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Abstract

The QE constant of a finite connected graph G, denoted by QEC(G), is by definition the maximum
of the quadratic function associated to the distance matrix on a certain sphere of codimension two.
We prove that the QE constants of paths Pn form a strictly increasing sequence converging to
−1/2. Then we formulate the problem of determining all the graphs G satisfying QEC(Pn) ≤
QEC(G) < QEC(Pn+1). The answer is given for n = 2 and n = 3 by exploiting forbidden
subgraphs for QEC(G) < −1/2 and the explicit QE constants of star products of the complete
graphs.
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1. Introduction

Let G = (V,E) be a finite connected graph with |V | = n ≥ 2 and D = [d(i, j)]i,j∈V the
distance matrix of G. The quadratic embedding constant (QE constant for short) of G is defined
by

QEC(G) = max{⟨f,Df⟩ ; f ∈ C(V ), ⟨f, f⟩ = 1, ⟨1, f⟩ = 0}, (1)
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where C(V ) is the space of all R-valued functions on V , 1 ∈ C(V ) the constant function tak-
ing value 1, and ⟨·, ·⟩ the canonical inner product. The QE constant was first introduced for the
quantitative study of quadratic embedding of graphs in Euclidean spaces [17, 18]. In particular,
a graph G admits a quadratic embedding (in this case we say that G is of QE class) if and only
if QEC(G) ≤ 0. Thus, our study is closely related to the so-called Euclidean distance geometry
[6, 10, 11, 13]. Moreover, it is noteworthy that QEC(G) ≤ 0 is equivalent to the positive defi-
niteness of the Q-matrix Q = [qd(i,j)] for all 0 ≤ q ≤ 1. This property, first proved by Haagerup
[8] for trees and later by Bożejko [5] for general star products, has many applications in harmonic
analysis and quantum probability, see [4, 15, 16] and references cited therein.

It is also interesting to observe a close relation between the QE constants and the distance
spectra. In fact, for a finite connected graph we have

λ2(G) ≤ QEC(G) < λ1(G),

where λ1(G) and λ2(G) are respectively the largest and the second largest eigenvalues of the dis-
tance matrix of G. It is straightforward to see that λ2(G) = QEC(G) holds if the distance matrix
of G has a constant row sum (in some literatures, such a graph is called transmission regular). But
the converse is not true as the paths Pn with even n provide counter-examples. In this aspect char-
acterization of graphs satisfying λ2(G) = QEC(G) is an interesting problem. In fact, the second
largest eigenvalue λ2(G) has been adopted for classifying graphs see e.g., [12]. For generalities of
distance spectra see also [1, 2, 3, 9].

In this paper, we initiate the project of characterizing finite connected grahs in terms of the QE
constants. Our idea is based on the fact that the QE constants of paths form a strictly increasing
sequence:

QEC(P2) < QEC(P3) < · · · < QEC(Pn) < QEC(Pn+1) < · · · → −1

2
. (2)

Then a natural question arises to determine finite connected graphs along the above QE constants.
More precisely, we are interested in the family of graphs G satisfying

QEC(Pn) ≤ QEC(G) < QEC(Pn+1), n ≥ 2. (3)

The main goal of this paper is to give the answer to the first two cases of n = 2, 3.
This paper is organized as follows: In Section 2 we give a quick review on the QE constant, for

more details see [14, 18].
In Section 3 we derive a general criterion for the strict inequality

QEC(G) < QEC(G ⋆ Km+1),

where G ⋆ Km+1 is the star product, namely, the graph obtained by joining a graph G and the
complete graph Km+1 at a single vertex, see Theorem 3.1. We then prove that the QE constants of
paths form a strictly increasing sequence as in (2), see Theorem 3.2.

In Section 4 we prove the main results. Case of n = 2 is simple, in fact, condition (3) charac-
terizes the complete graphs, see Theorem 4.1. For a general case the first useful result is that any
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graph with QEC(G) < −1/2 is diamond-free, claw-free, C4-free and C5-free, see Corollary 4.1.
Then, using the explicit values of QEC(Km ⋆Kn) we obtain an explicit list for case of n = 3, that
is, a series of graphs Kn ⋆K2 with n ≥ 2 and one sporadic K3 ⋆K3, see Theorem 4.2. As a result,
QEC(P4) is the smallest accumulation point of the QE constants. We also provide examples of
graphs G satisfying QEC(G) = QEC(P4).

2. Quadratic Embedding Constants

2.1. Definition and Basic Properties
A graph G = (V,E) is a pair of a non-empty set V of vertices and a set E of edges, i.e., E is

a subset of {{i, j} ; i, j ∈ V, i ̸= j}. A graph is called finite if V is a finite set. Throughout this
paper by a graph we mean a finite graph.

If {i, j} ∈ E, we write i ∼ j for simplicity. A finite sequence of vertices i0, i1, . . . , im ∈ V is
called an m-step walk if i0 ∼ i1 ∼ · · · ∼ im. In that case we say that i0 and im are connected by a
walk of length m. A graph is called connected if any pair of vertices are connected by a walk.

Let G = (V,E) be a connected graph. For i, j ∈ V with i ̸= j let d(i, j) = dG(i, j) denote the
length of a shortest walk connecting i and j. By definition we set d(i, i) = 0. Then d(i, j) becomes
a metric on V , which we call the graph distance. The diameter of G is defined by

diam(G) = max{d(i, j) ; i, j ∈ V }.

The distance matrix of G is defined by

D = DG = [d(i, j)]i,j∈V .

