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Abstract

The boxicity of a graph G is the minimum non-negative integer k such that G is isomorphic to the
intersection graph of a family of boxes in Euclidean k-space, where a box in Euclidean k-space
is the Cartesian product of k closed intervals on the real line. In this short note, we define the
fractional boxicity of a graph as the optimum value of the linear relaxation of a covering problem
with respect to boxicity, which gives a lower bound for its boxicity. We show that the fractional
boxicity of a graph is at least the lower bounds for boxicity given by Adiga et al. in 2014. We also
present a natural lower bound for fractional boxicity of graphs. The aim of this note is to discuss
and focus on “accuracy” rather than “simplicity” of these lower bounds for boxicity as the next
step in the work by Adiga et al.
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1. Introduction and Preliminaries

A box in Euclidean k-space is the Cartesian product of k closed intervals on the real line. The
intersection graph of a family F of boxes in Euclidean k-space is the graph with F as the vertex
set, where two boxes (vertices) in F are adjacent if and only if they have non-empty intersec-
tion in the space. The boxicity of a graph G, denoted by box(G), is the minimum non-negative
integer k such that G is isomorphic to the intersection graph of a family of boxes in Euclidean
k-space. For example, a complete graph Kn with n vertices, a path Pn with n vertices, and a cycle
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Cn with n vertices for n ≥ 4 can be represented by the intersection graph of a family of boxes
in 0-dimensional, 1-dimensional, and 2-dimensional space respectively (in fact, box(Kn) = 0,
box(Pn) = 1, box(Cn) = 2).

The concept of boxicity of graphs was introduced by Roberts [15]. It has applications to mea-
sure the structural complexity of ecological and social networks (see [14, 16] for detail). So far
many researchers have attempted to calculate or bound boxicity of graphs with specific structure.
Roberts [15] found that the boxicity of a complete k-partite graph is equal to k, where the cardinal-
ity of each partite set is at least 2. Roberts also proved that the maximum boxicity of graphs with
n vertices is ⌊n

2
⌋ (also see [7]), where ⌊x⌋ denotes the largest integer at most x. Cozzens [6] found

that the task of computing boxicity of graphs is NP-hard. Chandran and Sivadasan [5] presented
upper bounds for chordal graphs, circular arc graphs, AT-free graphs, co-comparability graphs,
and permutation graphs by relating boxicity to treewidth. Cozzens and Roberts [7] obtained an
upper bound for boxicity of split graphs, which contributed to relating boxicity to the cardinality
of minimum vertex cover and the chromatic number in [3]. Relationships between boxicity and
(Euler) genus were found by Esperet and Joret in [9, 10, 11], which originated from researches
of the boxicity of outerplanar graphs and planar graphs observed, respectively, by Scheinerman
[17] and Thomassen [20]. In addition, boxicity has notable topics related to the following (graph)
invariants: maximum degree [4, 8] and poset dimension [1, 12, 19].

In this short note we focus on lower bounds for boxicity of graphs. Adiga et al. [2] presented
a lower bound for the boxicity of a graph as in Lemma 1.1 below, which also gives some lower
bounds under various conditions on graphs. Those lower bounds for boxicity in addition to the
lower bound in Lemma 1.2 are relatively easy to estimate by examination, but there is an exam-
ple of a graph whose boxicity cannot be determined by those lower bounds (see Example 2.4 and
Remark 2.5). In what follows, the symbol G denotes the complement of a graph G and the cardi-
nality of a set X is denoted by |X|. The symbol ⌈x⌉ denotes the smallest integer at least x. Interval
graphs are graphs of boxicity at most 1.

Lemma 1.1 ([2], Lemma 3.1). The inequality box(G) ≥ |E(G)|/|E(Imin)| holds for a non-
complete graph G, where Imin is an interval supergraph of G with V (Imin) = V (G) and with
the minimum number of edges among all such interval supergraphs of G.

Lemma 1.2 ([7], Lemma 3). Let G be a graph. Let S1 = {u1, u2, . . . , un} and S2 = {v1, v2, . . . , vn}
be disjoint subsets of V (G) such that the only edges between S1 and S2 in G are the edges uivi,
where i ∈ {1, 2, . . . , n}. Then box(G) ≥ ⌈n/2⌉ holds.

