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Abstract

A set D of vertices in a graph G = (V,E) is a total dominating set if every vertex of G is adjacent
to some vertex in D. A total dominating set D of G is said to be weak if every vertex v ∈ V −D is
adjacent to a vertex u ∈ D such that dG(v) ≥ dG(u). The weak total domination number γwt(G)
of G is the minimum cardinality of a weak total dominating set of G. A total dominating set D
of G is said to be strong if every vertex v ∈ V − D is adjacent to a vertex u ∈ D such that
dG(v) ≤ dG(u). The strong total domination number γst(G) of G is the minimum cardinality of
a strong total dominating set of G. We present some bounds on weak and strong total domination
number of a graph.
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1. Introduction

We consider finite, undirected, simple graphs. Let G be a graph, with vertex set V and edge
set E. The open neighborhood of a vertex v ∈ V is N(v) = {u ∈ V | uv ∈ E} and the
closed neighborhood is N [v] = N(v) ∪ {v}. For a subset S ⊆ V , the open neighborhood is
N(S) = ∪v∈SN(v) and the closed neighborhood is N [S] = N(S) ∪ S. By G[S] we denote the
subgraph induced by the vertices of S. If v is a vertex of V, then the degree of v denoted by dG(v),
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is the cardinality of its open neighborhood. By ∆(G) = ∆ and δ(G) = δ we denote the maximum
and minimum degree of a graph G, respectively. A star K1,n is a tree of order n+ 1 with at least n
vertices of degree 1. A tree T is a double star if it contains exactly two vertices that are not leaves.
We denote by S(a, b) a double star in which one of the centers has degree a and the other center
has degree b. The corona cor(G) of a graph G is a graph obtained from G by attaching a leaf to
every vertex of G.

A subset S ⊆ V is a dominating set of G if every vertex in V − S has a neighbor in S and is
a total dominating set (td-set) if every vertex in V has a neighbor in S. The domination number
γ(G) (respectively, total domination number γt(G)) is the minimum cardinality of a dominating
set (respectively, total dominating set) ofG. Total domination was introduced by Cockayne, Dawes
and Hedetniemi [4]. Note that every graph without isolated vertices has a td-set, since V (G) is such
a set. In [14], Sampathkumar and Pushpa Latha have introduced the concept of weak and strong
domination in graphs. A subsetD ⊆ V is a weak dominating set (wd-set) if every vertex v ∈ V −D
is adjacent to a vertex u ∈ D, where dG(v) ≥ dG(u). The subset D is a strong dominating set (sd-
set) if every vertex v ∈ V − D is adjacent to a vertex u ∈ D, where dG(u) ≥ dG(v). The weak
(strong, respectively) domination number γw(G) (γs(G), respectively) is the minimum cardinality
of a wd-set (an sd-set, respectively) of G. Strong and weak domination have been studied for
example in [5, 6, 9, 10, 12, 13]. For more details on domination in graphs and its variations, see
the two books [7, 8].

A large part of extremal graph theory studies the extremal values of graph parameters on fami-
lies of graphs. Results of Nordhaus-Gaddum type study the extremal values of the sum (or product)
of a parameter on a graph and its complement, following the classic paper of Nordhaus and Gad-
dum [11] solving these problems for the chromatic number on n-vertex graphs.

Chellali et al. [3] have introduced the concept of weak total domination in graphs. A total
dominating set D of G is said to be weak if every vertex v ∈ V − D is adjacent to a vertex
u ∈ D such that dG(v) ≥ dG(u). The weak total domination number γwt(G) of G is the minimum
cardinality of a weak total dominating set of G.

Problem 1.1 (Chellali et al. [3]). (1) Can you bound γwt(G) + γwt(G)?
(2) What can you say about strong total domination?