Let G = (V,E) be a connected graph with |V | ≥ 2. The quadratic embedding constant (QE
constant for short) of G is defined by

QEC(G) = max{⟨f,Df⟩ ; f ∈ C(V ), ⟨f, f⟩ = 1, ⟨1, f⟩ = 0}, (4)

where C(V ) is the space of all R-valued functions on V and ⟨·, ·⟩ the canonical inner product
on C(V ). Furthermore, 1 is the constant function defined by 1(x) = 1 for all x ∈ V , and
⟨1, f⟩ =

∑
x∈V f(x). Indeed, identifying C(V ) with Rn, n = |V |, we see that the domain

{f ∈ C(V ) ; ⟨f, f⟩ = 1, ⟨1, f⟩ = 0}

is a compact manifold (in fact, a sphere of n−2 dimension). Hence the quadratic function ⟨f,Df⟩
attains the maximum on the above domain.

Proposition 2.1. Let G = (V,E) be a connected graph with |V | ≥ 2, and D = [d(i, j)] the
distance matrix. Then the following conditions are equivalent:

(i) G is of QE class, that is, there exist a Euclidean space H and a map φ : V → H such that

∥φ(i)− φ(j)∥2 = d(i, j), i, j ∈ V.
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(ii) D is conditionally negative definite, that is,

⟨f,Df⟩ ≤ 0 for all f ∈ C(V ) with ⟨1, f⟩ = 0.

(iii) QEC(G) ≤ 0.

The map φ : V → H in the above condition (i) is called a quadratic embedding of G. The
above result is essentially due to Schoenberg [19, 20] and motivated us to introduce the QE con-
stant.

The graphs of QE class include the complete graphs Kn (n ≥ 2), paths Pn (n ≥ 2), and cycles
Cn (n ≥ 3). In fact,

QEC(Kn) = −1, n ≥ 2, (5)

and
QEC(C2n+1) = − 1

4 cos2
π

2n+ 1

, QEC(C2n+2) = 0, n ≥ 1, (6)

while a closed expression for QEC(Pn) is not known. It is also noted that the QE constant of a
tree is negative. In fact, for any tree G on n vertices we have

QEC(G) ≤ − 2

2n− 3
, n ≥ 3. (7)

However, (7) is a rather rough estimate and its refinement is an interesting question, see [14,
Section 5].

Proposition 2.2. Let G = (V,E) be a connected graph and H = (W,F ) a connected subgraph of
G with |W | ≥ 2. If H is isometrically embedded in G, i.e.,

dH(i, j) = dG(i, j) for all i, j ∈ W,

then we have
QEC(H) ≤ QEC(G).

Proof. Take f ∈ C(W ) such that

QEC(H) = ⟨f,DHf⟩, ⟨f, f⟩W = 1, ⟨1, f⟩W = 0,

where ⟨·, ·⟩W denotes the inner product on C(W ). Define f̃ ∈ C(V ) in such a way that f̃(x) =
f(x) for x ∈ W and f̃(x) = 0 otherwise. Then f̃ satisfies ⟨f̃ , f̃⟩V = 1 and ⟨1, f̃⟩V = 0. Since H
is isometrically embedded in G, the distance matrix DH is a submatrix of DG. Hence,

QEC(H) = ⟨f,DHf⟩ = ⟨f̃ , DGf̃⟩,

where the last quantity is bounded by QEC(G) by definition.

Corollary 2.1. Let Pn be the path on n vertices. Then we have

QEC(P2) ≤ QEC(P3) ≤ · · · ≤ QEC(Pn) ≤ QEC(Pn+1) ≤ · · · . (8)
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Corollary 2.2. Let G = (V,E) be a connected graph with |V | ≥ 2.

(1) If diam(G) ≥ d, then QEC(Pd+1) ≤ QEC(G).
(2) If QEC(G) < QEC(Pd+1), then diam(G) ≤ d− 1.

The proofs are straightforward from Proposition 2.2. In fact, as is shown in Subsection 3.2, the
inequalities in (8) are strict.

Next we derive a useful criterion for isometric embedding.

Lemma 2.1. Let G = (V,E) be a connected graph and H = (W,F ) a connected subgraph.

(1) If H is isometrically embedded, then H is an induced subgraph of G.
(2) If H is an induced subgraph of G and diam (H) ≤ 2, then H is isometrically embedded in

G.

Proof. Let dG and dH be the graph distances of G and H , respectively.
(1) Let i, j ∈ W and assume that they are adjacent in G. Then dG(i, j) = 1 and by assumption

we have dH(i, j) = 1, which means that i and j are adjacent in H too. Therefore, H is an induced
subgraph of G.

(2) Let i, j ∈ W . Then dH(i, j) ≤ 2 by assumption. If dH(i, j) = 0, then i = j and hence
dG(i, j) = 0. Suppose that dH(i, j) = 1. Then i and j are adjacent in H , so are in G. Hence
dG(i, j) = 1. Finally, suppose that dH(i, j) = 2. Obviously, i ̸= j so that 1 ≤ dG(i, j) ≤ 2. If
dG(i, j) = 1, then i and j are adjacent in G and so are in H since H is an induced subgraph. Then
we obtain dH(i, j) = 1, which is contradiction. Therefore, we have dG(i, j) = 2. Consequently,
dH(i, j) = dG(i, j) for all i, j ∈ W , which means that H is isometrically embedded in G.

Proposition 2.3. Let G be a connected graph, and H a connected and induced subgraph of G. If
diam(H) ≤ 2, we have

QEC(H) ≤ QEC(G).