The next step in the work by Adiga et al. is to discuss and focus on “accuracy” rather than
“simplicity” of these lower bounds for boxicity. The purpose of this note is

• to review the lower bound in Lemma 1.1 for boxicity in the context of fractional graph theory,

• to introduce a fractional analogue of boxicity that will become a lower bound for boxicity,
and

• to present a natural lower bound for our fractional analogue of boxicity, which works on
calculation of boxicity of some graphs better than Lemmas 1.1 and 1.2.
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In this note, all graphs are finite, simple and undirected. We use V (G) for the vertex set of a
graph G and E(G) for the edge set of the graph G. These notations are also used for hypergraphs.
A few concepts and results about (hyper)graphs are needed to present a fractional analogue of
boxicity. A graph is said to be cointerval if its complement is an interval graph. A cointerval edge
covering of a graph G is a family C of cointerval subgraphs of G such that each edge of G is in
some graph in C. The following is a basic result on boxicity.

Theorem 1.3 ([7], Theorem 3). Let G be a graph. Then, box(G) ≤ k if and only if there exists a
cointerval edge covering C of G with |C| = k. Hence

box(G) = min{ |C| : C is a cointerval edge covering of G }.

2. Main Results

In what follows, for n-dimensional vectors u and v, we write u ≥ v to mean that each coordi-
nate of u is at least the corresponding coordinate of v. Let C be a family of hyperedges of a hyper-
graph H and we write C = {X1, . . . , Xk}. The family C is a covering of H if V (H) ⊆ X1∪· · ·∪Xk

holds. Our key idea for the definition of a fractional analogue of boxicity is in the way to define a
hypergraph associated with a graph. For a graph G, we define the hypergraph HG as follows:

V (HG) = E(G) and

E(HG) = {E ⊂ E(G) : E corresponds to a cointerval subgraph of G }.

Note that a covering of HG corresponds to a cointerval edge covering of G. Hence the covering
number of the hypergraph HG, the minimum cardinality of a covering of HG, is equal to the
boxicity of G by Theorem 1.3.

For a graph G, let ei be an edge of G and Ej a hyperedge of HG. Moreover, let MG be the
incidence matrix of HG whose rows are indexed by all edges of G and whose columns are in-
dexed by all cointerval subgraphs of G, that is, the i, j-entry of MG is equal to 1 if ei ∈ Ej ,
and otherwise 0. Write E(HG) = {E1, . . . , En}. Let C be a family of hyperedges in E(HG) and
x = t(x1, x2, . . . , xn) ∈ {0, 1}n the indicator vector of hyperedges in E(HG) that corresponds
to the family C, that is, xi is equal to 1 if Ei ∈ C, and otherwise 0. We see that C is a cointerval
edge covering of G if and only if MGx ≥ 1 holds, where 1 is a vector of all ones. We note that a
subgraph of G with only one edge is a cointerval subgraph of G. Hence the boxicity of a graph G
can be defined as the optimum value of the integer program (that is feasible)

(IP) minimize t1x

subject to MGx ≥ 1 and x ∈ {0, 1}n,

that is,
box(G) = min{t1x : MGx ≥ 1,x ∈ {0, 1}n}.

We relax the condition of the integer program (IP) and consider the linear program

(LP) minimize t1x

subject to MGx ≥ 1 and x ≥ o,
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where o is a zero vector. We define the fractional boxicity of a graph G, denoted by boxf (G), to
be the optimum value of (LP), that is,

boxf (G) = min{t1x : MGx ≥ 1,x ≥ o}.

Hence boxf (G) ≤ box(G) holds for a graph G.
By the way, in the theory of linear programming, we usually consider the dual program of (LP):

(D) maximize t1y

subject to tMGy ≤ 1 and y ≥ o.

The program (D) is clearly feasible. It is well-known in the theory of linear programming that a
feasible linear program and its dual feasible program have the same optimum value. Hence we may
consider the value of (D) instead of boxf (G). We notice that a vector y∗ of all 1/p’s is a feasible
solution of (D), where p = maxEi∈E(HG) |Ei|. Hence, boxf (G) ≥ t1y∗ = |E(G)|/p. We note that
this lower bound for fractional boxicity of graphs is identical to the lower bound for boxicity of
graphs in Lemma 1.1.

