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Abstract

For a graph G, let P(G, \) denote the chromatic polynomial of G. Two graphs G and H are
chromatically equivalent if they share the same chromatic polynomial. A graph G is chromati-
cally unique if for any graph chromatically equivalent to G is isomorphic to GG. In this paper, the
chromatically unique of a new family of 6-bridge graph 6(a, a,a,b,b,c) where 2 < a < b < cis
investigated.
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1. Introduction

All graphs considered here are simple graphs. For such a graph G, let P(G, \) denote the chro-
matic polynomial of G. Two graphs G and H are chromatically equivalent (or simply y—equivalent),
denoted by G ~ H, if P(G,l) = P(H,l). A graph G is chromatically unique (or simply
x—unique) if for any graph H such as H ~ G, we have H = G, i.e, H is isomorphic to G.
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The chromaticity of a graph G refers to questions about the chromatic equivalence class or chro-
matic uniqueness of G. For terminologies and notations which are not explained here, the reader
is referred to [6, 20].

Let £ be an integer with & > 2 and let ay, as, . . . , a;, be positive integers with a; +a; > 3 for all
i,jand 1 <i < j < k.Letf(ay,as,...,a;) denote the graph obtained by connecting two distinct
vertices with k£ independent (internally disjoint) paths of length ay, as, ..., ax, respectively. The
graph 6(aq, as, ..., a;) is called a multi-bridge (more spesifically k-bridge) graph.

Given positive integers ai, as, . . ., agx, where k > 2, what is the necessary and sufficient condi-
tion on ay, as, ..., a for 6(ay, as, . .., ax) to be chromatically unique? Many papers [4, 5, 14, 15]
have been published on this problem, but it is still far from being completely solved.

For two non-empty graphs G and H, an edge-gluing of G and H is a graph obtained from G
and H by identifying one edge of G with one edge of H. For example, the graph K4 — e (obtained
from K, by deleting one edge) is an edge-gluing of K3 and K5. There are many edge-gluings of
G and H. Let g.(G, H) denote the family of all edge-gluings of G and H. Zykov [25] showed that
any member of g.(G, H) has chromatic polynomial

P(G,\)P(H,\)

()
(A(A=1))
Thus any two members in ¢.(G, H) are x-equivalent.
For any integer £ > 2 and non-empty graphs Gy, Gy, - - - , G, we can recursively define
9:(Go, G-+, Gi) = | 9.(G1, @) @)
0<i<k

where G’ € ge(Go, s ,Gifl, Gi+1, s ,Gk)

Each graph in g.(Go, G1,- -+ ,Gy) is also called an edge-gluing of Gy, G1,--- ,Gy. By (1),
any two graphs in g.(Go, G1, - - - , Gj,) are y-equivalent.

Let C), denote the cycle of order p. It was shown independently in [19] and [21] that if G is
x-equivalent to a graph in g.(C;,, Cy,,--- ,C;, ), then G € g.(C;,,Cyy,- -+, C, ). In other words,
this family is a y-equivalence class.

A 2-bridge graph is simply a cycle graph, which is xy—unique. Chao and Whitehead Jr. [2]
showed that every 3-bridge graph (1, as, a3) (or a theta graph) is x—unique. Loerinc [18] extended
the above result to all 3-bridge graphs by showing that all 3-bridge graphs (or generalized 6-graph)
are y-unique. Assume therefore that k& > 4. It is clear that if a; = 1 for some i say ¢ = 1,
then 6(ay, as, - - -, ax) is a member of g.(Cyyi1, Cogt1,- -, Capy1) and thus (ay, as, - - -, a) is
not y-unique. Assume therefore that a; > 2 for all . For & = 4, Chen et al. [3] found that
0(ay, az, az, ay) may not be y-unique.

Theorem 1.1. (Chen et al. [3]) (a) Let ay,as, az, ay be integers with 2 < a; < ay < az < ag.
Then 0(ay, as, as, ay) is x-unique if and only if (a1, as, az, ay) # (2,b,b+ 1,b+ 2) for any integer
b> 2.

(b) The x-equivalence class of 0(2,b,b+ 1,b+ 2) is

{0(2.6,b+ 1,6+ 2)} Uge(6(3,0,0 + 1), Cyya).
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Thus the problem of the chromaticity of §(ay, as, - - - , aj) has been completely settled for k£ <
4.

The results on the chromaticity of some families of 5-bridge graphs have been obtained by Bao
and Chen [1], Li and Wei [17], Li [16], Khalaf [7], Khalaf and Peng [8], Khalaf et al. [13]. Ye
[23, 24] proved that 6(2,2,2,2,a,b) where 3 < a+ 1 < band 0(2,2,...,2,a,b) where 3 < a < b
and k > 5 are x-unique, respectively. Khalaf and Peng [9] also proved that 0(a,a, ..., a,b) for
a < bis y-unique. The study on the chromaticity of 6-bridge graphs, 0(a;, as, as, a4, as, ag) where
ai, as, as, as, as, ag assume exactly two distinct values and 0(3, 3,3, 3,0, ¢) was done by Khalaf
and Peng [10, 12]. Later on, Khalaf and Peng in [7, 11] solved the chromaticity of two types of 6-
bridge graph (a1, as, as, as, as, ag) where aq, as, as, ay, as, ag assume exactly three distinct values,
that is, the graphs (a, a, a,b,c,c) and 6(a, a, a, a, b, ), respectively. The aim of this paper is to
investigate the chromaticity of another type of such graphs, that is, 6-bridge graphs 0(a, a, a, b, b, c)
(see Figure 1).

Figure 1. 6(a, a,a, b, b, c)

2. Preliminary Results and Notations

In this section, we cite some results to be used in this paper. The following result is due to Xu
et al. [22].

Lemma 2.1. Fork > 4, 0(ay, as, ..., a;) is x-unique if k — 1 < a; < ay < ... < ay.