Proof. It follows from Lemma 2.1 (2) that H is isometrically embedded in G. Then, by Proposition
2.2 we see that QEC(H) ≤ QEC(G).

2.2. Calculating QE Constants
Let G be a connected graph on V = {1, 2, . . . , n} and identify C(V ) with Rn in a natural

manner. Recall that QEC(G) is the conditional maximum of the quadratic function ⟨f,Df⟩, f =
[fi] = [f(i)] ∈ C(V ) ∼= Rn, subject to

⟨f, f⟩ =
n∑

i=1

f 2
i = 1, (9)

⟨1, f⟩ =
n∑

i=1

fi = 0. (10)

The method of Lagrange multipliers is applied to calculating QE constants. For later use we review
it quickly, for more details see [18].
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First we set
F (f, λ, µ) = ⟨f,Df⟩ − λ(⟨f, f⟩ − 1)− µ⟨1, f⟩, (11)

where f = [fi] ∈ Rn, λ ∈ R and µ ∈ R. Since conditions (9) and (10) define a sphere of n − 2
dimension, which is smooth and compact, the conditional maximum of ⟨f,Df⟩ under question is
attained at a stationary points of F (f, λ, µ).

Let S be the set of stationary points of F (f, λ, µ), that is,

S =

{
(f = [fi], λ, µ) ∈ Rn × R× R ,

∂F

∂fi
=

∂F

∂λ
=

∂F

∂µ
= 0

}
.

Taking the derivatives of (11), we obtain

∂F

∂fi
= 2⟨ei, Df⟩ − 2λ⟨ei, f⟩ − µ⟨1, ei⟩ = ⟨ei, 2(D − λ)f − µ1⟩,

where {ei} is the canonical basis of Rn. Hence ∂F/∂fi = 0 for all 1 ≤ i ≤ n if and only if
2(D − λ)f − µ1 = 0, that is,

(D − λ)f =
µ

2
1. (12)

Thus, S is the set of (f, λ, µ) ∈ Rn × R × R satisfying (9), (10) and (12). On the other hand, for
(f, λ, µ) ∈ S we have

⟨f,Df⟩ =
⟨
f, λf +

µ

2
1
⟩
= λ⟨f, f⟩+ µ

2
⟨f,1⟩ = λ. (13)

Thus we come to the following useful result.

Proposition 2.4. Let G be a connected graph on n ≥ 3 vertices and S the set of stationary points
of F (f, λ, µ) defined by (11). Then we have

QEC(G) = max{λ ∈ R ; (f, λ, µ) ∈ S for some f ∈ Rn and µ ∈ R}.

3. QE Constants of Paths

3.1. A Criterion for QEC(G) < QEC(G ⋆ Km+1)

Let G1 and G2 be two graphs with disjoint vertex sets. Choose o1 and o2 as distinguished
vertices of G1 and G2, respectively. A star product of G1 and G2 with respect to o1 and o2 is
(informally) defined to be the graph obtained by joining G1 and G2 at the distinguished vertices o1
and o2. If there is no danger of confusion, the star product is denoted simply by G1 ⋆ G2.

In this subsection we consider the case where G1 is an arbitrary connected graph and G2 a
complete graph. To be precise, for n ≥ 2 and m ≥ 1 let G = (V,E) be a connected graph on
V = {1, 2, . . . , n} and Km+1 the complete graph on {n, n+ 1, . . . , n+m}. We set

Ṽ = V ∪ {n, n+ 1, . . . , n+m} = {1, 2, . . . , n+m},

and
Ẽ = E ∪ {{i, j} ; n ≤ i < j ≤ n+m}.
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Then G̃ = (Ṽ , Ẽ) becomes the star product of G and Km+1, which we denote simply by G̃ =
G ⋆ Km+1. Since G is isometrically embedded in G̃, it follows from Proposition 2.2 that

QEC(G) ≤ QEC(G̃) = QEC(G ⋆ Km+1). (14)

We are interested in when the inequality (14) becomes strict.

Figure 1. G ⋆Km+1 (m = 5).

Let D = DG = [d(i, j)] and D̃ = DG̃ be the distance matrices of G and G̃, respectively. Then
we have

D̃ =

 D S

ST J − I

 , (15)

where S = [s(i, j)] is the n×m matrix defined by

s(i, j) = dG(i, n) + 1, 1 ≤ i ≤ n, 1 ≤ j ≤ m, (16)

J is the matrix whose entries are all one and I is the identity matrix.

Theorem 3.1. Let G be a connected graph on V = {1, 2, . . . , n} and Km+1 the complete graph
on {n, n + 1, . . . , n + m}, where n ≥ 2 and m ≥ 1. Let G̃ = (Ṽ , Ẽ) = G ⋆ Km+1 be the star
product defined as above. If QEC(G) < 0 and there exists f0 ∈ C(V ) such that

QEC(G) = ⟨f0, Df0⟩, ⟨f0, f0⟩ = 1, ⟨1, f0⟩ = 0 (17)

and
f0(n) ̸= 0, (18)

then we have
QEC(G) < QEC(G ⋆ Km+1) < 0. (19)

Proof of the left-half of (19). For simplicity we set λ0 = QEC(G). Then taking f0 ∈ C(V ) ∼= Rn

as in the above statement, we have

λ0 = ⟨f0, Df0⟩ < 0, (20)
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and
⟨f0, f0⟩ = 1, ⟨1, f0⟩ = 0. (21)

(In fact, existence of f0 satisfying (17) follows from the definition of QE constant. The essential
assumption is (18).) On the other hand, QEC(G̃) is given by the conditional maximum of the
quadratic function:

Φ = ⟨f̃ , D̃f̃⟩, f̃ ∈ C(Ṽ ) ∼= Rn+m,

subject to
⟨f̃ , f̃⟩ = 1, ⟨1, f̃⟩ = 0. (22)

It is convenient to use new variables (ξ, η) ∈ Rm × Rm defined by

f̃ = f̃0 +

[
ξ
η

]
, f̃0 =

[
f0
0

]
.

