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Abstract

A graph is well-covered if all of its maximal independent sets have the same size. A graph that
remains well-covered upon the removal of any vertex is called a 1-well-covered graph. These
graphs, when they have no isolated vertices, are also known as W2 graphs. It is well-known that
every graph G ∈ W2 has two disjoint maximum independent sets. In this paper, we investigate
connected W2 graphs with n vertices that contain a clique of size n/3. We prove that if the
removal of two disjoint maximum independent sets from a graph G ∈ W2 leaves a clique of
size at least 3, then G contains a clique of size n/3. Using this result, we provide a complete
characterization of these graphs, based on eleven graph families.
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1. Introduction

We consider only simple, finite, and undirected graphs, and use standard terminology. A set
of vertices in a graph is called independent if none of its vertices share an edge. An independent
set that has the largest possible size is referred to as a maximum independent set. The number of
vertices in the largest independent set of a graph G is known as the independence number, de-
noted by α(G). The problem of identifying graphs where every maximal independent set is also
a maximum independent set was introduced by M.D. Plummer in 1970, who referred to such
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graphs as well-covered. Since then, numerous studies have been conducted on this topic. Iden-
tifying well-covered graphs is generally a co-NP-complete problem [4, 19]. However, certain
subclasses of well-covered graphs can be recognized in polynomial time [5, 8, 3, 11].

Staples introduced W2 graphs in 1979 as graphs in which any two disjoint independent sets
are contained within two disjoint maximum independent sets [20]. These graphs are also re-
ferred to as 1-well-covered graphs without isolated vertices, meaning they remain well-covered
even after the removal of any vertex. Hence, a graph G belongs to W2 if and only if G is
1-well-covered without isolated vertices [20]. After the initial exploration of fundamental prop-
erties of 1-well-covered graphs in [20], various studies focused on specific subclasses. Pinter
characterized two categories of planar 1-well-covered graphs: those that are 4-regular and 3-
connected [15], and those with girth 4 [17]. He also developed constructions for infinite families
of 1-well-covered graphs with girth 4 [18]. Subsequently, Hartnell provided a characterization
of 1-well-covered graphs without 4-cycles in [12]. Hoang and Trung [13] gave a characteri-
zation of the W2 graphs satisfying the condition that every triangle is also a dominating set
for the graph. Recently, Deniz and Ekim investigated edge stable equimatchable graphs which
actually coincide 1-well-covered line graphs [7]. Also, Levit and Mandrescu gave some charac-
terizations of 1-well-covered graphs in terms of the existence of special independent sets [14].
More recently, Deniz [6] gave a detailed study on a classification of 1-well-covered graphs with
respect to their independence and matching numbers.

A vertex x of a graph G is called shedding if for every independent set S in G−NG[x], there
is a vertex v ∈ NG(x) so that S ∪ {v} is independent. W2 graphs are also known as graphs in
which every vertex is a shedding vertex. In fact, Levit and Mandrescu showed in [14] that for a
vertex v in a well-covered graph G without isolated vertices G − v is well-covered if and only
if v is shedding. Shedding vertices are closely connected to independence complexes of graphs
in combinatorial topology. Specifically, they are crucial in determining vertex-decomposable
graphs, as there must be an ordering of shedding vertices in a graph G to classify it as vertex-
decomposable [2, 21].

In this paper, we study 1-well-covered graphs with n vertices that contain a clique of size
n/3. Note that every graph G ∈ W2, where W2 is the class of 1-well-covered graph without
isolated vertices, has two disjoint maximum independent sets. We show that for a graph G ∈
W2 if G− (I1 ∪ I2) is a clique of size t for disjoint maximum independent sets I1 and I2, then
G has at most 3t vertices.

Theorem 1.1. Let G ∈ W2 with n vertices, and suppose that I1 and I2 are disjoint maximum
independent sets. If S = V (G)−(I1∪I2) induces a clique of size at least 3 in G, then n ≤ 3|S|.

Notice that if G is a graph as described in Theorem 1.1, then G has at most 3|S| vertices.
Since G has two disjoint maximum independent sets, we have α(G) ≤ |S|. This implies that G
has a clique of size at least n/3. Hence, for a connected graph G ∈ W2, if S = V (G)−(I1∪I2)
induces a clique of size at least 3 for a pair of disjoint maximum independent sets I1 and I2,
then G has a clique of size at least n/3.

For a given graph in W2, we show how to construct an infinite family of W2 graphs. We
then divide categorize the graphs for which G − (I1 ∪ I2) is a clique for disjoint maximum
independent sets I1 and I2, into three subclasses with respect to their independence numbers.
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These results allow us to achieve a complete characterization of such graphs, presented as a list
of eleven graph families.

Theorem 1.2. A connected graph G is in W2 such that the removal of two disjoint maximum
independent sets from G leaves a clique if and only if G belongs to one of the graph classes
C(G2), C(G3), . . . , C(G9), C(K2), C(C5) and C(Kt ◦K2) for t ≥ 2 (see Figures 3 and 6).

The remainder of this paper is organized as follows. In Section 2, we begin with definitions
and preliminary results related to 1-well-covered graphs. In Section 3, we introduce the graph
G(u;w) for a given 1-well-covered graph G and a vertex u ∈ V (G). Finally, in Section 4, we
consider the graph G belonging to W2 for which S = G − (I1 ∪ I2) induces a clique in G,
where I1 and I2 are two disjoint maximum independent sets.