The concept strong total domination can be defined analogously. A total dominating set D
of G is said to be strong if every vertex v ∈ V − D is adjacent to a vertex u ∈ D such that
dG(v) ≤ dG(u). The strong total domination number γst(G) of G is the minimum cardinality of
a strong total dominating set of G. We obtain Nordhause- Gaddum type bounds for weak total
domination number as well as for strong total domination number of a graph. We also present
sharp upper and lower bounds for the strong total domination number of a tree in terms of order
and the number of leaves and support vertices. We abbreviate a weak total dominating set of G
as wtd-set, and a strong total dominating set of G as std-set. A wtd-set of minimum cardinality is
called a γwt(G)-set, and a std-set of minimum cardinality is called a γst(G)-set.

2. Useful results

In this section we state some useful results that we need for the next. We begin with the
following observation of [7].
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Observation 2.1. For n ≥ 3, γt(Pn) = γt(Cn) = bn
2
c+ dn

4
e − bn

4
c.

Proposition 2.1 (Chellali et al. [3]). For any graph G of order n, minimum degree δ and with no
isolated vertices, γwt(G) ≤ n+ 1− δ.

The generalized corona G∗ of a graph G = (V,E) as the graph that is obtained by attaching
one or more leaves to each vertex v ∈ V .

Proposition 2.2 (Chellali et al. [3]). A connected graph G of order n ≥ 2 has γwt(G) = n if
and only if G is obtained from a generalized corona of a graph H by adding a set of vertices A
(possibly empty) attached to vertices of H so that each vertex of A has degree less than the degree
of its neighbors.

As a consequent, we have the following.

Corollary 2.1. If G 6= K2 is a graph of order n and γwt(G) = n then G has at least two leaves.

We next state some useful results on the total domination number of a graph.

Theorem 2.1 (Cockayne et al. [4]). If G has n vertices, no isolates, and ∆(G) < n − 1, then
γt(G) + γt(G) ≤ n+ 2, with equality if and only if G or G = mK2.

Theorem 2.2 (Chellali and Haynes [2]). If T is a nontrivial tree of order n ≥ 3 and with s support
vertices, then γt(T ) ≤ n+s

2
.

Theorem 2.3 (Chellali and Haynes [1]). If T is a nontrivial tree of order n and with l leaves, then
γt(T ) ≥ n+2−l

2
.

3. Results

We first present Nordhaus-Gaddum type bounds for the weak total domination number as well
as strong total domination number, and then present sharp bounds on the strong total domination
number in trees.

3.1. Nordhaus-Gaddum type bounds
We obtain sharp upper and lower bounds for γwt(G) +γwt(G), γwt(G)γwt(G), γst(G) +γst(G)

and γst(G)γst(G).

Theorem 3.1. Let G be a graph of order n. If G and G have no isolated vertex then γwt(G) +
γwt(G) ≤ 2n. Furthermore, the equality holds if and only if G = G = P4.

Proof. The upper bound is obviously verified, thus we prove the equality part. Assume that
γwt(G) + γwt(G) = 2n. Then γwt(G) = γwt(G) = n. Since G and G have no isolated vertex, we
have δ(G) ≥ 1, δ(G) ≥ 1, ∆(G) ≤ n− 2, and ∆(G) ≤ n− 2. By Proposition 2.2, G is obtained
from a generalized corona of a graph H by adding a set of vertices A (possibly empty) attached
to vertices of H so that each vertex of A has degree less than the degree of its neighbors. Thus
δ(G) = δ(G) = 1. If |V (H)| = 1 then G has an isolated vertex, and if |V (H)| ≥ 3 then δ(G) ≥ 2,
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both of which is a contradiction. Thus |V (H)| = 2. Let V (H) = {a, b}. If a is not adjacent to b
then δ(G) ≥ 2, a contradiction. Thus a is adjacent to b. If both a and b are strong support vertices,
then δ(G) ≥ 2, a contradiction. Thus we may assume, without loss of generality, that there is
precisely one leaf adjacent to b. Then b has no neighbor in A. Consequently, deg(b) = 2. Since A
is an independent set, we find that G is a double star with centers a and b. If deg(a) ≥ 2, then G
has precisely one leaf, contradicting Corollary 2.1. Thus deg(a) = 2. Consequently G = P4. 2

Theorem 3.2. Let G and G be graphs of order n with no isolated vertex. Then γwt(G)+γwt(G) =
2n− 1 if and only if G or G is cor(C3), or is obtained from a star K1,3 by subdividing one edge.