By simple algebra conditions (22) are rephrased as

⟨f̃ , f̃⟩ = 1 ⇔ ⟨ξ, ξ⟩+ ⟨η, η⟩+ 2⟨f0, ξ⟩ = 0, (23)

⟨1, f̃⟩ = 0 ⇔ ⟨1, ξ⟩+ ⟨1, η⟩ = 0. (24)

Moreover, we have

Φ = ⟨f̃ , D̃f̃⟩ =
⟨[

f0 + ξ
η

]
,

[
D S
ST J − I

] [
f0 + ξ

η

]⟩
= λ0 + 2⟨f0, Dξ⟩+ 2⟨f0, Sη⟩+ 2⟨ξ, Sη⟩+ ⟨ξ,Dξ⟩+ ⟨1, η⟩2 − ⟨η, η⟩, (25)

where we used the simple identity: ⟨η, Jη⟩ = ⟨1, η⟩2. Using (16) we obtain

⟨f0, Sη⟩ =
n∑

i=1

f0(i)Sη(i) =
n∑

i=1

f0(i)
m∑
j=1

(d(i, n) + 1)η(j)

=
n∑

i=1

f0(i)(dG(i, n) + 1)⟨1, η⟩ = (Df0(n) + ⟨1, f0⟩)⟨1, η⟩. (26)

Similarly,
⟨ξ, Sη⟩ = (Dξ(n) + ⟨1, ξ⟩)⟨1, η⟩. (27)

Inserting (26) and (27) into (25), and then applying (23), (24) and (21), we obtain

Φ = Φ(ξ, η) = λ0 + ⟨ξ,Dξ⟩+ ⟨ξ, ξ⟩ − ⟨1, ξ⟩2

+ 2⟨f0, Dξ⟩+ 2⟨f0, ξ⟩ − 2Df0(n)⟨1, ξ⟩ − 2Dξ(n)⟨1, ξ⟩. (28)

Thus, QEC(G̃) coincides with the conditional maximum of Φ(ξ, η) subject to (23) and (24). Here
note that η is implicitly contained in (28) through those conditions.
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To be precise, we put

M =

{
(ξ, η) ∈ Rn × Rm ;

⟨ξ, ξ⟩+ ⟨η, η⟩+ 2⟨f0, ξ⟩ = 0,
⟨1, ξ⟩+ ⟨1, η⟩ = 0

}
.

Then we have
QEC(G̃) = max{Φ(ξ, η) ; (ξ, η) ∈ M}.

Since (0, 0) ∈ M and Φ(0, 0) = λ0 = QEC(G), for QEC(G) < QEC(G̃) it is sufficient to
show that Φ(ξ, η) does not attain a conditional maximum at (ξ, η) = (0, 0). We will prove this by
contradiction.

Suppose that Φ(ξ, η) attains a conditional maximum at (ξ, η) = (0, 0). Then the directional
derivative of Φ(ξ, η) at (ξ, η) = (0, 0) vanishes along any curve in M passing through (0, 0). For
1 ≤ k ≤ n− 1 we put

Nk =

{
(ξ = [ξ(i)], η = [η(j)]) ∈ Rn × Rm ;

ξ(i) = 0 except i = k and i = n,
η(j) = 0 except j = 1

}
and

Mk = M∩Nk .

From (23) and (24) we see that (ξ, η) ∈ Nk belongs to M if and only if

2f0(k)ξ(k) + 2f0(n)ξ(n) + ξ(k)2 + ξ(n)2 + η(1)2 = 0, (29)
ξ(k) + ξ(n) + η(1) = 0. (30)

Inserting (30) into (29), we obtain

ξ(k)2 + ξ(n)2 + ξ(k)ξ(n) + f0(k)ξ(k) + f0(n)ξ(n) = 0, (31)

which determines an ellipse of positive radius since f0(n) ̸= 0 by assumption. Namely, Mk is an
ellipse in Rn × Rm passing through (0, 0).

Now consider the directional derivative of Φ(ξ, η) at (ξ, η) = 0 along the ellipse Mk. From
(31) we obtain easily that

dξ(n)

dξ(k)

∣∣∣∣
(ξ(k),ξ(n))=(0,0)

= −f0(k) + 2ξ(k) + ξ(n)

f0(n) + ξ(k) + 2ξ(n)

∣∣∣∣
(ξ(k),ξ(n))=(0,0)

= −f0(k)

f0(n)
.

On the other hand, inserting (29) and (30) into (28), we see that Φ = Φ(ξ, η) on Mk becomes

Φ = Φ(ξ(k), ξ(n)) = λ0 − 2d(n, k)ξ(k)2 − 2ξ(k)ξ(n)

+ 2(f0(k) +Df0(k)−Df0(n))ξ(k) + 2f0(n)ξ(n).

Then again by simple calculus, we come to

dΦ

dξ(k)

∣∣∣∣
(ξ(k),ξ(n))=(0,0)

= 2Df0(k)− 2Df0(n). (32)
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Since dΦ/dξ(k) at ξ = 0 vanishes for all 1 ≤ k ≤ n − 1 by assumption, it follows from (32) that
Df0(k) = Df0(n) for all 1 ≤ k ≤ n− 1. Hence Df0 = Df0(n)1 and we come to

λ0 = ⟨f0, Df0⟩ = Df0(n)⟨f0,1⟩ = 0,

which is in contradiction to λ0 = QEC(G) < 0.