An automorphism of a hypergraph H is a bijection π on V (H) such that X ∈ E(H) if and only
if π(X) ∈ E(H). A hypergraph H is vertex-transitive (edge-transitive) if for every pair (w1, w2)
of vertices (hyperedges) there exists an automorphism π of H such that π(w1) = w2 holds. The
following theorem is derived from Proposition 1.3.4 in [18].

Theorem 2.1. For a graph G, the inequalities

box(G) ≥ boxf (G) ≥ |E(G)|
maxEi∈E(HG) |Ei|

hold. In particular, if G is edge-transitive, we have the equality

boxf (G) =
|E(G)|

maxEi∈E(HG) |Ei|
.

Proof. Note that the fractional boxicity of a graph G is the same concept with the fractional cov-
ering number of the hypergraph HG. In Lemma 2.2 below, we show the hypergraph HG is vertex-
transitive by the edge-transitivity of G, so the above equality holds by Proposition 1.3.4 in [18].
The following Lemma 2.2 completes the proof of this theorem.

Lemma 2.2. If G is edge-transitive for a graph G, the hypergraph HG is vertex-transitive.

Proof. For every pair of vertices e1, e2 ∈ V (HG) = E(G), there exists an automorphism π :
V (G) → V (G) such that π(e1) = e2 holds by our assumption. We can check that π induces a
bijection π on E(G) in a natural way: π(uv) = π(u)π(v) for an edge uv ∈ E(G). Moreover E is
in E(HG) if and only if π(E) is in E(HG) since π and its inverse π−1 map a subgraph H of G to
a subgraph isomorphic to H . Hence π is the desired map.
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The fractional boxicity of a graph G is the same as the maximum value of t1y under the
conditions tMGy ≤ 1 and y ≥ o. We note that each entry of y is a weight of an edge of G. The
rows of tMG are indexed by all cointerval subgraphs of G, but we see that

• an inequality in tMGy ≤ 1 corresponding to a non-maximal cointerval subgraph (on their
edge sets) is superfluous since y ≥ o.

Hence we only have to focus on maximal cointerval subgraphs of G when we calculate boxf (G). In
what follows, MG always means the (reduced) incidence matrix of HG whose columns are indexed
by all maximal cointerval subgraphs of G.

The boxicity and the fractional boxicity of a graph are different in general (also see Example 2.4
and Remark 2.5). As a simple example, let us consider the graph G in Figure 1 whose complement
is isomorphic to K3 with a pendant edge added at each vertex of K3. It is easy to see that box(G) =
2 > 3/2 ≥ boxf (G) holds.

Figure 1. The graph G (left) and its complement G (right).

We can find three maximal cointerval subgraphs of G in total, each of which is isomor-
phic to the graph obtained from G by deleting one pendant edge. It is easy to check that x =
t(1/2, 1/2, 1/2) is a feasible solution for MGx ≥ 1 and x ≥ o. Hence boxf (G) ≤ t1x = 3/2.

We will reduce unnecessary restrictions further within the same conditions MGx ≥ 1 and
x ≥ o. Let E (⊂ E(HG)) be the family of all maximal cointerval subgraphs of G. Write Fe =
{E ∈ E : e ∈ E} for an edge e ∈ E(G). An edge e of G is said to be fundamental if Fe is minimal
as subfamily of E (see heavy edges in Figure 1 for definition). Let E∗ be the set of all fundamental
edges of G. We define two edges e and e′ in E∗ to be equivalent, denoted by e ∼ e′, if Fe = Fe′ .
We remark that

• an inequality in MGx ≥ 1 corresponding to a non-fundamental edge of G is superfluous
since x ≥ o, and

• if e ∼ e′ for e, e′ ∈ E∗, the two inequalities in MGx ≥ 1 which correspond to e and e′ are
the same inequalities.