2. Preliminaries

Let G = (V,E) be graph and given a subset of vertices S, the subgraph induced by S in G
is denoted by G[S], and G \ S represents the subgraph induced by V \ S, i.e., G[V \ S]. When
S consists of a single vertex v, we denote G \ S by G− v. The graph G− S thus corresponds
to the subgraph G[V (G) − S]. For a vertex v, the open neighborhood of v in a subgraph H is
denoted by NH(v), and the closed neighborhood of v, denoted by NH [v], is NH(v) ∪ v. If the
subgraph H is clear from context, the subscript H is omitted. For a subset S ⊆ V , NH(S) (resp.
NH [S]) represents the union of the open (resp. closed) neighborhoods of the vertices in S. We
say that S is complete to T for S, T ⊂ V (G) if every vertex in S is adjacent to all vertices in T .
Additionally, we use the notation [k] to refer the set 1, 2, . . . , k.

We use the notation Kn, Cn, and Pn to represent the complete graph, cycle, and path on n
vertices, respectively. Additionally, Kr,s denotes the complete bipartite graph for any r, s ≥ 1.
The notation rK2 refers to a graph consisting of r components, each being K2. A graph G is
said to be F -free if none of its induced subgraphs is isomorphic to F . The notations dG(x),
∆(G), and δ(G) represent the degree of a vertex x, the maximum and minimum degrees of a
graph G, respectively. A vertex with degree one is called leaf, while a vertex with degree zero
is called leaf. A subgraph of G that is isomorphic to a complete graph is referred to as a clique.
The clique number of a graph G, denoted by ω(G), represents the number of vertices in the
largest clique in G. A matching is a collection of edges in G such that no two edges share a
common endpoint. The maximum size of a matching in G is known as the matching number of
G, denoted by µ(G). A matching M saturates a vertex v if v is an endpoint of an edge in M ;
otherwise, the vertex v is considered unsaturated by M . A vertex u in a graph G is said to be
dominated by another vertex v ∈ V (G) \ u if NG[u] ⊆ NG[v]. A subset S ⊆ V (G) dominates
a set of vertices T if every vertex in T is adjacent to at least one vertex in S. Recall that each
graph in W2 has two disjoint maximum independent sets. For simplicity, we will refer to these
as DMI sets.

We begin by stating some established results related to well-covered graphs, which will be
used in the remainder of the paper.

Theorem 2.1. [1] Let S be an independent set in a graph G. Then, every independent set
disjoint from S can be matched into S if and only if S is maximum.
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Theorem 2.2. [14] Let G be a well-covered graph and let v be a non-isolated vertex. Then v is
a shedding vertex. if and only if G− v is well-covered.

It directly follows from Theorem 2.2 that every vertex in a graph G ∈ W2 is a shedding
vertex.

Theorem 2.3. [20] The graph G ∈ W2 if and only if α(G − v) = α(G) and G − v is well-
covered, for every v ∈ V (G).

Theorem 2.3 shows that W2 graphs and 1-well-covered graphs are equivalent when the
graph has no isolated vertices. Therefore, 1-well-covered graphs without isolated vertices are
the same as W2 graphs. Additionally, when the graph is connected, these two graph families
coincide. Hence, we typically use the W2 notation instead of referring to connected 1-well-
covered graphs.

Recall that while every vertex of a graph in W2 is a shedding vertex, the converse is not
true; that is, a graph where each vertex is a shedding vertex does not necessarily belong to W2.
Indeed, the graph H1 in Figure 1 has the property that each of its vertices is a shedding vertex,
yet H1 is not in W2. Consider the other graphs in Figure 1. The graph H2 is a well-covered
but does not belong to W2. The graph H3 belongs to W2 and is also well-covered. Finally, the
graph H4 is neither well-covered nor a member of W2.

H1 H2 H3 H4

Figure 1: The graphs H1, H2, H3, and H4.

Proposition 2.1. [14]

(i) If G is a connected graph in W2 with n vertices such that α(G) + µ(G) = n, then G is
isomorphic to K2.

(ii) The only connected bipartite graph belonging to W2 is K2.

Lemma 2.1. [16] Let G be a graph in W2. Then, the graph G − NG[S] is in W2 for every
independent set S in G. In particular, α(G) = α(G−NG[S]) + |S|.

We note that if v is a shedding vertex in a graph G, then it follows from the definition of
shedding vertex that there is no independent set S in G−NG[v] that dominates NG(v). This, in
particular, implies that G does not have any dominated vertices.

Corollary 2.1. If G is a connected graph with at least 3 vertices, then no shedding vertex in G
can be a leaf vertex. In particular, when G ∈ W2, it follows that δ(G) ≥ 2.
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According to [14, Corollary 2.12], the only connected graphs in W2 with order 2α(G) + 1
are C3 and C5. From this, the following observation can be made.

Corollary 2.2. Let G ∈ W2. Then G− x is a bipartite well-covered graph for some x ∈ V (G)
if and only if G is C3 or C5.

By definition, a graph G belongs to W2 if any two disjoint independent sets in G can be
extended to two DMI sets. Thus, in a graph G ∈ W2, every pair of disjoint independent sets
can be expanded to form two DMI sets. We often use this property of W2 in order to show that
a graph belongs to the class W2.

3. Insertion and deletion of vertices in 1-well-covered graphs

In a 1-well-covered graph, by definition, the removal of any vertex does not change its well-
coveredness property while it may not to be 1-well-covered. In this section, we investigate
these graphs of when it is possible to add (or delete) a vertex in the graph under preserving its
1-well-covered property.

Definition 3.1. Any two vertices u, v in a graph G are said to be twins if u and v have the same
set of neighbours, that is, if NG(u) = NG(v). We make a slight modification to this definition
as follows; a pair u, v in G is called a c-twin if NG[u] = NG[v].