Li and Wei [17] established that the 5-bridge graph 0(2,2,2, a,b) is x-unique if and only if
(a,b) # (3,4). Ye [23] extended the above result to any k-bridge graph 6(2,2,...,2,a,b) with
b > a > 3 and k > 5. For each positive integer 5, the graph GG(h) is obtained from G by replacing
each edge of GG by a path of length h, respectively and is called the h-uniform subdivision of G.
Xu et al. [21] showed that any h-uniform subdivision of 0, denoted as 6 (h), is x-unique, as stated
in the following theorem.

Lemma 2.2. (Xu et al. [21]) For k > 2, the graph 0y (h) is x-unique.
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Dong et al. [S] proved the following result.

Lemma 2.3. (Dong etal. [5])If2 < a; < as <...<ax < aj+ ay where k > 3, then the graph
0(ay,as, ..., ay) is x-unique.

Let k,ay,as, - ,a, € N, where N is natural number set and G = 60(ay,as,- - ,ax). Then
(see [4])
1 k
_ a;+1 a;+1
P(G,)\) = T 11 (A=1D)"* '+ (=) (A —-1))
k
fy L=+ (0 (- 1)
=1

Let A\ =1 — z, then

(—1)mtezt-tartl k

P(G, 1— :c) = 12 (:c H(x“ —-1) - H(:ca — x))

(_1)e(G)+1 k

- (1 — z)e(@)—v(@)+1 (z H@al -1)— H(x“’ — 1))

where e(G) = 2% a; and v(G) = 25| a; — k+2. Also define Q(G, ) for any graph G and
real number z as:
Q(G,z) = ()DL — ) DO Pp(G 1 — ).

Then we have

Lemma 2.4. (Dong et al. [5]) For any k,ay,as,...,a; € N,

Q(@(al,ag, . ,ak),x) = :z:H (xai — 1) — H (q:“i — x)

i=1
Lemma 2.5. (Dong et al. [5]) For any graphs G and H,

1. If H ~ G, then Q(H,z) = Q(G, z),

2. IfQ(H,z) = Q(G,x) and v(H) = v(Q), then H ~ G.

Lemma 2.6. (Dong et al. [5]) Suppose that 0(aq,as, ... a;) ~ 0(by,bs, ..., by) where k > 3,
2<ag1 <ar < ... <arand2 <by <by < ... <y thena; =0b; forallt=1,2,... k.

Lemma 2.7. (Dong et al. [5]) Let H ~ 0(ay,as,...,a;) where k > 3 and a; > 2 for all i, then

one of the following is true:
(l) H = 9((11, as, ... ,ak),
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(ii) H € ge(e(bl,bg,...,bt),C'thH, o ,C’bk+1), where 3 < t < k —1and b; > 2 for all
1=1,2,...,k

Lemma 2.8. (Dong et al. [5]) Let k,t,by,bs,...,bp € Nwhere 3 <t <k —1andb; > 2 for all
1=1,2,...,k. IfH € ge(g(bl,bg, R 7bt)70bt+1+17 R 7Cbk+1)’ then

Q(H,x) = xﬁ (xbi — 1) — f{ (:rbi —x) 'ﬁl (xbi — 1).

Lemma 2.9. (Koh & Teo [14]) If G ~ H, then
(i) v(G) = v(H),
(ii) e(G) = e(H),
(iii) 9(G) = g(H),
(iv) G and H have the same number of shortest cycle.

where v(G), v(H), e(G), e(H), g(G) and g(H) denote the number of vertices, the number of edges
and the girth of G and H, respectively.

Lemma 2.10. (Khalaf & Peng [11]) A 6-bridge graph 0(ay, as, . . ., ag) is x-unique if the positive
integers ay, as, . . ., ag assume exactly two distinct values.

3. Main Results
In this section, we present our main result on the chromaticity of 6-bridge graph 6(a, a, a, b, b, b, ¢).
Theorem 3.1. The graph 6-bridge 0(a, a,a, b, b, c), where a < b < ¢, is x-unique.

Proof. Let G be a 6-bridge graph of the form 6(a,a,a,b,b,c¢) where 2 < a < b < ¢. By
Lemma 2.3, GG is x-unique if ¢ < 2a. Suppose ¢ > 2a and H ~ G. We shall solve Q(G) = Q(H)
to get all solutions. Let the lowest remaining power and the highest remaining power be denoted
by Lr.p. and h.r.p., respectively. By Lemma 2.9, g(G) = g(H) = 2a and H has the same number
of shortest cycles as G. Thus, we have

3a+2b+c:b1+b2—|—b3—|—b4—|—b5+bﬁ (3)

By Lemmas 2.6 and 2.7, we have three cases to consider, (A) H € g, (H(bl, b2, b3), Cp,41, Chst1,
Chgr1) Where 2 < by < by < by and 2 < by, bs,bg or B) H € g.(0(by, ba, bs, bs), Coy 11, Cogi1)
where 2 < by < by < b3 < by and 2 < bs,bg or (C) H € g.(6(by, ba, bs, by, bs), Cyy 1) where
2<b; <by <bg <by <bsand2 < bg.

Case A H ¢ e («9(()1, bQ, bg), Cb4+1, Cb5+17 Cbg—l—l) where 2 < b; < by < b3 and 2 < b4, b57 bﬁ.
As G = 0(a,a,a,b,b,c) and H € g, (Q(bl, ba, b3), Cyyt1, Cpei, C’b6+1), then by Lemma 2.8, we
have
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QG) = z(z"— )S(xb — 1)2(xc —1) — (2° — x)s(:vb - x)Q(a:C — ),
QH) = z(2" —1)(a"” —1)(a® — 1) (2™ = 1) (z" = 1) (a™ — 1) —
(a:bl - $) (:vb2 — :v) (xb3 — 3:) (a:b4 — 1) (:vb5 — 1) (:15176 — 1).
By equation 3, Q(G) = Q(H ) yields