Proof. Since G and G have no isolated vertex, we have δ(G) ≥ 1, δ(G) ≥ 1, ∆(G) ≤ n− 2,
and ∆(G) ≤ n−2. Without loss of generality we may assume that γwt(G) = n and γwt(G) = n−1.
By Proposition 2.2, G is obtained from a generalized corona of a graph H by adding a set of
vertices A (possibly empty) attached to vertices of H so that each vertex of A has degree less than
the degree of its neighbors. Thus δ(G) = 1. By Proposition 2.1, δ(G) ≤ 2. Thus |V (H)| ≤ 3.
Assume that |V (H)| = 3. Let V (H) = {a, b, c}. It is obvious that one of the vertices a, b or c has
minimum degree in G. Without loss of generality assume that a is a vertex of minimum degree
in G. If b or c is adjacent to at least two leaves of G, then δ(G) ≤ 3, a contradiction. Thus each
of b and c is adjacent to precisely one leaf of G. Furthermore, a is adjacent to both b and c in G.
If a is a strong support vertex in G, then V (G) − {a1, a2} is a wtds for G, where a1 and a2 are
leaves adjacent to a. This contradiction implies that a is adjacent to precisely one leaf. Assume
that A 6= ∅. If |A| > 1, then V (G) − A is a wtds for G, a contradiction. Thus |A| = 1. Let
A = {a0}. If a0 is adjacent to both b and c then V (G) − {b1, c1} is a wtds for G, where b1 is the
leaf adjacent to b, and c1 is the leaf adjacent to c, a contradiction. Thus we may assume that a0 is
not adjacent to b. Then V (G) − (A ∪ {b1}) is a wtds for G, where b1 is the leaf adjacent to b, a
contradiction. Thus A = ∅, and G = cor(H). If H = P3, then γwt(G) < n − 1, a contradiction.
Thus H = C3, and so G = cor(C3).

We next assume that |V (H)| = 2. Let V (H) = {a, b}. If a is not adjacent to b, then G is a
disconnected graph with two components K1,1 and K1,t for some t ≥ 1. Then it can be easily seen
that γwt(G) < n − 1, a contradiction. Thus a is adjacent to b. We may assume without loss of
generality that a is a vertex of minimum degree in G. Then b is adjacent to at most two leaves.
Suppose that b is adjacent to two leaves. Then V (G)−{a1, b1} is a wtds for G, where a1 is the leaf
adjacent to a, and b1 is the leaf adjacent to b, a contradiction. Thus b is adjacent to precisely one
leaf, and thus deg(b) = 2. If deg(a) = 2 then γwt(G) < n−1, a contradiction. If deg(a) ≥ 4, then
V (G) − {a1, a2} is a wtds for G, where a1 and a2 are two leaves adjacent to a, a contradiction.
Thus deg(a) = 3. Consequently, G is obtained from a star K1,3 by subdividing one edge. 2

Theorem 3.3. Let G be a graph of order n. If G and G have no isolated vertex then 5 ≤ γwt(G) +
γwt(G) ≤ n+ ∆(G) + 2. These bounds are sharp.
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Proof. For the upper bound, by Proposition 2.1,

γwt(G) + γwt(G) ≤ n+ 1− δ(G) + n+ 1− δ(G)

= n+ 1− δ(G) + n+ 1− (n− 1−∆(G))

= n+ 1− δ(G) + 2 + ∆(G)

≤ n+ ∆(G) + 2.