Proposition 3.1. Let G1 and G2 be connected graphs with QEC(G1) < 0 and QEC(G2) < 0.
Then

QEC(G1 ⋆ G2) ≤
(

1

QEC(G1)
+

1

QEC(G2)

)−1

< 0. (33)

For the proof see [14, Section 4], where a more precise estimate is obtained.

Proof of the right-half of (19). Note that QEC(Km+1) = −1 for all m ≥ 1. It then follows imme-
diately from Proposition 3.1 that

QEC(G ⋆ Km) ≤
(

1

QEC(G)
+

1

−1

)−1

=
QEC(G)

1−QEC(G)
< 0.

Here condition (18) is not necessary.

Remark 3.1. For the strict inequality of the left-half of (19) condition (18) is necessary. We give
a simple example. Consider the graph G on five verices and G̃ = G ⋆ K2 on six vertices as is
illustrated in Figure 2. By a direct computation we easily obtain

QEC(G) = QEC(G̃) = − 2

2 +
√
2
.

In fact, QEC(G) is attained by

f0 = c


±1
∓1

±(
√
2 + 1)

∓(
√
2 + 1)
0

 , c =

√
2−

√
2

8
.

Indeed, f0(5) = 0 and condition (18) is fulfilled. More examples will appear in Subsection 4.5.
While, it is not clear whether QEC(G) = QEC(G̃) follows from f0(n) = 0.

3.2. QE Constants of Paths
For n ≥ 1, let Pn be the path on {1, 2, . . . , n}. Since Pn is isometrically embedded in Pn+1,

we have
QEC(Pn) ≤ QEC(Pn+1), n ≥ 2.

In this section, we prove that the above inequality is strict.
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1
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4
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1

2

3

4

5 6

Figure 2. An example of f0(5) = 0.

Theorem 3.2. For n ≥ 2 we have QEC(Pn) < QEC(Pn+1).

Proof. The distance matrix of Pn is given by D = [d(i, j)] with d(i, j) = |i − j|, 1 ≤ i, j ≤ n.
According to the general method described in Subsection 2.2 let S be the set of (f, λ, µ) ∈ Rn ×
R× R such that

(D − λ)f =
µ

2
1, (34)

⟨f, f⟩ = 1, (35)
⟨1, f⟩ = 0. (36)

Then λ0 = QEC(Pn) is the maximum of λ ∈ R such that (f, λ, µ) ∈ S for some f ∈ Rn and
µ ∈ R. It is readily known that λ0 < 0. By virtue of Theorem 3.1 it is sufficient to show that there
exists (f0 = [f0(i)], λ0, µ0) ∈ S such that f0(n) ̸= 0.

In fact, we will prove a slightly stronger result: for any (f = [f(i)], λ, µ) ∈ S we have
f(n) ̸= 0. First assume that (f, λ, µ) ∈ S fulfills

f(j) = 0 for k ≤ j ≤ n, (37)

where 2 ≤ k ≤ n. We will derive f(k − 1) = 0. The k-th coordinate of (34) is given by

n∑
j=1

|k − j|f(j)− λf(k) =
µ

2
(38)

and by assumption (37) we have

k−1∑
j=1

(k − j)f(j)− λf(k) =
µ

2
. (39)

Similarly, looking at the (k − 1)-th coordinate of (34), we obtain

k−1∑
j=1

(k − 1− j)f(j)− λf(k − 1) =
µ

2
. (40)
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On the other hand, by (36) and (37) we have

k−1∑
j=1

f(j) = 0.

Then (40) becomes
k−1∑
j=1

(k − j)f(j)− λf(k − 1) =
µ

2
. (41)

Comparing (39) and (41), we obtain

λ(f(k − 1)− f(k)) = 0.

Since λ ≤ λ0 < 0, we obtain f(k − 1) = f(k) = 0 as desired. Thus, by induction we see that
f(n) = 0 implies that f(j) = 0 for all 1 ≤ j ≤ n, which is in contradiction to condition (35).
Consequently, f(n) ̸= 0 for any (f, λ, µ) ∈ S.

Proposition 3.2. We have

lim
n→∞

QEC(Pn) = −1

2
.

For the proof see [14, Section 5], where a precise estimate of QEC(Pn) from below is obtained.

4. Classification of Graphs Along QEC(Pn)

4.1. Formulation of Problem
Combining Theorem 3.2 and Proposition 3.2, we come to

QEC(P2) < QEC(P3) < · · · < QEC(Pn) < QEC(Pn+1) < · · · → −1

2
. (42)

In fact, the first few are given as follows:

QEC(P2) = −1,

QEC(P3) = −2

3
= −0.6666 · · · ,

QEC(P4) = − 2

2 +
√
2
= −(2−

√
2) = −0.5857 · · · ,

QEC(P5) = − 4

5 +
√
5
= −5−

√
5

5
= −0.5527 · · · ,

QEC(P6) = − 2

2 +
√
3
= −(4− 2

√
3) = −0.5358 · · · .

A closed formula for QEC(Pn) is not known.
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Our main interest along (42) is to characterize the family of graphs G satisfying

QEC(Pn) ≤ QEC(G) < QEC(Pn+1), n ≥ 2, (43)

in terms of geometric or combinatorial properties of graphs. We are also interested in the graphs
G satisfying

QEC(G) < −1

2
. (44)

We first recall the following simple fact mentioned in Corollary 2.2 (2).