Given a connected graph G and a vertex u ∈ V (G). We define the graph G(u : w) as a
graph obtained from G by adding a new vertex w to G and make adjacent w with all vertices of
NG[u]. Namely, V (G(u : w)) = V (G) ∪ {w} and E(G(u : w)) = E(G) ∪ {wv : v ∈ NG[u]}.
Observe that u and w are c-twin vertices in the graph G(u : w). For instance, if G = C5, and u
is any vertex in G, then G(u : w) is the graph depicted in Figure 2.

u

w

Figure 2: The graph G(u : w).

It can be easily observed that α(G) = α(G(u : w)) for every graph G and u ∈ V (G). We
next show that G(u : w) preserves its 1-well-covered property.

Theorem 3.1. Let G ∈ W2 and u ∈ V (G). Then G(u : w) is in W2 as well.

Proof. We pick two disjoint independent sets T1, T2 in G(u : w), and we extend them to two
DMI sets in G(u : w) so that G(u : w) belongs to W2.

First, if w /∈ T1 ∪ T2, then there exist two DMI sets in G(u : w) containing T1 and T2, since
G ∈ W2. Therefore, we further assume that w ∈ T1 ∪ T1. Note that w cannot be in both T1
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and T2, since they are disjoint. Assume without loss of generality that w ∈ T1. Notice that
NG[u] = NG(u:w)[u]− w, and T1 ∩NG[u] = {w}.

Let u ∈ T2. Obviously T2 ∩ NG[u] = {u}. By Lemma 2.1, G − NG[u] is in W2, which
implies that there exist two DMI sets S1, S2 in G − NG[u] containing T1 − w and T2 − u,
respectively. Then the sets S1 ∪ {w} and S2 ∪ {u} are two DMI sets in G(u : w) containing T1

and T2, respectively, as claimed.
Let u /∈ T2. Consider the sets (T1 − w) ∪ {u} and T2, they are clearly disjoint. Since

G ∈ W2, we can extend (T1 − w) ∪ {u} and T2 to two DMI sets S1 and S2 in G, respectively.
Thus, the sets S ′ = (S1 − u) ∪ {w} and S2 are DMI sets in G(u : w) containing T1 and T2,
respectively, as claimed. Hence, G is in W2.

Corollary 3.1. If G is well-covered, and u ∈ V (G), then G(u : w) is well-covered as well.

In a well-covered graph G, a vertex w ∈ V (G) is said to be extendable if G − w is well-
covered and α(G) = α(G − w). Extendable vertices were used in [9, 10] in order to construct
some families of well-covered graphs.

Following Theorem 3.1, it turns out that the vertices u and w in the graph G(u : w) are
extendable.

Corollary 3.2. If G is a well-covered graph and u ∈ V (G), then u and w are extendable
vertices in the graph G(u : w).

The converse of Theorem 3.1 is not generally true since the graph G1 − w for a vertex w of
degree 2 is not 1-well-covered although G1 ∈ W2 (see Figure 3).

G1

v

u

G2

u

v

G3

v

u

G4

v

u

G5

Figure 3: The graphs G1, G2, . . . , G5.

4. 1-well-covered graphs containing a clique of size n/3

A graph G belonging to W2 can be partitioned into three sets I1, I2, S where I1 and I2 are
two disjoint independent sets in G, and S = V (G) − (I1 ∪ I2). In this section, we first bound
the size of G by 3|S| when G− (I1∪ I2) is a clique for DMI sets I1 and I2. By using this result,
we further obtain a complete characterization of those graphs.

Notice that a graph G is in W2 if and only if every connected component of G is in W2.
Therefore, we will focus exclusively on connected graphs in W2 for the remainder of the paper.
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Proposition 4.1. Let G ∈ W2, and suppose that I1 and I2 are DMI sets. If S = V (G)−(I1∪I2)
induces a clique in G, then every vertex in S has exactly one neighbour in each of I1, I2.

Proof. Suppose that S = V (G) − (I1 ∪ I2) induces a clique in G for DMI sets I1 and I2 with
|Ii| = r for i = 1, 2. Since G is well-covered, every vertex in S has a neighbour in each of I1,
I2. Indeed, if there exists u ∈ S having no neighbour in I1, then I1 ∪ {u} would be a maximal
independent set of size r + 1, a contradiction.

Let u ∈ S be given. By Lemma 2.1, G−NG[u] is in W2 with α(G−NG[u]) = r− 1. Note
that the graph G − NG[u] is bipartite since S induces a clique in G. Then, by Proposition 2.1
that G − NG[u] is isomorphic to (r − 1)K2. Then, we conclude that any vertex u ∈ S cannot
have more than one neighbour in Ii for i ∈ {1, 2} since otherwise the graph G−NG[u] would
have at most 2r − 3 vertices, a contradiction. Consequently, every vertex in S has exactly one
neighbour in each of I1, I2.

Proposition 4.2. Let G ∈ W2. Suppose S = V (G)−(I1∪I2) for DMI sets I1 = {x1, x2 . . . , xr}
and I2 = {y1, y2 . . . , yr} with {x1y1, x2y2, . . . , xryr} ⊂ E(G). Then, for each i ∈ [r], at least
one endpoint of the edge xiyi is adjacent to a vertex in S.

Proof. Assume for a contradiction that there exists an index i ∈ [r] such that NG(S)∩{xi, yi} =
∅. We then deduce that NG(xi) ⊆ I2 and NG(yi) ⊆ I1. Recall also that, by Corollary 2.1, the
minimum degree of a graph belonging to W2 is at least 2, so |NG(yi) ∩ I1| ≥ 2. Therefore,
NG(xi) is dominated by I1 − xi. Nevertheless, this gives a contradiction since xi is a shedding
vertex.