QI(G) — 2x3a+b+1+x3a+6+1+x3a+3+3$2a+2b+1+6l,2a+b+c+1+
6x2a+b+3+3x2a+c+3+3x2a+1+3xa+2b+c+1+3xa+2b+3+
6xa+b+c+3_'_6l.a+b+1 +3xa+c+1 +3xa+5+x2b+c+3+x26+1 4
2xb+0+1 +2$b+5 +IC+5 _ <2x3a+b+2 +x3a+c+2 +x3a+1 +
3$2a+2b+2+6x2a+b+6+2+6x2a+b+1+3Z‘2a+c+1+3xza+4—|—
3$a+2b+c+2+3$a+2b+1 _'_6xa+b+c+1 +6xa+b+4_’_3xa+c+4+
31,(1-1—1 +I’2b+c+1+$2b+4+2$b+c+4+21‘b+1 +xc+1 +I’6),

QI(H) —  pbrtbatbs+baths +xb1+b2+b3+b4+b6+xb1+b2+b3+b4+1+
xb1+52+b3+b5+b6_|_$b1+b2+b3+b5+1+l.b1+b2+b3+66+1_'_

xb1+b2+b3 +xb1+b4+b5+b6+1 +xbl+b4+b5+2+xbl+b4+b6+2+

xb1+b4+1+xb1+b5+be+2+xb1+b5+1+xb1+b6+1+xb1+2+

xbz+b4+bs+b6+1 +xbz+b4+b5+2+xbz+b4+b6+2+xbz+b4+l +

$b2+b5+b6+2+$b2+b5+1—|—$b2+b6+1+$b2+2+$b3+b4+b5+b6+1+

xb3+b4+b5+2+xb3+b4+b6+2+xb3+b4+1 +xb3+b5+be+2+
x63+b5+1+xb3+66+1+xb3+2+$b4+b5+b6+3+$b4+b5+1+
$b4+b6+1+xb4+3_’_$b5+b6+1+xb5+3+xb6+3_

(xb1+b2+b3+b4+b5+1+xb1+b2+b3+b4+b6+l+xb1+b2+b3+b4+

$b1+bz+b3+b5+b6+1_{_$b1+b2+b3+b5+xb1+bz+b3+be+xb1+bz+b3+1+

J]b1+b4+b5+b6+2—|—:L’b1+b4+b5+1+xb1+b4+b6+1+xbl+b4+2+

xb1+b5+be+2+xb1+b5+2+xb1+ba+2+xb1+1 +$52+b4+b5+b6+2+

wb2+b4+b5+1_|_xb2+b4+bs+1+xbz+b4+2+xb2+bs+b6+1+

Ib2+b5+2—|—l’b2+b6+2+1’b2+1—|—[Eb3+b4+b5+b6+2—I—.Z‘b3+b4+b5+1—I—

xb3+b4+b6+1 +l‘b3+b4+2+xb3+b5+b6+l +xb3+b5+2+$b3+b6+2+

m173-!—1_}_‘,L,b4-i-bs-i-bcs-i-l_}_‘,L,b4-i-b5-i-3_’_‘,131)4-&-1764-3+Ib4+1_f_

glsthe s g gpbstl 4 gpbotl 4 x3).
Compare the L.r.p. in Q1(G) and the Lr.p. in Q;(H). Thus, a = 2. Therefore, g(G) =
g(H) = 2a = 4 and both G and H has three cycles of length 4, respectively. Without loss of

generality, we have four cases to consider, (1) by = b5 = bg = 3 or (2) by = b5 = 3,bs # 3 or (3)
by = 3,b5 # 3,b # 30r (4) by # 3,b5 # 3,bs # 3.
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Casel by = bs = bg = 3. Note that there is —32°™! in Q1(G). Hence, there are another two
terms in Q,(H) that are equal to —z3. Thus, we have by = by =2 or by = by = 2 or by = b3 = 2.

Case 1.1 0; = by = 2. Therefore, H has four cycles of length 4, a contradiction.

Case 1.2 0; = b3 = 2. So b, = 2. Therefore, H has six cycles of length 4, a contradiction.

Case 1.3 by = b3 = 2. So by = 2. Therefore, H has six cycles of length 4, a contradiction.

Case2 by = bs; = 3,bg # 3. Since the girth of H is 4, then bg > 4. Given that H has
three cycles of length 4, then b; + by = 4. So by = by = 2. It follows from equation 3 that
2b + ¢ = by + bg + 4. We obtain the following after simplification.

Q2(G) = z2Ferd y 19ghFerD | gpbrerl | a5 | o2kl | g btT |
62" + 42t 4+ 32 + 2 + 227 4 32° — (2T 4
Grltett 4 o btetd | gabtet3 | g, 2646 4 2btd 4 502643 |
0aPHE | Gt L 4pbtB 4 opbtl 4 e84 goct6 | oocts |
2T 4 38 +$6)7

Qo(H) = 3abotbord | ghatbotl | pbat10 | gobots | gobatd | pbat2 |
369 4 32067 4 3203 4 2410 4 2% — (3xb3+b6+4 +
pbstho+2 4 abs Il | g bstT | gobstS | obstl 4 9 betl0
626 t6 4 gbett 349 4 3x7).

Consider the l.r.p. in Q2(G) and the L.rp. in Q2(H). We have b = ¢ = 4. Therefore,
G =6(2,2,2,4,4,4). By Lemma 2.10, G is x-unique.

Case3 b, = 3,b5 # 3,bg # 3. Since the girth of H is 4, then b5 > 4 and bg > 4. Given that
H has three cycles of length 4, then by + by = 4 and b; + b3 = 4. So by = by = b3 = 2. Now, H
has four cycles of length 4, a contradiction.

Cased b, # 3,b5 # 3,bg # 3. Since the girth of H is 4, then by > 4, b5 > 4 and bg > 4.
Given that H has three cycles of length 4, then b; + by = 4, by + b3 = 4 and by + b3 = 4. Thus,
by = by = by = 2. It follows from equation 3 that 2b 4 ¢ = by + bs + bg. We obtain the following
after simplification.