The inequality corresponding to an equivalence class [e] means an inequality in MGx ≥ 1 corre-
sponding to a representative of [e]. It does not depend on the choice of representatives of [e]. Let
M∗

G be the reduced incidence matrix of HG whose rows are indexed by all equivalence classes in
E∗/∼ and whose columns are indexed by all maximal cointerval subgraphs of G. We see that

• MGx ≥ 1 is equivalent to M∗
Gx ≥ 1 under x ≥ o.
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Hence the fractional boxicity of a graph G is the same as the optimum value of the linear program

(LP)′ minimize t1x

subject to M∗
Gx ≥ 1 and x ≥ o.

We consider a relaxation program of (LP)′ and get a natural lower bound for fractional boxicity
of graphs.

Theorem 2.3. For a graph G, let {H1, H2, . . . , Hl} be the family of all maximal cointerval sub-
graphs of G and let E∗/∼ = {[e1], [e2], . . . , [ek]}. Let ai be the number of fundamental edges of G
in {e1, e2, . . . , ek} which are contained in Hi for i ∈ {1, 2, . . . , l}. Then

boxf (G) ≥ k

a∗

holds, where a∗ = max{a1, a2, . . . , al}.

Proof. Note that boxf (G) = min{t1x : M∗
Gx ≥ 1,x ≥ o}. Sum up all k inequalities in M∗

Gx ≥
1, and then we obtain

a∗(t1x) = a∗(x1 + x2 + · · ·+ xl) ≥ a1x1 + a2x2 + · · ·+ alxl ≥ k,

where x = t(x1, x2, . . . , xl). Hence t1x ≥ k/a∗ holds, that is, boxf (G) ≥ k/a∗.

The fractional boxicity of a graph will measure its boxicity more accurately than the other
lower bounds for boxicity given by Adiga et al. in 2014, although it is a difficult parameter to
estimate by examination like the other fractional graph invariants.

Example 2.4. We consider the graph Gk whose complement is the graph in Figure 2 below (and is
not edge-transitive), where k ≥ 4. We will find all maximal cointerval subgraphs of Gk and prove
boxf (Gk) = k/2.

Let H be a cointerval subgraph of Gk. For example, we see that

(1) H cannot have edges e11, e12, . . . , e5k−9 if H has the edge e1, and

(2) H cannot have edges e16, e17, . . . , e5k−9 if H has at least one of e2, e3, e4 and e5.

We will obtain similar statements to (1) or (2) if H has an edge ei, where i ∈ {6, 7, . . . , 5k}.

Case 1. Assume that H contains the edge e1. If it has at least one of e7, e8, e9 and e10, we can find
maximal cointerval graphs containing H within the graph induced by {v1, . . . , v6, v2k−1, v2k}, and
otherwise we can find them within the graph induced by {v1, v2, v3, v4, v2k−3, v2k−2, v2k−1, v2k}.

Case 2. Assume that H has at least one of e2, e3, e4 and e5. If it has at least one of e12, e13, e14 and
e15, we can find maximal cointerval graphs containing H within the graph induced by {v1, . . . , v8},
and otherwise we can find them within the graph induced by {v1, . . . , v6, v2k−3, v2k−2, v2k−1, v2k}.

As a result it is sufficient to find maximal cointerval subgraphs of the graph H∗ in Figure 3. Clearly,
H∗ and H∗ − e (that is obtained from H∗ by deleting e) are not cointerval for any e ∈ E(H∗). We
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Figure 2. The complement of the graph Gk.

will find three maximal cointerval subgraphs of H∗, but two of them can be extended to the graph
isomorphic to the graph with heavy edges in Figure 3 on the graph Gk.

We have k maximal cointerval subgraphs of Gk in total, each of which is isomorphic to the
graph with heavy edges in Figure 3. Hence the optimum value of the following linear program
becomes the fractional boxicity boxf (Gk).