Notice that if G is in W2 with n vertices such that G− (I1 ∪ I2) is a clique for DMI sets I1
and I2, then G contains a clique of size n − 2α(G). Next let us show that G cannot contain a
clique of size n− 2α(G) + 2 when G ̸= Kn for n ∈ N.

Proposition 4.3. Let G ∈ W2 with n vertices, and G ̸= Kn. For DMI sets I1 and I2, if
S = V (G)− (I1 ∪ I2) induces a clique in G, then |S| ≤ ω(G) ≤ |S|+ 1.

Proof. Suppose that S = V (G)− (I1 ∪ I2) induces a clique in G for DMI sets I1 and I2. Then,
G contains a clique of size n− 2α(G) = |S|, so ω(G) ≥ |S|.

Let α(G) = r, I1 = {x1, x2 . . . , xr} and I2 = {y1, y2 . . . , yr}. We may assume {x1y1, x2y2,
. . . , xryr} ⊂ E(G) by Theorem 2.1. Clearly r ≥ 2 since G ̸= Kn. Assume for a contradiction
that there exist xi ∈ I1 and yj ∈ I2 such that {xi, yj} is complete to S. Then i ̸= j by
Proposition 4.2 together with Proposition 4.1. This means that xi has at least two neighbours
in I2, which are yi, yj ∈ I2. Also, G − NG[xi] is bipartite since xi is complete to S. Then,
by Proposition 2.1 that G − NG[xi] is isomorphic to (r − 1)K2. However, G − NG[xi] has at
most 2r − 3 vertices since xi has at least two neighbours in I2, a contradiction. Thus, there are
no such xi ∈ I1 and yj ∈ I2. Hence, G has no clique of size n − 2α(G) + 2. Consequently,
|S| ≤ ω(G) ≤ |S|+ 1.

We next state some technical results related to W2 graphs with the partition I1, I2 and S.

Proposition 4.4. Let G ∈ W2. Suppose that G − (I1 ∪ I2) is a clique for DMI sets I1 and I2.
Then every vertex in I1 (resp. I2) has at most two neighbours in I2 (resp. I1).
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Proof. We assume to the contrary that there exists x ∈ I1 such that it has at least three neigh-
bours in I2. Then α(G − NG[x]) = α(G) − 1 and |I2 − NG(x)| ≤ α(G) − 3. However, we
cannot extend the independent sets I1 − x and (I2 − NG(x)) ∪ {x} into two DMI sets in G as
G − (I1 ∪ I2) is a clique, a contradiction that G ∈ W2. By symmetry, the claim follows when
a vertex y of I2 has more than two neighbours in I1.

Lemma 4.1. Let G ∈ W2. Suppose that for DMI sets I1 and I2, the set S = V (G)− (I1 ∪ I2)
induces a clique of size at least 3 in G. If α(G) ≥ 4, then every vertex in I1∪I2 has a neighbour
in S.

Proof. Suppose that S = V (G)− (I1 ∪ I2) induces a clique of size |S| ≥ 3 in G for DMI sets
I1 and I2. Let α(G) = r ≥ 4, I1 = {x1, x2 . . . , xr} and I2 = {y1, y2 . . . , yr}. Clearly, G has
n = 2r + |S| vertices. By Theorem 2.1, we may assume {x1y1, x2y2, . . . , xryr} ⊂ E(G).

Assume for a contradiction that there exists xi ∈ I1 for i ∈ [r] such that it has no neighbour
in S. By Corollary 2.1 and Proposition 4.4, xi has exactly two neighbours in I2. Then, we
claim that every vertex in S is adjacent to one of the neighbours of xi in I2. Indeed, if u ∈ S is
adjacent to none of the neighbours of xi in I2, then xi and its two neighbours would survive in
G−NG[u]. However, G−NG[u] must consist of K2 components by Proposition 2.1 and Lemma
2.1, a contradiction. Thus, by Proposition 4.1, there exists yj ∈ I2 having no neighbours in S
due to r ≥ 4. Clearly, we have i ̸= j by Proposition 4.2. Similarly as before, yj has exactly
two neighbours in I1, also every vertex in S is adjacent to one of the two neighbours of yj in
I1. Since for each vertex s ∈ S, the vertex s has a unique neighbour in Iℓ for ℓ = 1, 2 by
Proposition 4.1 and r ≥ 4, we deduce that |NG(S) ∩ It| = 2. It then follows from Proposition
4.2 that we have α(G) = r = 4, and exactly one endpoint of each edge xℓyℓ has a neighbour
in S for ℓ ∈ [4]. We may then assume without loss of generality that NG(xi) = {y3, y4},
NG(yj) = {x1, x2}, and let i = 4, j = 1.

Let u, v ∈ S such that u ∈ NG(x1) and v ∈ N(x2). Obviously, x1 (resp. x2) is the unique
neighbour of u (resp. v) in I1 by Proposition 4.1. Notice also that the graph G − NG[u] is in
W2 by Lemma 2.1, and so G−NG[u] consists of K2 components by Proposition 2.1. However,
x2 and its two neighbours y1, y2 belong to G−NG[u], a contradiction.

Result 4.1. Let G ∈ W2. Suppose that for DMI sets I1 and I2, the set S = V (G) − (I1 ∪ I2)
induces a clique of size at least 3 in G. If α(G) ≥ 4, then α(G) ≤ |S|.

Proof. By Lemma 4.1, every vertex in I1 ∪ I2 has a neighbour in S. Moreover, each vertex
of S has exactly one neighbour in Ii for i = 1, 2 by Proposition 4.1. Thus, we conclude that
α(G) ≤ |S| as claimed.