Proposition 4.1. Let n ≥ 2. If QEC(G) < QEC(Pn+1), then diam(G) ≤ n− 1.

Next we provide simple criteria for (44) in terms of forbidden subgraphs. Let K4\{e} denote
the diamond, that is, the graph obtained by deleting one edge from the complete graph K4, see
Figure 3. Let Km,n denote the complete bipartite graph with two parts of m and n vertices. In
particular, K1,n is called a star and K1,3 a claw, see Figure 3.

Figure 3. K4\{e} (diamond) and K1,3 (claw).

Proposition 4.2. If a connected graph G contains an induced subgraph isomorphic to a diamond
K4\{e} or a claw K1,3, then QEC(G) ≥ −1/2.

Proof. It is easily verified [18, Section 5] that

QEC(K4\{e}) = QEC(K1,3) = −1

2
.

Moreover we have diam(K4\K2) = diam(K1,3) = 2. It then follows from Proposition 2.3 that
QEC(G) ≥ −1/2.

Proposition 4.3. If a connected graph G contains an induced subgraph isomorphic to the cycle
C4, then QEC(G) ≥ 0. If G contains an induced subgraph isomorphic to C5, then

QEC(G) ≥ − 2

3 +
√
5
= −0.3819 . . . .

Proof. We note that

QEC(C4) = 0, QEC(C5) = − 2

3 +
√
5
,

see also (6). Then the assertion follows in a similar manner as in the proof of Proposition 4.2.
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The following result is immediate from Propositions 4.2 and 4.3.

Corollary 4.1 (forbidden subgraphs). Any graph with QEC(G) < −1/2 does not contain an
induced subgraph isomorphic to a diamond K4\{e}, a claw K1,3, a cycle C4, nor C5. In short,
any graph with QEC(G) < −1/2 is diamond-free, claw-free, C4-free and C5-free.

Remark 4.1. As an immediate consequence from Corollary 4.1, the family of graphs with QEC(G) <
−1/2 forms a subfamily of the claw-free graphs. On the other hand, claw-free graphs have been
actively studied with various classifications, see for instance [7]. It would be interesting to revisit
the classification of claw-free graphs along with QEC(Pn).

4.2. Determining the class QEC(P2) ≤ QEC(G) < QEC(P3)

Theorem 4.1. For a connected graph G the inequality

QEC(P2) ≤ QEC(G) < QEC(P3) (45)

holds if and only if G = Kn for some n ≥ 2. Moreover, QEC(P2) = QEC(Kn) for all n ≥ 2.
Therefore, there is no graph G such that QEC(P2) < QEC(G) < QEC(P3).

Proof. Suppose that a graph G satisfies (45). Then by Proposition 4.1, we have diam(G) = 1,
which means that G is a complete graph. On the other hand, it is known that QEC(Kn) = −1 =
QEC(P2) for all n ≥ 2. The assertion is then obvious.

4.3. Calculating QEC(Kn ⋆ Km)

We consider the star product of two complete graphs Kn and Km, see Figure 4. To be precise,
let n ≥ 1 and m ≥ 2, and consider the graphs G̃ = (Ṽ , Ẽ), where

Ṽ = {1, 2, . . . , n} ∪ {n, n+ 1, . . . , n+m− 1}

and
Ẽ = {{i, j} ; 1 ≤ i < j ≤ n} ∪ {{i, j} ; n ≤ i < j ≤ n+m− 1}.

Obviously, we have G̃ = Kn ⋆ Km, where the induced subgraphs spanned by {1, 2, . . . , n} and by
{n, n+ 1, . . . , n+m− 1} are the complete graphs Kn and Km, respectively.

Figure 4. Kn ⋆ Km (n = 5,m = 6).
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Let D̃ be the distance matrix of G̃ = Kn⋆Km. It is convenient to write D̃ in the block matrices:

D̃ =


J − I S

ST J − I

 , S =


2 · · · 2
...

...
2 · · · 2
1 · · · 1

 , (46)

where S is an n× (m− 1) matrix. The QE constant QEC(G̃) is the conditional maximum of

Φ = ⟨f̃ , D̃f̃⟩, f̃ ∈ C(Ṽ ), (47)

subject to
⟨f̃ , f̃⟩ = 1, ⟨1, f̃⟩ = 0.

According to the block diagonal expression (46), we write f̃ = [f g]T , where f ∈ Rn, g ∈ Rm−1.
Then (47) becomes

Φ = Φ(f, g) =

⟨[
f
g

]
,

[
J − I S
ST J − I

] [
f
g

]
,

⟩
= ⟨1, f⟩2 + ⟨1, g⟩2 − ⟨f, f⟩ − ⟨g, g⟩+ 4⟨1, f⟩⟨1, g⟩ − 2fn⟨1, g⟩,

where we used
Sg = ⟨1, g⟩[2 2 · · · 2 1]T .

Define
F (f, g, λ, µ) = Φ(f, g)− λ(⟨f, f⟩+ ⟨g, g⟩ − 1)− µ(⟨1, f⟩+ ⟨1, g⟩)

and let S be the set of its stationary points (f, g, λ, µ) ∈ Rn ×Rm−1 ×R×R, that is the solutions
to

∂F

∂fi
=

∂F

∂gj
=

∂F

∂λ
=

∂F

∂µ
= 0, 1 ≤ i ≤ n, 1 ≤ j ≤ m− 1. (48)

Keeping in mind that −1 < QEC(G̃) < 0 unless m = 1 or n = 1, we find after simple calculus
that the maximum of λ appearing in the solution is

λ =
−mn+

√
mn(m− 1)(n− 1)

m+ n− 1
= − 1

1 +

√(
1− 1

m

)(
1− 1

n

) ,

which coincides with QEC(G̃) by the general theory mentioned in Subsection 2.2. We have thus
obtained the following result.