Qs(G) = 1220405 4 oghrerl 4 25 4 2+l | gbtT 4 b3 |
Azt 4 323 4 2% 4 227 4+ 325 — (x2b+c+1 + 32016 4
g2 | 302648 | gobbet6 | o bberd | gobted3 | o b8 |
62710 4 4abTS 4 20T 4 ¢T84 36 L 2o tS 4 et 4

328 + xG),
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Qg(H) _ J]b4+b5+6—|—3:L‘b4+b5+4—|—:pb4+b5+1 +$b4+56+6+3xb4+b6+4+
Ib4+b6+1 +xb4+7+4xb4+3+xb5+b6+6+3xb5+b6+4+

.Tb5+b6+1 —|—Zlfb5+7+4$b5+3 —|—$b6+7+4$b6+3 +Z’6 +3ZC4 _
(xb4+b5+b6+1 +xb4+b5+7+4Ib4+b5+3+xb4+b6+7+4xb4+b6+3+
xb4+6+3xb4+4+xb4+1_'_xb5+b6+7+4xb5+b6+3+xb5+6+

3ot gt 4 g0 4 Zphetd o gbetl 4 o 4 %),

Compare the L.r.p. in Q3(G) and the L.r.p. in Q3(H). We have b = 2 or ¢ = 2.
If b =2,then G = 6(2,2,2,2,2,¢). By Lemma 2.10, G is y-unique.
If c=2,then G = 6(2,2,2,2,2,2). By Lemma 2.2, G is x-unique.

CaseB H ¢ ge(ﬁ(bl, bg,bg,b4), Cb5+17Cb6+1) where 2 < bl < bg < bg < b4 and 2 < b5,bﬁ.
As G =0(a,a,a,b,b,c) and H € ge(0(b1, by, b3, bs), Chy 41, Ci1), then

Qi(G) = x(xa — 1)3(xb — 1)2(xc — 1) — (xa — x)g(xb — m)Q(IC — x),
Qu(H) = (e — 1) (e — 1) (2% — 1) (" — 1) (" — 1) (" — 1) -
(.75”1 — x) (xb2 — x) (xb3 — x) (a:b4 — ;E) (IL’b5 — 1) (xbﬁ — 1).

By equation 3, Q4(G) = Q4(H) yields

Q5(G) — 2x3a+b+1 4 x3a+c+1 i x3a+3 + 3x2a+2b+1 + 6x2a+b+c+1 +
6$2a+b+3 + 3x2a+c+3 + 3x2a+1 + 3xa+2b+c+l + 3$a+2b+3 +
6xa+b+c+3 + 61’a+b+1 + 3xa+c+1 + 31,(1—}-5 + x2b+c+3 +
x2b+1 + 2wb+c+1 + 2$b+5 + xc+5 o (2x3a+b+2 + $3a+c+2 +
:L,Sa—‘,—l + 3x2a+2b+2 + 61’2a+b+c+2 + 61,2a+b+1 + 3x2a+c+1 +
3x2a+4 4 3xa+2b+c+2 4 3xa+2b+1 4 6xa+b+c+1 4 6.Ta+b+4 +
3$a+c+4 + 31’a+1 + x2b+c+1 + $2b+4 + 2$b+c+4 + 2$b+1 4

ZL‘C+1 + ZL‘6),
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Q5(H) _ xb1+b2+b3+b4+b5+xb1+b2+b3+b4+b6+xb1+bg+b3+b4+1+
xb1+b2+b5+b6+1+xb1+b2+b5+2+xb1+b2+b6+2+xbl+b2+1+
xbl+b3+b5+b6+1+xb1+b3+b5+2+xb1+b3+b6+2+xb1+b3+l+
b1+b4+b5+b6+1+xb1+b4+b5+2+xb1+b4+b6+2+xb1+b4+1+
b1+b5+b6+3+xb1+b5+1 +xb1+b6+1+xb1+3+xb2+53+b5+b6+1 +
62+b3+b5+2+$b2+b3+b6+2_|_:L.62+b3+1 +xb2+b4+b5+b6+1 +

b2+b4+b5+2+$b2+b4+be+2+$b2+b4+1 +xb2+b5+b6+3_|_

8 8 8 8 8

bz+b5+1+xb2+be+1_'_xb2+3+$53+b4+b5+b6+1+xb3+b4+b5+2+
l.b3+b4+b6+2_|_l.b3+b4+1+xb3+b5+b6+3+xb3+b5+1+xb3+b6+1+
Ib3+3+$b4+b5+b6+3+$b4+b5+1—|—$b4+b6+1 +$b4+3+l’b5+b6+1 +
iL‘b5+4 _'_xb6+4 . (xb1+b2+bs+b4+b5+1 +xb1+62+b3+b4+b6+1 +
xb1+b2+b3+b4 +$bl+b2+b5+b6+2+xb1+b2+b5+1+xb1+b2+b6+1+
Ib1+bz+2+xb1+b3+bs+b6+2+xb1+53+b5+1 +xb1+b3+b6+1 +
xb1+bs+2+xb1+b4+bs+b6+2+xb1+b4+b5+l +xb1+b4+b6+l +
J}b1+b4+2—f—l’b1+b5+b6+1+1’b1+b5+3+$b1+b6+3+$b1+1—I—
Ib2+bs+b5+bs+2+xbz+bs+b5+1+xbz+bs+bﬁ+1+xbz+b3+2+
xbz+b4+bs+b6+2+xbz+b4+b5+1 +$b2+b4+b6+1 +$b2+b4+2+
xb2+b5+b6+1 +$b2+b5+3—|—$b2+b6+3+1‘b2+1 +xb3+b4+b5+b6+2+
xbs+b4+b5+1+xb3+b4+b6+1+xb3+b4+2+xb3+b5+be+l+
$b3+b5+3+xb3+bs+3+xb3+l +$b4+b5+b6+1 +£Eb4+b5+3+

$b4+b6+3 + l’b4+1 + xb5+b6+4 + [Eb5+1 + CL’b6+1 + I4).

Since 2 < a < b < ¢, by comparing the Lr.p. in Q5(G) and the L.r.p. in Q5(H ), we have a = 2
ora=3.

Casel a = 2. Then g(G) = g(H) = 2a = 4. There are three cycles of length 4 in GG, and H
has the same number as well. Without loss of generality, we have the following cases to consider.

