Zy © Zy. Then choose five vertices in J; 2, o7 o7 o0
where each vertex is in the following sets: (X7, X1, Xo, X0, Xo), (X1, X0, X1, X0, X0),
(Xo, Xo, X1, Xo, X1), (X0, X0, Xo, X1, X1), (X0, X1, X0, X1, X0), such that a 5-cycle
is induced. We obtain for R = R; @ - - - @ Ry with |R;| > 2,i = 1,..., k, the graph is
also not perfect.

~TM XN

e Let m > n. We obtain that graph J; o7 is not perfect as a result of the induced 5-cycle

in 3%;22, as shown in Figure 7. This approach can be generalized to any ring R. Thus for

m > n, J5"" is not perfect.

O

5. Concluding Remarked

To better understand the structure and properties of the matrix Jacobson graphs, investigations
of other properties of this class of graphs, such as the properties of the chromatic number, girth,
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(X1.X4.Xp) (X5, X4.Xo)

S

PR

X2R1%)

\ \(x0,>41,x1)
ov0) [ (X469 /

X, X

1

XoXg:Xy)

(X1 XgX4) (X5 Xg:X4)
KoXoXo)

~NXn

Figure 6. graph §; "7 . 7

1 0 0 0
[ 0 1 ]x[ 0 0 ]
0 0 0 0

~3X2

Figure 7. induced 5-cycle in §7 &,
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path, cycle, and matching are currently being carried out.
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