For the lower bound it is obvious that γwt(G) ≥ 2 and γwt(G) ≥ 2. Assume that γwt(G) =
γwt(G) = 2. Let S = {x, y} be a γwt(G)-set, and D = {a, b} be a γwt(G)-set. If a = x then y is
not dominated by D is G, a contradiction. Thus a 6= x and thus we may assume that S ∩D = ∅.
Clearly we may assume that a is weakly dominated by x and b is weakly dominated by y. Thus
degG(x) ≤ degG(a) and degG(y) ≤ degG(b). Since S is γwt(G)-set, we have

degG(a) + degG(b) ≥ degG(x) + degG(y) ≥ n (1)

Since D is a γwt(G)-set we obtain that

n ≤ degG(a) + degG(b) = n− 1− degG(a) + n− 1− degG(b). (2)

(1) and (2) imply that n ≤ degG(a) + degG(b) ≤ n− 2, a contradiction.
To see the sharpness of the upper bound consider a path P4. To see the sharpness of the lower

bound consider a double star S(5, 5) with centers {x, y} and leaves {ai, bi : i = 1, 2, 3, 4}, where
{xai : i = 1, 2, 3, 4} ∪ {ybi : i = 1, 2, 3, 4} ⊆ S(5, 5). Now add the edges a1b2, a1b3, a1b4, a2b1,
a2b3, a2b4, a3b1, a3b2, a3b4, a4b1, a4b2, a4b3, a1a2, a3a4, b1b3, and b2b4 to obtain a graph G. It is
straightforward to see that γwt(G) = 2 and γwt(G) = 3.

Similarly we have the following.

Theorem 3.4. Let G be a graph of order n. If G and G have no isolated vertex then 6 ≤
γwt(G)γwt(G) ≤ n2. These bounds are sharp.

Next we obtain sharp upper and lower bounds for γst(G) + γst(G) and γst(G)γst(G). The
following are easily verified.

Observation 3.1. (1) Every std-set of a graph G contains all support vertices of G.
(2) For any graph G with no isolated vertex, γst(G) ≥ γt(G). Moreover, if G is regular, then
γst(G) = γt(G).

Proposition 3.1. For paths and cycles, γst(Pn) = γst(Cn) = γt(Pn) = γt(Cn).

For a graph with no isolated vertices, obviously the strong total domination number is bounded
above by its order n. Next we improve this upper bound.

Proposition 3.2. For any graph G of order n, maximum degree ∆ and with no isolated vertices,
γst(G) ≤ n+ 1−∆.
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Proof. The result holds if ∆(G) = 1, and thus we assume that ∆(G) ≥ 2. Let v be a
vertex of V of maximum degree and w be a vertex of N(v). If N(v) − {w} has no support
vertex, then S = V − (N(v) − {w}) is a strong total dominating set for G. Therefore, γst(G) 6
|V − (N(v)− {w})| = n+ 1−∆. Thus assume that N(v)− {w} contains some support vertex.
Let T be the set of support vertices of N(v) − {w}. For each support vertex x ∈ N(v) − {w},
let x∗ be a leaf adjacent to x. Then S1 = ((N(v) − {w}) − T ) ∪ {x∗ : x ∈ T} is a strong total
dominating set for G, and therefore, γst(G) 6 n+ 1−∆. 2

Proposition 3.3. A connected graph G of order n ≥ 2 has γst(G) = n if and only if G = K2.

Proof. Let G be a graph with γst(G) = n. By Proposition 3.2, we have ∆ = 1. Thus the result
follows. 2

Proposition 3.4. If G is a connected graph of order n ≥ 3 then γst(G) ≤ n − 1 with equality if
and only if G ∈ {P3, C3}.

Proof. The upper bound follows from Proposition 3.3. Moreover, it is obvious that γst(P3) =
γst(C3) = 2 = n − 1. Let G be a connected graph with γst(G) = n − 1. By Proposition 3.2, we
find that ∆(G) ≤ 2. Since n ≥ 3 we have ∆(G) = 2. Thus G is a path or a cycle. By Observation
2.1 and Proposition 3.1, we obtain that n − 1 = bn

2
c + dn

4
e − bn

4
c and this implies that n = 3.

Hence G ∈ {P3, C3}.

Observation 3.2. For a graph G, γst(G) = 2 if and only if G is a star or a double star.

Theorem 3.5. Let G be a graph of order n. If G and G have no isolated vertex then 4 ≤ γst(G) +
γst(G) ≤ n+ 2. These bounds are sharp.