Let us now prove one of our main results, which will be essential for the proof of Theorem
1.2.

Theorem 1.1. Let G ∈ W2 with n vertices, and suppose that I1 and I2 are DMI sets. If
S = V (G)− (I1 ∪ I2) induces a clique of size at least 3 in G, then n ≤ 3|S|.

Proof. Suppose that I1, I2 are DMI sets in G, and let S = V (G)− (I1 ∪ I2) induce a clique of
size at least 3 in G. By Result 4.1, if α(G) ≥ 4, then α(G) ≤ |S|. It then follows that n ≤ 3|S|
since G has n = 2r + |S| vertices. Also, if α(G) ≤ 3, then n ≤ 3|S| since |S| ≥ 3 ≥ r.
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Given two graphs H1 and H2. The corona H1 ◦ H2 is the graph obtained by taking each
vertex of H1 and connecting it to all vertices of a copy of H2 (see, for instance, Figure 4).
Clearly, the graph G1 in Figure 3 corresponds to the graph K2 ◦K2.

(a) (b)

Figure 4: (a) The graph P3 ◦K1. (b) The graph K3 ◦K2.

The provided upper bound in Theorem 1.1 is sharp since the graph Kt◦K2 attains the bound
for each t ≥ 3. We next state an easy consequence of Theorem 1.1.

Corollary 4.1. Let G ∈ W2 with n vertices. For DMI sets I1 and I2, if G− (I1 ∪ I2) is a clique
of size at least 3, then α(G) ≤ n

3
≤ ω(G).

Proposition 4.5. Suppose that G ∈ W2 with n vertices. For DMI sets I1 and I2, if G− (I1∪I2)
is isomorphic to K2, then α(G) ≤ 3.

Proof. Suppose that S = V (G)− (I1 ∪ I2) induces a K2 in G for DMI sets I1 and I2. Assume
for a contradiction that α(G) ≥ 4. By Propositions 4.1 and 4.2, we deduce that α(G) = 4.
Then G has |S|+ 8 = 10 vertices.

Let I1 = {x1, x2, x3, x4}, I2 = {y1, y2, y3, y4}, and S = {u, v}. By Theorem 2.1, we may
assume {x1y1, x2y2, x3y3, x4y4} ⊂ E(G). Recall that for each vertex s ∈ S, the vertex s has
a unique neighbour in Iℓ for ℓ = 1, 2 by Proposition 4.1, also for each i ∈ [4], at least one
endpoint of the edge xiyi is adjacent to S by Proposition 4.2. Thus, we deduce that S has
exactly two neighbours in each of I1, I2, and so the remaining two vertices of each I1, I2 have
no neighbour in S. Without loss of generality, we may assume that NG(S) = {x1, x2, y3, y4},
and NG(u) ∩ I2 = {y3}. By Corollary 2.1 and Proposition 4.4, x3 has exactly two neighbours
in I2. Then, by applying the same process as in the proof of Lemma 4.1, we claim that every
vertex in S is adjacent to one of the two neighbours of x3 in I2. Indeed, if there exists u ∈ S
having no neighbour in NG(x3), then x3 and its two neighbours would survive in G − NG[u].
However, G − NG[u] must consist of K2 components by Lemma 2.1 and Proposition 2.1, a
contradiction. This forces that NG(x3) = {y3, y4}. By the same reason, every vertex in S is
adjacent to one of two neighbours of x4 in I2. Therefore NG(x3) = {y3, y4} = NG(x4).

On the other hand, the graph G−NG[u] is in W2 by Lemma 2.1, and so G−NG[u] consists
of K2 components by Proposition 2.1. However, y4 and its two neighbours x3, x4 belong to
G−NG[u], a contradiction.

For a connected graph G ∈ W2 with n vertices, suppose that G − (I1 ∪ I2) is a clique of
size t for DMI sets I1 and I2. If t ≥ 3, then, by Corollary 4.1, G has at most n

3
vertices. On the

other hand, if t ≤ 2, then G has at most 3t+ 2 vertices by Corollary 2.2 and Proposition 4.5.
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Corollary 4.2. Let G ∈ W2 with n vertices. For DMI sets I1 and I2, if G− (I1 ∪ I2) is a clique
of size t with t ≤ 2, then n ≤ 3t+ 2 ≤ 8, and ω(G) ≥ n−2

3
.

By combining Corollaries 4.1 and 4.2, we obtain the following.

Result 4.2. Let G ∈ W2 with n vertices. If the removing of two DMI sets from G leaves a
clique, then G has a clique of size n−2

3
.

We now consider the W2 graphs obtained from another one by attaching some c-twin ver-
tices. Actually, we have already shown in Theorem 3.1 that if G ∈ W2 and u ∈ V (G), then
G(u : w) is in W2 as well. We now consider the case of adding more than one c-twin consecu-
tively.

Given a connected graph H ∈ W2 such that S = V (H) − (I1 ∪ I2) induces a clique in H
for DMI sets I1 and I2. We define a graph family C(H) whose members consist of the graph
obtained from H by adding a vertex set T into S and making all vertices of T as c-twin with
some vertices of S so that T ∪S induces a clique in the resulting graph. In other words, a graph
G belongs to C(H) if there exists a set of c-twin vertices T ⊂ S such that G− T is isomorphic
to H where S = V (G) − (I1 ∪ I2) induces a clique in G for DMI sets I1 and I2. Clearly,
H ∈ C(H). For instance, if H = C3, then C(C3) = C(K1 ◦ K2) consists of complete graphs
having at least three vertices. Also, a member of C(K3 ◦K2) is depicted in Figure 5 where the
vertices u, v are added into the graph K3 ◦K2.

u v

Figure 5: A member of C(K3 ◦K2).