Case 1.1 b5 = bg = 3. Since H has three cycles of length 4, then by +by = 4. So by = by = 2.
Note that there is —3z"! in Q5(G). Hence, there is one more term in Q5(H) that equal to —z°.
Thus, b3 = 2 or by = 2.

If b3 = 2, then H has five cycles of length 4, a contradiction.

If by = 2, then b3 = 2. So H has eight cycles of length 4, a contradiction.

Case 1.2 b; = 3,bs # 3. Since H has girth 4, then bg > 4. Given that H has three cycles of
length 4, then b; + b, = 4 and by + b3 = 4. So by = by = b3 = 2. Now H has four cycles of length
4, a contradiction.

Case 1.3 b5 # 3,bg # 3. Since H has girth 4, then b5 > 4 and bg > 4. Given that H has three
cycles of length 4, then by + by = 4, by + by = 4 and (by + by = 4 or by + b3 = 4). Therefore, we
have two cases to consider.

Case1.3.1 b; +by =4. Sob; = by = 2. Thus, by = by = b3 = by = 2. Hence H has six
cycles of length 4, a contradiction.
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Case 1.3.2 by + b3 = 4. So by = b3 = 2. Thus, by = by = by = 2. It follows from equation 3
that 2b + ¢ = by + bs + bg. Then we obtain the following after simplification.

Qﬁ(G) = @2t + 2+l =+ 190tets + Qpbtetl + Qp0t7 + 603 +
4xc+7 + 3ZL'C+3 + xg + 21,7 o (x2b+0+1 + 3x26+6 + $2b+4 4
3p2F3 4 6ot o ogbtett 1 gpbret y ogbt8 bty
413b+5 + be-‘rl + :L’C+8 + 3$C+6 + 21,04—5 + IC+1 4 31,8)7
$b4+b5+6 + 3xb4+b5+4 + xb4+b5+1 + xb4+be+6 + 3xb4+b6+4 +
l.b4+b6+1 + :Eb4+7 + 41‘b4+3 + 6$b5+b6+5 + xb5+b6+1 + 3:Eb5+6 +
xr

bs+4 + be5+3 + 31_176-0-6 + ZL'b6+4 + 3$b6+3 + 31,5 .
(xb4+b5+bﬁ+1 +xb4+b5+7+4xb4+b5+3+xb4+b6+7+4xb4+b6+3+

QB(H) =

$b4+6+3xb4+4+{£b4+1 +3xbs+b6+6+xb5+b6+4+3xb5+b6+3+

3]}b5+6 +6Ib5+5 +l’b5+1 —|—ZL’b6+5 +Ib6+1 +2£E‘6 _'_1,4)

Comparing the Lr.p. in Q4(G) and the l.r.p. in Q¢(H ), we have b = 3 or ¢ = 3. If ¢ = 3, then
b=2orb=3. By Lemma 2.10, G is y-unique for both cases. So b = 3. Note that there is 22!
in Qs(G), thus, by = 3. Simplifying Qs(G) and Qs(H ), we obtain the following.

Q7(G) = Bz + 2T+ 2T 4 32T + 4ot + 620 4 327 +
425 — (3IC+9 + 6270 4 2215 4 gt 4 3212 4 7Y +
7:1:8),

Qr(H) = a¥+9 4 3gbstT | ogbotd | 3443 4 pbetd | gobetT |
opbotd | gubet3 | 5.5 (Qxb5+b6+4 o gbs 10 4 abst6

62770 4 P 4 o0 Pt GoletS bt 4 34T).

Consider the term 3z° in Q(H). Thus, b5 = 4 and bg = 4. Therefore ¢ = 5. However, we
obtain QQ7(G) # Q7(H), a contradiction.

Case2 a = 3. Therefore, g(G) = g(H) = 2a = 6. There are three cycles of length 6
in G and H, respectively. Without loss of generality, we have three cases to consider, that are
b5:b6:50rb5:5,667&50rb57é5,bﬁ7£5.

Case 2.1 b5 = bg = 5. Therefore, b; + by = 6. Thus, we have by = 2, by =4 or by = by = 3.

Case2.1.1 b, = 2,by = 4. It follows from equation 3 that 2b + ¢ = b3 + by + 7. Since
3 <b<cand4 < by < by, by cancelling the equal terms, there is —z3 in Q5(H) but not in
Q5(G), a contradiction.

Case 2.1.2 b, = by = 3. From equation 3, we obtain

2b+c=by+by+7 4)

We obtain the following after simplification.
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Qs(G) — x2b+c+3 + 6:Eb+c+7 + 6:L‘b+c+6 + 2:)3b+c+1 + 3:E2b+7 + 3l‘2b+6 +
22 2010 6019 4 290 4 G e T10 4 3t 4
Z'C+5 + 3xc+4 + .Z'lQ + 3558 + 21,7 _ (x2b+c+1 + 6$b+c+8 +
8ZL’b+C+4 + 35(]2b+8 + 4J}2b+4 4 21’b+11 4 12[L’b+7 + 21}b+1 +
$c+11 4 6xc+7 4 chrl 4 43310 + 336),

Qs(H) = 3abstbwtT L ghotbatl L opbatld 4 pbot13 | g bat10 4 g bot6
2xbstd o gbet3 o Qpbatld 4 pbat1S 4 fpbat10 4 9pbat6
2001 4 P13 4 1T 4 2210 4 2210 4 627 — (3% 4
GhaFba2 9 bat15 | aba Il | gobatd | 9o batS | o batS |
xb3+1 + 2xb4+15 + xb4+11 + 4xb4+9 + sz4+8 + 2$b4+5 +

xb4+1 +.CL'18 +3l’14 +2£IZ’12 +3Q?11 +£C8)

Comparing the L.r.p. in Qs(G) and the Lr.p. in Qs(H ), we have by = 5 or by = 5.
Case 2.1.2.1 b3 = 5. Then we obtain the following after simplification.