Proposition 4.4. For m ≥ 1 and n ≥ 1 with m+ n ≥ 3 with we have

QEC(Kn ⋆ Km) = − 1

1 +

√(
1− 1

m

)(
1− 1

n

) .
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Corollary 4.2. We have

QEC(P3) = QEC(K2 ⋆ K2) < QEC(K3 ⋆ K2) < · · ·

· · · < QEC(Kn ⋆ K2) < · · · → QEC(P4) = − 2

2 +
√
2
. (49)

Proof. By Proposition 4.4 we have

QEC(Kn ⋆ K2) = − 2

2 +

√
2
(
1− 1

n

) , n ≥ 1,

from which the assertion follows immediately.

Corollary 4.3. Let m ≥ 1 and n ≥ 1 with m + n ≥ 3. Then QEC(Kn ⋆ Km) < QEC(P4) if and
only if one of the following conditions is satisfied:

(i) m = 2 and n ≥ 1;
(ii) m ≥ 1 and n = 2;

(iii) m = n = 3.

Proof. The inequality QEC(Kn ⋆ Km) < QEC(P4) is equivalent to

− 1

1 +

√(
1− 1

m

)(
1− 1

n

) < − 2

2 +
√
2
,

of which integer solutions are obtained easily by simple algebra.

Corollary 4.4. Let m ≥ 1 and n ≥ 1 with m+ n ≥ 3. Then

QEC(P3) ≤ QEC(Kn ⋆ Km) < QEC(P4) (50)

holds if and only if one of the following conditions is satisfied:

(i) m = 2 and n ≥ 2;
(ii) m ≥ 2 and n = 2;

(iii) m = n = 3.

The equality in (50) occurs only when m = n = 2.

4.4. Determining the class QEC(P3) ≤ QEC(G) < QEC(P4)

This subsection is devoted to the proof of the following result.
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Theorem 4.2. A finite connected graph G fulfills the inequality

QEC(P3) ≤ QEC(G) < QEC(P4) (51)

if and only if G is a star product Kn ⋆ K2 with n ≥ 2 or K3 ⋆ K3. Moreover,

QEC(Kn ⋆ K2) = − 2

2 +

√
2
(
1− 1

n

) ,

QEC(K3 ⋆ K3) = −3

5
.

In particular, QEC(G) = QEC(P3) if and only if G = P3 = K2 ⋆ K2.

Lemma 4.1. If a connected graph G = (V,E) satisfies (51), we have |V | ≥ 3 and diam(G) = 2.

Proof. It follows from Corollary 2.2 that diam(G) ≤ 2. If diam(G) = 1, then G is a complete
graph and QEC(G) = −1, which does not satisfy (51). Hence, necessarily diam(G) = 2 and
|V | ≥ 3.

In general, a clique of G is an induced subgraph of G which is isomorphic to a complete graph.
A clique K = (W,F ) is called maximal if there is no clique containing K properly. A maximal
clique K = (W,F ) is called largest or maximum if there is no clique on |W |+1 vertices. Clearly,
any graph contains a largest clique.

Lemma 4.2. Let G = (V,E) be a connected graph satisfying (51). If K = (W,F ) is a maximal
clique of G, we have W ̸= V and |W | ≥ 2.

Proof. Since G is not a complete graph by Lemma 4.1, we have W ̸= V . That |W | ≥ 2 follows
from |V | ≥ 3.

Lemma 4.3. Let G = (V,E) be a connected graph with |V | ≥ 2 and QEC(G) < −1/2, and
K = (W,F ) a maximal clique. Then for any pair a ∈ V \W and a′ ∈ W with a ∼ a′ we have
{x ∈ W ; x ∼ a} = {a′}.

Proof. (Note that the assertion is trivial if W = V .) Given a pair a ∈ V \W and a′ ∈ W with
a ∼ a′, we set s = |{x ∈ W ; x ∼ a}|. Obviously, 1 ≤ s < |W |. We will show by contradiction
that s = 1. Suppose that s ≥ 2. Then there exist three distinct vertices x1, x2, y ∈ W such that
a ∼ x1, a ∼ x2 and a ̸∼ y. Note that the induced subgraph spanned by {a, x1, x2, y} is isomorphic
to a diamond K4\{e}. It then follows immediately from Proposition 4.2 that QEC(G) ≥ −1/2,
which is in contradiction to the assumption QEC(G) < −1/2.

Lemma 4.4. Let G = (V,E) be a connected graph satisfying (51) and K = (W,F ) a maximal
clique of G. For a, b ∈ V \W and a′, b′ ∈ W , if a ∼ a′ and b ∼ b′, then a′ = b′.
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Proof. If a = b the assertion follows immediately from Lemma 4.3. We consider the case of a ̸= b.
To prove the assertion by contradiction, we assume that a′ ̸= b′. Since d(a, b) ≤ diam(G) = 2, we
have two cases: d(a, b) = 1 or d(a, b) = 2.

Suppose first that d(a, b) = 1, that is, a ∼ b. Then the induced subgraph spanned by {a, a′, b′, b}
is isomorphic to C4, which is a forbidded subgraph by Corollary 4.1. Hence d(a, b) = 1 does not
happen.