For a given connected graph H ∈ W2, all the members of C(H) are in W2 by Theorem 3.1.

Proposition 4.6. Let H ∈ W2 such that S = V (H)− (I1 ∪ I2) induces a clique in H for DMI
sets I1 and I2. Then every member of the graph family C(H) is in W2.

In the rest of the paper, we shall give our main result (Theorem 1.2) via a series of lemmas
where we split the proof into three cases with respect to α(G).

Lemma 4.2. Let G ∈ W2. Suppose that for DMI sets I1 and I2, the subgraph G− (I1 ∪ I2) is
a clique. If α(G) = r ≥ 4, then G belongs to C(Kr ◦K2).

Proof. Let α(G) = r ≥ 4. Then |S| = t ≥ 3 by Proposition 4.5, and we have |S| ≥ α(G) ≥ 4
by Result 4.1. It follows from Theorem 1.1 that n ≤ 3|S| = 3t.

Let I1 = {x1, x2 . . . , xr}, I2 = {y1, y2 . . . , yr}, and S = {u1, u2, . . . , ut} with t ≥ r ≥ 4.
By Theorem 2.1, we may assume {x1y1, x2y2, . . . , xryr} ⊂ E(G). Notice that, for each ui ∈ S,
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the graph G − NG[ui] consists of K2 components by Proposition 2.1 and Lemma 2.1, since
S ⊂ NG[ui].

We first show that G[I1 ∪ I2] is isomorphic to rK2. Assume by contradiction that xi is
adjacent to yj for some i, j ∈ [r] with i ̸= j. Recall that each vertex of I1 ∪ I2 has a neighbour
in S by Lemma 4.1. Moreover, for each vertex s ∈ S, the vertex s has a unique neighbour in
Iℓ for ℓ = 1, 2 by Proposition 4.1. Consider a vertex yk ∈ I2 for k ∈ [r] with k /∈ {i, j}, there
exists u ∈ S ∩NG(yk). Since u has a unique neighbour in I2, the vertex u has to be adjacent to
xi, since otherwise xi and its two neighbours yi, yj would survive in G − NG[u], contradicting
that G − NG[u] consists of K2 components. Clearly, G − NG[u] = G[I1 ∪ I2] − {xi, yk}. We
then deduce that G[I1 ∪ I2]− {xi, yk} is isomorphic to (r − 1)K2, and so xkyi ∈ E(G). Let us
next consider the vertex yj ∈ I2. By assumption, there exists v ∈ S ∩NG(yj). Then, similarly
as before, v has to be adjacent to xk, since otherwise xk and its two neighbours yi, yk would
survive in G−NG[v], a contradiction with the fact that G−NG[v] consists of K2 components.
This again implies that G[I1 ∪ I2]− {xk, yj} is isomorphic to (r − 1)K2, and so xjyk ∈ E(G).
Finally, let us take the vertex xj ∈ I1, and we apply the same process as before. By assumption
there exists w ∈ S ∩NG(xj), and thus w has to be adjacent to yi, since otherwise yi and its two
neighbours xi, xk would survive in G − NG[w], contradicting that G − NG[w] consists of K2

components. This again implies that G[I1 ∪ I2] − {xj, yi} is isomorphic to (r − 1)K2. Since
r ≥ 4, there exists xℓ ∈ I1 for ℓ ∈ [r] \ {i, j, k}, also we have z ∈ S ∩ NG(xℓ) by Lemma
4.1. It follows that z has to be adjacent to all {yi, yj, yk}, since otherwise yi (or yj, yk) and
its two neighbours would survive in G − NG[z], contradicting that G − NG[z] consists of K2

components. However, z can not have more than one neighbour in I2 by Proposition 4.1, a
contradiction. We therefore conclude that xi is not adjacent to yj . So, G[I1 ∪ I2] is isomorphic
to rK2.

Observe that if a vertex u ∈ S is adjacent to xi, yj with i ̸= j, then the edge xjyi must
appear in G since G−NG[u] consists of K2 components. However, this is not possible because
G[I1 ∪ I2] is isomorphic to rK2 by above claim. We therefore infer that each vertex of S is
adjacent to only both endpoints of an edge xiyi in G[I1 ∪ I2] for i ∈ [r]. It follows that there
exists S ′ ⊂ S with |S ′| = r such that G[I1 ∪ I2 ∪ S ′] is isomorphic to Kr ◦K2. On the other
hand, if S has more than r vertices, then some vertices of S have the same neighbours in I1∪I2,
since each vertex of S is adjacent to only both endpoints of an edge xiyi in G[I1∪I2] for i ∈ [r].
Let S1, S2 . . . , Sk be subsets of S such that each Si consists of the vertices of S having the same
neighbours in I1 ∪ I2. Obviously, each Si consists of c-twin vertices, and we have Si ∩ Sj = ∅
for i, j ∈ [k]. It then follows that the sets S1, S2 . . . , Sk correspond to a partition of S. Hence,
G belongs to C(Kr ◦K2).

Corollary 4.3. Let G ∈ W2. Suppose that for DMI sets I1 and I2, the set S = V (G)− (I1∪I2)
induces a clique of size t in G. If α(G) = r ≥ 4 and n = 3|S|, then t = r and G = Kr ◦K2.

Lemma 4.3. Let G ∈ W2. Suppose that for DMI sets I1 and I2, the subgraph G− (I1 ∪ I2) is
a clique. If α(G) = 3, then G is in either C(G5) or C(G6) or C(K3 ◦K2) (see Figures 3 and 6).