Proof. SinceG andG have no isolated vertex, ∆(G) < n−1 and ∆(G) < n−1. Since γst(G) ≥ 2
and γst(G) ≥ 2, the lower bound follows. To show the sharpness we prove a stronger result.
Equality for the lower bound holds if and only if both G and G are double-star by Observation 3.2.
Thus G = G = P4. We next establish the upper bound. By Proposition 3.2,

γst(G) + γst(G) ≤ n+ 1−∆(G) + n+ 1−∆(G)

≤ n+ 1−∆(G) + n+ 1− (n− 1− δ(G))

≤ n+ 3−∆(G) + δ(G)

≤ n+ 3.

If γst(G) + γst(G) = n + 3 then all inequalities in the above become equalities. In particular,
∆(G) = δ(G), and thus G is a regular graph. By Theorem 2.1,

n+ 3 = γst(G) + γst(G) = γt(G) + γt(G) ≤ n+ 2,

a contradiction. Thus γst(G) + γst(G) ≤ n + 2. To see the sharpness, let G = mK2 for some
m > 1.

Similarly we obtain the following.

Theorem 3.6. Let G be a graph of order n. If G and G have no isolated vertex then 4 ≤
γst(G)γst(G) ≤ (n− 2)2. Both bounds are sharp for G = P4.
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3.2. Sharp bounds on the strong total domination number in trees
Chellali et al. [3] obtained bounds on the weak total domination number of a tree T in terms

of the order and the number of support vertices and leaves of T . Here, we present sharp upper
and lower bounds for the strong total domination number of a tree T in terms of the order and the
number of support vertices and leaves of T .

Theorem 3.7. For any tree T of order n ≥ 4 with l leaves and s support vertices,

n+ 2− l
2

≤ γst(T ) ≤ n+ s

2
.

These bounds are sharp.

Proof. For the lower bound, by Theorem 2.3, γst(T ) ≥ γt(T ) ≥ n+2−l
2

. To see the sharpness
consider a path P4. We next establish the upper bound. We proceed by induction on the order n.
It is a routine matter to check that if 2 ≤ diam(T ) ≤ 5 then γst(T ) = γt(T ) and thus the result
is valid by Theorem 2.2. This establishes the base case. Assume the result is valid for any tree
T ′ of order n′ < n, and T has n vertices and s support vertices. Let x and y be two leaves with
d(x, y) = diam(T ). We assume that diam(T ) ≥ 6. We root T at x. Let y1 be the parent of y, y2
the parent of y1, y3 the parent of y2, and y4 the parent of y3.

Assume first that deg(y2) ≥ 3. Let T1 be the component of T − y1y2 containing y2. Then y2 is
either a support vertex in T1 or is adjacent to a support vertex. Let S1 be a minimum std-set for T1.
We may assume that y2 ∈ S. Then S1 ∪ {y1} is a std-set for T . By the inductive hypothesis

γst(T ) ≤ γst(T1) + 1 ≤ (n− deg(y1)) + s− 1

2
+ 1 =

n− deg(y1) + s+ 1

2
<
n+ s

2
.

Next assume that deg(y2) = 2.
If deg(y3) ≥ 3 then we let T2 be the component of T−y2y3 containing y3. Let S2 be a minimum

std-set for T2. Then S2 ∪ {y1, y2} is a std-set for T . By the inductive hypothesis

γst(T ) ≤ γst(T2) + 2 ≤ (n− deg(y1)− 1) + s− 1

2
+ 2 =

n− deg(y1) + s+ 2

2
≤ n+ s

2
.

Thus we assume that deg(y3) = 2.
let T3 be the component of T − y3y4 containing y4. Let S3 be a minimum std-set for T3. Then

S2 ∪ {y1, y2} is a std-set for T . By the inductive hypothesis

γst(T ) ≤ γst(T3) + 2 ≤ (n− deg(y1)− 2) + s

2
+ 2 =

n− deg(y1) + s+ 2

2
≤ n+ s

2
.

To see the sharpness consider a path P6.
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