Suppose next that d(a, b) = 2. Then there exists c ∈ V such that a ∼ c ∼ b. Since a ̸∼ b′ and
b ̸∼ a′ by Lemma 4.3, we have c ̸= a′, b′ and c ̸∈ W . There are four cases:

(i) c ̸∼ a′ and c ̸∼ b′. The induced subgraph spanned by {a, a′, b′, b, c} is isomorphic to C5,
which is a forbidded subgraph by Corollary 4.1.

(ii) c ̸∼ a′ and c ∼ b′. The induced subgraph spanned by {a, a′, b′, c} is isomorphic to C4,
which is a forbidded subgraph by Corollary 4.1.

(iii) c ∼ a′ and c ̸∼ b′. This case is similar to (ii).
(iv) c ∼ a′ and c ∼ b′. This does not happen by virtue of Lemma 4.3.

In any case we come to contradiction and the proof is completed.

Proof of Theorem 4.2. Let G = (V,E) be a connected graph satisfying (51) K = (W,F ) be a
largest clique with m = |W |. Note that V ̸= W and m ≥ 2 by Lemma 4.2. Now divide V \W into
two subsets:

V \W = U1 ∪ U2 ,

where U1 is the set of vertices a ∈ V \W which are directly connected to vertices in W , and U2

the rest, see Figure 5. Obviously, U1 ̸= ∅. Moreover, by Lemma 4.4 there exists a unique a′ ∈ W
such that a ∼ a′ for all a ∈ U1.

We first prove that U2 = ∅. Suppose otherwise. Take x ∈ W with x ̸= a′ and y ∈ U2. Then we
have d(x, y) ≥ 3, which is in contradiction to diam(G) = 2.

We next prove that any pair of vertices a, b ∈ U1, a ̸= b, are connected by an edge. Suppose
otherwise. Take x ∈ W with x ̸= a′ and consider the induced subgraph spanned by {x, a′, a, b} is
isomorphic to K1,3, which is a forbidded subgraph by Corollary 4.1.

Consequently, The induced subgraph spanned by U1 is a complete graph on |U1| ≥ 1 vertices.
Hence G is necessarily a star product of two complete graphs: G = Km ⋆ K|U1|+1. Then the
assertion follows from Corollary 4.4.

Figure 5. V = W ∪ U1 ∪ U2.
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4.5. Bearded Complete Graphs BKn,m

We are also interested in characterization of a graph G satisfying

QEC(G) = QEC(P4) = − 2

2 +
√
2
.

Below we give a partial answer.
Let 1 ≤ m ≤ n. Consider a graph on

V = {1, 2, . . . , n} ∪ {n+ 1, . . . , n+m}

with edge set
E = {{i, j} ; 1 ≤ i < j ≤ n} ∪ {{i, n+ i} ; 1 ≤ i ≤ m}.

The induced subgraph spanned by {1, 2, . . . , n} is the complete graph Kn. We write G = BKn,m

and call it a bearded complete graph.

Figure 6. BKn,m (n = 6,m = 4).

The distance matrix D of G = BKn,m is written in the block matrices:

D =



J − I J 2J − I

J J − I 2J

2J − I 2J 3J − 3I


, (52)

where the diagonal matrices are of m×m, (n−m)× (n−m) and m×m, in order.
For m = n = 1 by definition BK1,1 = K2. Hence

QEC(BK1,1) = −1.
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For m = 1 and n ≥ 2 we have BKn,1 = Kn ⋆ K2 = Kn ∧K1,1. It is already known that

QEC(BKn,1) = − 2

2 +

√
2
(
1− 1

n

) .

The above formula is valid for n = 1.

Theorem 4.3. Let 2 ≤ m ≤ n. Then

QEC(BKn,m) = − 2

2 +
√
2
= −(2−

√
2) = QEC(P4).

Proof. According to the expression (52) in block diagonal form, the quadratic function Φ =
⟨f̃ , Df̃⟩ becomes

Φ =

⟨fg
h

 ,

 J − I J 2J − I
J J − I 2J

2J − I 2J 3J − 3I

 ,

fg
h

⟩
= ⟨1, f⟩2 + ⟨1, g⟩2 + 3⟨1, h⟩2 − ⟨f, f⟩ − ⟨g, g⟩ − 3⟨h, h⟩

+ 2⟨1, f⟩⟨1, g⟩+ 4⟨1, f⟩⟨1, h⟩+ 4⟨1, g⟩⟨1, h⟩ − 2⟨f, h⟩,

where

f̃ =

fg
h

 , f ∈ Rm, g ∈ Rn−m, h ∈ Rm.

We then consider the stationary points of

F (f, g, h, λ, µ) = Φ− λ(⟨f, f⟩+ ⟨g, g⟩+ ⟨h, h⟩ − 1)

− µ(⟨1, f⟩+ ⟨1, g⟩+ ⟨1, h⟩).

After simple calculus we see that the largest λ appearing in the stationary points of F (f, g, h, λ, µ)
is given by

λ = −(2−
√
2),

with

⟨1, f⟩ = 0, ⟨f, f⟩ = 2 +
√
2

4
, g = 0, h = −(λ+ 1)f, µ = 0.

Indeed, by virtue of the condition m ≥ 2, we may choose f ∈ Rm satisfying the first two condi-
tions.

Note

The QE constants of graphs on n vertices with n ≤ 5 are listed in [18], in which the QE
constant of the graph No. 12 on n = 5 verices needs correction:

for − 4

5 +
√
5

read − 4

5 +
√
15
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