QQ(G) — x26+c+3 + 6$b+c+7 + 6£(Jb+c+6 + 2xb+c+1 + 3$2b+7 + 3:L‘2b+6 4
:C2b+1 + 2xb+10 4 61’b+9 4 2xb+5 + 6£Cb+4 4 chrlO 4 3xc+9 +
:L,c+5 + 3$c+4 + 1,12 + 31,8 + 2$7 o ($2b+c+1 + 61’b+c+8 +
8.Tb+c+4+3$2b+8+4$2b+4+2$b+11+12(L’b+7+2$b+1 +
chrll —|—6l’c+7 +xc+1 +2x10)7

Qo(H) = 2o%F1 4 ghat13 4 gobib12 | gobat10 4 g.bit6 | opbatd
2Pt 4 22" 4 2"+ 210 4 42’ 4 82 — (221 4 P 4
4xb4+9 + 2£L'b4+8 + mb4+7 + 2$b4+5 + $b4+1 + 21,20 + 71.14 +

2!1712 + IH) )

Consider the term 227 in Qy(G). We have b = 6 or ¢ = 6.

If b = 6, then ¢ = by. However, Qo(G) # (Qo(H ), a contradiction.

If ¢ = 6, then we obtain b = 6 and by = 6. Therefore, G = (3, 3,3,6,6,6). By Lemma 2.10,
G is x-unique.

Case 2.1.2.2 b, = 5. Then, we have b3 = 3 or b3 = 4 or b3 = 5.

Case 2.1.2.2(a) If b3 = 3, then H has five cycles of length 6, a contradiction.

Case 2.1.2.2(b) If b3 = 4, then there is —2° in Qg(H ). Hence, b = 4 or ¢ = 4.

If b = 4, by equation 4 we have ¢ = 8. But Qs(G) # Qs(H ), a contradiction.

If ¢ = 4, by equation 4 we have b = 6. But 3 < b < 4, a contradiction.

Case 2.1.2.2(c) If b3 = 5, then it follows from equation 4 that 20 + ¢ = 17. We obtain the
following after simplification.
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Quo(G) = 2T 4 60Tt GabTert o ggbtetl 4 3a20HT 4 320%6 o
g2 4 9 bH10 | g b9 | 9 b5 | gabtd 4 petl0 4 goctd |
25 1 ggetd | 12 908 9T (x2b+c+1 1 Ggbtets o
Qubtetd | g 2048 4 g 2bkd | o bHIL | (o, bET | g bl |
IC+11 + 6ZEC+7 + xc—i—l)’
Quo(H) = 42"+ 2" + 42" + 82" + 22" +102° — (42® + 32" +
11zM + 2218 4+ 3212 + xﬁ).
Compare the l.r.p. in Q1o(G) and the l.r.p. in Q1o(H). We have b = 5 or ¢ = 5. Since the
coefficient of —zb*1is 2, then ¢ = 5. If ¢ = 5, we have b = 6. But 3 < b < 5, a contradiction.
Case 2.2 b5 = 5,bg # 5. Therefore, b; + by = 6 and by + b3 = 6. Thus, by = b3. Hence, we
haveb1 :2762:b3z4orb1 :b2:b3:3.
Case2.2.1 b = 2,by = by = 4. It follows from equation 3 that 2b + ¢ = by + bg + 6.
However, cancelling the equal terms we obtain Q5(G) # Q5(H), a contradiction.
Case 2.2.2 by = by = b3 = 3. Then H has four cycles of length 6, a contradiction.
Case 2.3 b5 # 5,bs # 5. Note that the girth of H is 6, thus b5 > 6 and bg > 6. Since H has
three cycles of length 6, therefore b; + b, = 6, by + b3 = 6 and (b1 + by =6o0rby + by = 6).
Case 2.3.1 b, + by = 6. Considering b; + b, = 6 and b; + b3=6, then b, = b3 = b,. Hence,
wehaveb1 :2,b2 :b3 :b4 :40rb1 :b2 :bg :b4 = 3.
Case 2.3.1.1 b, = 2,by = by = by = 4. It follows from equation 3 that 2b + ¢ = bs + bg + 5.
Cancelling the equal terms we obtain Q5(G) # Q5(H ), a contradiction.
Case 2.3.1.2 b, = by = b3 = by = 3. Then H has six cycles of length 6, a contradiction.
Case 2.3.2 by, + bs = 6. Considering b; + by = 6 and by + b3 = 6, we have b; = by = b3 = 3.
It follows from equation 3 that 2b + ¢ = by + bs + bg. We obtain the following after simplification.

Qll(G> — 6xb+c+7+6xb+c+6+2$b+c+l +3I2b+7—|—3l’2b+6+1’2b+1 +
2xb+10—i—6:1:b+9+23:b+5+6xb+4+x0+10+3xc+9—|—.:1:C+5—i—
3J}C+4+{L‘12+31’8 . (61‘b+c+8—|—8[Eb+c+4+3x2b+8+4l’2b+4+
2$b+11+12$b+7+2$b+1+l’c+11+6$c+7+$c+1+4$10—|—$6),

Qll(H) — l’b4+b5+9+3$b4+b5+5+$b4+b5+1 +$b4+b6+9+3xb4+b6+5+

xb4+b6+1 +.17b4+10+3Ib4+4+[Eb4+3+35L‘b5+b6+7+31’b5+b6+6—|—

gV betl y 3abs 8 4 gpbstd 306 t8 4 gpbetd 4 36
($b4+b5+10 + 31’b4+b5+4 + $b4+b5+3 + l‘b4+66+10 + 3xb4+b6+4 +

xb4+b6+3 + Jfb4+9 + 3[Eb4+5 + CL’b4+1 + 3xbs+b6+8 + 4xb5+b6+4 +
3T 4 3pbst6 4 bl 4 3pbeHT 4 3pbet6 4 bl 4 3.8 x4).