(D) maximize y1 + y2 + · · ·+ y5k

subject to y1 + y2 + · · ·+ y10 + y5k−3 + y5k−2 + · · ·+ y5k ≤ 1

y5i−13 + y5i−12 + · · ·+ y5i ≤ 1 (i ∈ {3, 4, . . . , k})
y1 + y2 + · · ·+ y5 + y5k−8 + y5k−7 + · · ·+ y5k ≤ 1

yj ≥ 0 (j ∈ {1, 2, . . . , 5k})

Figure 3. The graph H∗ (top) and its maximal cointerval subgraphs (bottom).
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We consider the dual program of (D) and reduce superfluous inequalities so that we can obtain
the following linear program:

(LP)′ minimize x1 + x2 + · · ·+ xk

subject to x1 + xk ≥ 1

xi + xi+1 ≥ 1 (i ∈ {1, 2, . . . , k − 1})
xj ≥ 0 (j ∈ {1, 2, . . . , k}).

Then (x1, x2, . . . , xk) = (1/2, 1/2, . . . , 1/2) is a feasible solution of (LP)′, and hence boxf (Gk) ≤
k/2.

Let E∗ be the set of all fundamental edges of Gk. It is easy to check that

• E∗ = {e1, e6, . . . , e5k−4},

• E∗/∼ = {[e1], [e6], . . . , [e5k−4]} holds because e ̸= e′ implies e ̸∼ e′ for e, e′ ∈ E∗, and

• a∗ = 2 since every maximal cointerval subgraph of Gk contains two fundamental edges in
{e1, e6, . . . , e5k−4}.

By Theorem 2.3, boxf (Gk) ≥ k/2 holds, which implies our claim.

Remark 2.5 (boxf vs. the lower bounds in Lemmas 1.1 and 1.2). It is easy to see that box(Gk) ≤
⌈k/2⌉ holds for any k by Theorem 1.3. Hence box(Gk) = ⌈k/2⌉ holds since boxf (Gk) = k/2.
The lower bounds for boxicity in Lemmas 1.1 and 1.2 do not work on the graph Gk well for k ≥ 7,
that is, they cannot determine the boxicity of Gk.

We see that boxf (Gk) > 5k/14 = |E(Gk)|/maxEi∈E(HGk
) |Ei| holds. Let m(Gk) be the maxi-

mum number of edges aibi of Gk with the condition in Lemma 1.2 and let Mk be a set of those edges
of Gk. For example, if e1 ∈ Mk, any edge in {e2, e3, . . . , e10, e5k−8, e5k−7, . . . , e5k} cannot be in
Mk. If an edge e ∈ {e2, e3, e4, e5} is in Mk, any edge in {e1, e2, . . . , e11, e5k−4, e5k−3, . . . , e5k}\{e}
cannot be in Mk. It is not difficult to see that m(Gk) ≤ k/2 holds in any case. Hence we have
⌈m(Gk)/2⌉ ≤ ⌈k/4⌉ < boxf (Gk). The difference between the fractional boxicity boxf (Gk) and
|E(Gk)|/maxEi∈E(HGk

) |Ei| (or ⌈m(Gk)/2⌉) can be arbitrary large.

3. Further Observation

Finally we remark another way to calculate the fractional boxicity of graphs. Let s be a pos-
itive integer. The s-fold boxicity of a graph G, denoted by boxs(G), is the minimum cardinality
of a multiset {E1, E2, . . . , Ek} of cointerval subgraphs of G such that each edge of G is in at
least s cointerval subgraphs in the multiset. Note that box1(G) = box(G). Since the subadditivity
boxs+t(G) ≤ boxs(G) + boxt(G) holds for a graph G and s, t ≥ 1, the following limit exists and
we have the following equality by Fekete’s subadditivity lemma [13]:

lim
s→∞

boxs(G)

s
= inf

{
boxs(G)

s
: s ≥ 1

}
.
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Lemma 3.1 ([13]). Let Z+ and R+ be the set of all nonnegative integers and the set of all nonneg-
ative real numbers, respectively. If g : Z+ → R+ is subadditive, that is, g(m+ n) ≤ g(m) + g(n)
holds for any m,n ∈ Z+, the limit limm→∞ g(m)/m exists and is equal to inf g(m)/m.

A basic result on the fractional covering numbers of hypergraphs guarantees boxf (G) =
lims→∞ boxs(G)/s (see Theorem 1.2.1 in [18]). Hence we may approach the study on the s-fold
boxicity of graphs to calculate the fractional boxicity of graphs.
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