Proof. Let I1, I2 be two DMI sets in G, and let S = V (G)− (I1 ∪ I2) induce a clique of size t
in G. Suppose α(G) = 3. Then G has |S|+6 vertices. Let I1 = {x1, x2, x3}, I2 = {y1, y2, y3}.
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We may assume {x1y1, x2y2, x3y3} ⊂ E(G) by Theorem 2.1. Observe that, by Proposition 4.1,
for each vertex s ∈ S, the vertex s has a unique neighbour in Iℓ for ℓ = 1, 2. It follows from
Proposition 4.2 that S has at least two vertices.

We first assume that every vertex in I1 ∪ I2 has a neighbour in S. Then |S| ≥ 3, because
for each vertex s ∈ S, the vertex s has a unique neighbour in Iℓ for ℓ = 1, 2. If G[I1 ∪ I2] is
isomorphic to 3K2, then G belongs to C(K3 ◦ K2) as we deduce in the proof of Lemma 4.2.
Else, xi is adjacent to yj for some i, j ∈ {1, 2, 3} with i ̸= j. Again, following from the proof
of Lemma 4.2, there exists u, v, w ∈ S such that I1 ∪ I2 ∪ {u, v, w} induces the graph G6

(see Figure 6). If S has more than 3 vertices, then some vertices of S have to have the same
neighbours in I1 ∪ I2. Let S1, S2 . . . , Sk be subsets of S such that each Si consists of c-twin
vertices of S. It follows that the sets S1, S2 . . . , Sk corresponds to a partition of S. Hence, G
belongs to C(G6).

Now, assume that there exist xi ∈ I1 for i ∈ {1, 2, 3} such that xi has no neighbour in S.
Then yi ∈ NG(S) by Proposition 4.2, and it follows from Corollary 2.1 and Proposition 4.4
that xi has only two neighbours yi, yj for an index j ∈ {1, 2, 3} \ {i}. We therefore deduce
that every vertex in S is adjacent to either yi or yj , since otherwise xi and its two neighbours
yi, yj would survive in G − NG[u] for some u ∈ S, however, G − NG[u] must consist of K2

components by Proposition 2.1 and Lemma 2.1, a contradiction. Moreover, no vertex of S is
adjacent to I2 − {yi, yj} by Proposition 4.1. Then, there exists yℓ ∈ I2 for ℓ ∈ {1, 2, 3} \ {i, j}
such that yℓ has no neighbour in S due to α(G) = 3. It then follows from Proposition 4.2 that
xℓ ∈ NG(S), say xℓ ∈ NG(u) for a vertex u ∈ S. Recall that u is adjacent to either yi or yj . We
note that if u is adjacent to yi, then yj and its both neighbours xi, xj would survive in G−NG[u],
contradicting that G − NG[u] consists of K2 components. Therefore, u is adjacent to only yj
in I2. This also implies that xj is adjacent to yℓ since G − NG[u] consists of K2 components.
On the other hand, there must be another vertex v ∈ S − u such that v ∈ NG(yi) ∩ S since
xi /∈ NG(S). The vertex v must be adjacent to xj , since otherwise xj and its two neighbours
yj, yℓ would survive in G−NG[v], a contradiction. Consequently, G[I1 ∪ I2] contains the edges
xiyi, xjyj, xℓyℓ, xiyj, xjyℓ, and we will show that the graph G[I1 ∪ I2] has no more edges. For
simplicity, we assume that i = 1, j = 2 and ℓ = 3. Since G−NG[u] consists of K2 components,
we can say x1y3, x2y1 /∈ E(G). By the same reason, x3y2 /∈ E(G) since G − NG[v] consists
of K2 components. Similarly, x3y1 /∈ E(G), since otherwise NG(x1) would be dominated by
{x2, x3}, contradicting that x1 is a shedding vertex. Hence, G[I1∪I2] consists of only the edges
x1y1, x2y2, x3y3, x1y2, x2y3. In addition, u (resp. v) has only neighbours x3, y2 (resp. x2, y1) in
I1 ∪ I2. Observe that I1 ∪ I2 ∪{u, v} induces the subgraph G5 in G (see Figure 3). Moreover, if
S has more than two vertices, then every vertex in S − {u, v} must be c-twin with one of u, v.
Hence, we conclude that G is in C(G5).

Lemma 4.4. Let G ∈ W2. Suppose that G − (I1 ∪ I2) is a clique for DMI sets I1 and
I2. If α(G) = 2, then G belongs to one of the graph classes C(C5), C(G2), C(G3), C(G4),
C(G7), C(G8), C(G9), and C(K2 ◦K2) (see Figures 3 and 6).

Proof. Let α(G) = 2. By Corollary 2.2, G = C5 when |S| = 1. We may therefore assume
|S| ≥ 2. Let I1 = {x1, x2}, I2 = {y1, y2}, and S = {u1, u2, . . . , ut} for t ≥ 2. By Theorem 2.1,
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Figure 6: The graphs G6, G7, G8, and G9.

we assume {x1y1, x2y2} ⊂ E(G). Notice that for each ui ∈ S, the graph G−NG[ui] consists of
K2 components by Proposition 2.1 and Lemma 2.1, since G−NG[ui] ∈ W2 and S ⊂ NG[ui].
Also, by Proposition 4.1, for each vertex s ∈ S, the vertex s has a unique neighbour in Iℓ for
ℓ = 1, 2.