Comparing the L.r.p. in Q11(G) and the Lr.p. in Q11 (H), we have b = 3 or ¢ = 3. If b = 3, then
G =6(3,3,3,3,3,c). By Lemma 2.10, GG is x-unique. If ¢ = 3, then G = 6(3,3,3,3,3,3). By
Lemma 2.2, GG is x-unique.
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CaseC H € ge(g(bhbg,bg,b47b5),cb6+1) where 2 < bl < bg < bg < b4 < b5 and 2 < b6.
As G = 0(a,a,a,b,b,c)and H € g, (9(()1, by, b3, by, bs), C’b6+1), then

Q12(G) =
Qi2(H) =

xEx“ — 1)3(:cb — 1)2(1:C — 1) — (a:“ — :L')S(:cb — x)Z(:UC — :1;’),

z — 1) (:vb2 — 1) (xb3 — 1) (xb“ — 1) (xb5 — 1) (a:bG — 1) —
(xbl — x) (be — x) (xb?’ — a:) (xb“ — x) (xb5 — x) (mb6 — 1).

By equation 3, Q12(G) = Q12(H) yields,

ng(G) — 2x3a+b+1 + x3a+c+1 + x3a+3 + 3x2a+2b+1 + 6x2a+b+c+1 4 6$2a+b+3 4
3ZL‘2a+C+3 + 3x2a+1 + 3xa+2b+c+1 + 3xa+2b+3 + 6ma+b+c+3 + 6Ia+b+1 +
3xa+c+1 + 31’a+5 + x2b+c+3 + I2b+1 + 2xb+c+1 + 2J}b+5 + $C+5 _
(2x3a+b+2 + x3a+c+2 + :L,3a+1 + 3$2a+2b+2 + 6$2a+b+c+2 4 6$2a+b+1 4
3x2a+c+1 + 3m2a+4 + 3:L,a+2b+c+2 + 3:L,a+2b+1 + 6xa+b+c+1 + 6I'a+b+4 +

Sxa+c+4 + Sxa+1 +x2b+c+1 + I2b+4 + 2xb+c+4 + 21’b+1 —|—JIC+1 +I6),

b1+ba+b3+bs+bs +xb1+b2+b3+b6+1+xb1+b2+b3+2+xb1+b2+b4+b6+1+

8 8 8 8 8 8 8 8

Q13(H)

b1+52+b4+2+xb1+bz+b5+b6+1 +xb1+52+b5+2+xb1+52+b6+3+xb1+b2+1 +
b1+b3+bs+bg+1 _|_:Bb1+b3+b4+2_|_:Ub1+b3+bs+b6+1 —I—[L’bl+b3+b5+2—|—
b1+b3+b6+3+xb1+b3+1_‘r_xb1+b4+b5+b6+1 —|—l’b1+b4+b5+2—|—J}b1+b4+b6+3—|—

b1+bg+1 _'_:L,b1+b5+b6+3_'_xb1+b5+1_|_xbl+b6+1 +$b1+4+xb2+b3+b4+be+1 +
b2+b3+b4+2+xb2+b3+b5+bs+1 _|_xb2+b3+b5+2+xbz+b3+be+3+wb2+b3+1 +
bo+bs—+bs+bg+1 —|—l’b2+b4+b5+2—|—l’b2+b4+b6+3—|—xb2+b4+1 +xb2+b5+be+3+

ba+bs+1 _'_xb2+b6+1+x62+4+x63+b4+b5+b6+1 +$b3+b4+b5+2+$b3+b4+b6+3+
xb3+b4+1 +xb3+b5+b6+3+xb3+b5+1_’_xb3+b6+1 +Ib3+4—|—mb4+b5+b6+3—|—
Ib4+b5+1+xb4+b6+1+xb4+4+xb5+bﬁ+l +Ib5+4—|—$b6+5 o (xb1+b2+b3+b4+b5+l 4
xb1+b2+b3+b6+2+xb1+62+b3+1 +xb1+bz+b4+b6+2+$b1+b2+b4+1 +xb1+b2+b5+b6+2+
1’b1+b2+b5+1+1’b1+b2+b6+1+l’b1+b2+3+$b1+b3+b4+b6+1+Ib1+b3+b4+1+
xb1+b3+b5+b6+2+xb1+b3+b5+1 +xb1+bs+b6+1 +xb1+53+3+xb1+b4+b5+b6+2+
xb1+b4+b5+1 —|—33b1+b4+b6+1 —|—33b1+b4+3—|—.%‘b1+b5+b6+1 +$b1+b5+3+
xb1+b6+4+l‘b1+1+x52+b3+b4+b6+2+xb2+b3+b4+1+xb2+b3+b5+b6+2+
xb2+b3+b5+1 +xb2+b3+be+1 +xb2+b3+3+xb2+b4+b5+be+2+xb2+b4+b5+1 +
l‘b2+b4+b6+1 +l‘b2+b4+3+xb2+b5+b6+l +$b2+b5+3+$b2+b6+4+$b2+1 +
xb3+b4+b5+b6+2+xb3+b4+b5+1 +xb3+b4+be+1 +5L’b3+b4+3—|—
xb3+bs+b6+1+xb3+b5+3+xb3+b6+4+xb3+1+xb4+b5+b6+1+
$b4+b5+3—|—xb4+b6+4+xb4+1—l—l’b5+b6+4+$bs+1+£Eb6+1—|—$5).
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Consider the L.r.p. in Q13(G) that is a + 1 and the Lr.p. in Q13(H ), that is 5. Since a = 4 and
a > 2, we have three cases to consider, (1) a =2 or (2) a = 3 or (3) a = 4.

Casel a = 2. Therefore, g(G) = g(H) = 2a = 4 and H has three cycles of length 4.
Hence, we have bg = 3 or bg # 3.

Case 1.1 bg = 3. Then, we have by + by = 4 or by + b3 = 4. Thus, by = by = b3 = 2.
However, H has four cycles of length 4, a contradiction.

Case 1.2 bg # 3. Note that g(H) = 4, then bg > 4. Then, we have by + by = 4, b + b3 = 4
and (b1 +by=4o0rby+ by = 4). So, we have two cases to consider.

Case 1.2.1 b; + by = 4. Since by + by = 4 and b; + b3 = 4, then we know that by = by =
bs = by = 2. Now H has six cycles of length 4, a contradiction.

Case 1.2.2 by + b3 = 4. Since b; + by = 4 and by + b; = 4, then by = by = b3 = 2. From
equation 3, we obtain

2b+C:b4+b5+b6 (5)

Then, we obtain the following after simplification.