First, we suppose that there exists a vertex of I1 ∪ I2 having no neighbour in S. Without
loss of generality, we assume that x1 ∈ I1 has no neighbour in S. Then y1 ∈ NG(S) by
Proposition 4.2. Also, x2 ∈ NG(S) by Proposition 4.1. Since x1 has exactly two neighbours
in I2 by Corollary 2.1 and Proposition 4.4, we may assume without loss of generality that
y2 ∈ NG(x1), and so NG(x1) = {y1, y2}. Notice that x2y1 /∈ E(G), since otherwise NG(x1)
would be dominated by {x2}, a contradiction as x1 is a shedding vertex. It follows that G[I1∪I2]
is isomorphic to a P4 whose middle vertices are x1, y2. On the other hand, since x2 ∈ NG(S),
we have two cases: y2 /∈ N(S) or y2 ∈ N(S). If y2 has no neighbour in S, then y1 has a
neighbour in S. It follows from Proposition 4.4, every vertex in S is adjacent to both x2 and
y1 in I1 ∪ I2. This means that every pair of vertices in S is twin. Hence, G belongs to C(C5).
We now suppose that y2 ∈ N(S). Since for each vertex s ∈ S, the vertex s has a unique
neighbour in Iℓ for ℓ = 1, 2, every vertex in S is adjacent to x2 and y1 (or y2) where we recall
that y1 ∈ NG(S). It follows that there exists u, v ∈ S such that NG(u) ∩ (I1 ∪ I2) = {x2, y2}
and NG(v) ∩ (I1 ∪ I2) = {x2, y1}. Obviously, the set I1 ∪ I2 ∪ {u, v} induces the subgraph
G3 in the graph G (see Figure 3). Moreover, if S has more than 2 vertices, then every vertex in
S − {u, v} would be a c-twin with u or v. Hence, G belongs to C(G3).

Let us next assume that every vertex in I1∪ I2 has a neighbour in S. Observe that if a vertex
u ∈ S is adjacent to both xi and yj with i ̸= j, then the edge xjyi must appear in G since
G − NG[u] consists of K2 components. This means that that any vertex of S is adjacent to
only both endpoints of either x1y1 or x2y2 when G[I1 ∪ I2] induces 2K2. Then, by Proposition
4.2, G belongs to C(K2 ◦ K2) when G[I1 ∪ I2] induces 2K2. Hence, we further suppose that
G[I1 ∪ I2] ≇ 2K2. Without loss of generality, assume x1y2 ∈ E(G). We then observe that
G[I1 ∪ I2] is isomorphic to either P4 or C4.

Suppose first that G[I1 ∪ I2] induces P4. Then any vertex u ∈ S cannot be adjacent to
both x1 and y2 in I1 ∪ I2, since otherwise G − NG[u] would consists of two isolated vertices
x2, y1 due to G[I1 ∪ I2] ∼= P4, a contradiction. This implies that if u ∈ S is a neighbour of x1

(resp. y2) in G, then u is adjacent to y1 (resp. x2). It then follows from Proposition 4.2 that
there exist u, v ∈ S with u ̸= v such that x1, y1 ∈ NG(u) and x2, y2 ∈ NG(v). Observe that
G[x1, x2, y1, y2, u, v] is isomorphic to the graph G2 (see Figure 3). If y1 and x2 have no common
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neighbour in S, then G belongs to C(G2). Otherwise, y1 and x2 have a common neighbour w
in S, then G[x1, x2, y1, y2, u, v, w] is isomorphic to the graph G7 (see Figure 6). Similarly, if S
has some twin vertices in respect to u, v, w, then G belongs to C(G7).

Finally, we suppose that G[I1 ∪ I2] is isomorphic to C4. Recall that for each vertex s ∈ S,
the vertex s has a unique neighbour in Iℓ for ℓ = 1, 2, also every vertex in I1∪I2 has a neighbour
in S. Then, we deduce that there exist u, v ∈ S such that {u, v} dominates all x1, x2, y1, y2 in
the graph G. Since I1 ∪ I2 induces C4 in G, we may then assume without loss of generality
that x1, y1 ∈ NG(u) and x2, y2 ∈ NG(v). Obviously, G[x1, x2, y1, y2, u, v] is isomorphic to the
graph G4 (see Figure 3). Therefore, G belongs to C(G4) when S = {u, v} or every vertex in
S − {u, v} is a c-twin with one of u and v. Now, we suppose that there exists w ∈ S − {u, v}
such that w is not a c-twin with u and v. Then w is adjacent to x1, y2 (or x2, y1), assume without
loss of generality that x1, y2 ∈ NG(w). In such a case, G[x1, x2, y1, y2, u, v, w] is isomorphic
to the graph G8 (see Figure 6). Therefore, G belongs to C(G8) when S = {u, v, w} or each
vertex of S − {u, v, w} is a c-twin with one of u, v, w. At last, we suppose that there exists
z ∈ S − {u, v, w} such that z is not a c-twin with u, v and w, then the only possibility is that
x2, y1 ∈ NG(z). It follows that G[x1, x2, y1, y2, u, v, w, z] is isomorphic to the graph G9 (see
Figure 6). Also, if |S| ≥ 5, then some vertices of S must form a c-twin with one of u, v, w, z.
Hence, G belongs to C(G9).

Notice that any connected graph with independence number 1 is a complete graph. Since
all complete graphs having at least two vertices are in W2, we say that any graph in W2 with
independence number 1 belongs to C(K2).

By combining Lemmas 4.2, 4.3, 4.4 and Proposition 4.6, we get the promised characteriza-
tion of W2 graphs for which G− (I1 ∪ I2) is a clique for DMI sets I1 and I2.

Theorem 1.2. A connected graph G is in W2 such that the removal of two DMI sets from G
leaves a clique if and only if G belongs to one of the graph classes C(G2), C(G3), . . . , C(G9),
C(K2), C(C5) and C(Kt ◦K2) for t ≥ 2.
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