Qui(G) = 6270 4+ 2T 4 122075 20Tt 4 8aHT 4 G0 4 4ptT
3xc+3 + :C9 + 21,7 + x5 o (x2b+6+1 + 3x2b+6 + x2b+4 + 3x2b+3 T
61‘b+c+6 + 2wb+c+4 + be+c+3 + 2:L‘b+8 + 6$b+6 + 42L‘b+5 +
207 4 28 4 320 4+ 200 1o 4 328 + 2F),

Q14(H) = pbatbs+6 T Jpbatbstd + phatbstl 4 Gbatbetd + phatbetl +
31,174-1—6 + :L'b4+4 + 31,174—1—3 + 6Ib5+b6+5 + xb5+b6+1 + 3:Eb5+6 +
$b5+4 4 be5+3 4 4$b6+7 4 3$b6+3 + I8 4 31,6 - (Ib4+b5+b6+1 +
xb4+b5+7 T 4£L'b4+b5+3 + 3xb4+b6+6 + xb4+b6+4 + Bxb4+b6+3 +
61‘b4+5 + :Eb4+1 + 3l‘b5+66+6 + wb5+b6+4 + 3$b5+b6+3 + be5+5 +

xb5+1 +$b6+8 +3xb6+6 —|—2£L’b6+5 +xb6+1 +4l’7)

Consider the L.r.p. in Q14(G). We have b = 4 or ¢ = 4.

Case 1.2.2.1 b = 4. Since there is —22°"! in Q4(G), we have by = 4 or b5 = 4 or bg = 4.

If by = 4, then it follows from equation 5 that ¢ + 4 = b5 + bg. However, Q14(G) # Q14(H), a
contradiction.

If b5 = 4, then it follows from equation 5 that ¢ + 4 = by + bg. However, Q14(G) # Q14(H), a
contradiction.

If bg = 4, then it follows from equation 5 that ¢ + 4 = by + bs. However, Q14(G) # Q14(H), a
contradiction.

Case 1.2.2.2 ¢ = 4. We obtain the following after simplification.
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Qi5(G) = 5z 4 22T 12259 4 2207 4 6201 4 4ot 4 527 —
(3270 4+ 22 4 3224 + 627710 4 428 4 62770 +
2075 4 220 4 12 4 3510 4 29 4 30%),

Q15(H) —  pbatbs+6 + pbatbstd + phatbs+1 + Gbate+s + phatbetl +
3$b4+6 + $b4+4 + 3$b4+3 + 6$b5+b6+5 4 xb5+b6+1 4 3xb5+6 4
2V 303 4ghotT b3 a8 4 408 —

(xb4+b5+b6+1 + :Eb4+b5+7 + 4J}b4+b5+3 + 3xb4+be+6 + xb4+b6+4 +
Bxb4+b6+3 4 627b4+5 + $b4+1 + 3xb5+b6+5 + l’b5+b6+4 +
3xb5+66+3 + 6$b5+5 + xbs-i-l + xb6+8 + 3l‘b6+6 + 21’b6+5 +

bt 4 41‘7).

Compare the Lr.p. in Q15(G) and the Lr.p. in Q5(H). Then we have b = 3. Simplifying
Q15(G) and QQ15(H ), we obtain the following.

Qis(G) = 8" + 5z + 627 4 62° — (6:B13 + 221 +102° + 52® + 23:4),
QIG(H) —  pbatbs+6 +3:)3b4+b5+4 —|—:L‘b4+b5+1 + Grlatbetsd +xb4+b6+1 +
3$b4+6 + .Tb4+4 4 3xb4+3 4 6xb5+b6+5 4 :Cb5+b6+1 + 3xb5+6 4

:L,b5+4 + Bxb5+3 + 4$b6+7 + 3xb5+3 + 1:8 + 4336 _ ($b4+b5+b6+1 +

xb4+b5+7+4xb4+b5+3+3xb4+b6+6+Ib4+b6+4+3$b4+b6+3+

6xb4+5+xb4+1+3xb5+b6+6+xb5+b6+4+3xb5+b6+3+6x65+5+

ghtl 4 gbot8 g 3plet0 4 ogbets y gpbetl 4 4pT).

Considering the term —2z* in Q14(G), we have by = 3 and b5 = 3. It follows from equation 5
that bg = 4. However, we obtain Q14(G) # Q16(H ), a contradiction.

Case2 a = 3. So g(G) = g(H) = 2a = 6. Both G and H has three cycles of length 6,
respectively. Then, we have bg = 5 or bg # 5.

Case 2.1 bg = 5. Therefore, by + b, = 6 and by + b3 = 6. So by = bs. Thus, we have
bl:2,b2:b3:40r61:62:b3:3.

Case 2.1.1 b, = 2,by = by = 4. It follows from equation 3 that 2b + ¢ = by + b5 + 4.
However, we obtain Q13(G) # Q13(H), a contradiction.

Case 2.1.2 b, = by = b3 = 3. Then H has four cycles of length 6, a contradiction.

Case 2.2 bg # 5. Since H has three cycles of length 6, then we have by + by = 6, by + b3 = 6
and (b1+b4 :60rb2+b3 :6)

Case 2.2.1 b; + by = 6. Note that b; + b, = 6 and by + b3 = 6. Therefore, by = by = by.
Hence, we have by = 2,by = b3 = by =4 or by = by = b3 = by = 3.

Case 2.2.1.1 by = 2,by = b3 = by = 4. It follows from equation 3 that 2b + ¢ = b5 + bg + 5.
However, after simplification, we obtain 13(G) # @Q13(H), a contradiction.
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Case 2.2.1.2 by = by = by = by = 3. Therefore, H has six cycles of length 6, a contradiction.
Case 2.2.2 by + by = 6. Note that by + b, = 6 and b; + b3 = 6. Therefore b; = by = b3 = 3.
From equation 3, we have

2b+C:b4+b5+b6 (6)

We obtain the following after simplification.

Q17(G) _ 3{L‘2b+7—|—31’2b+6+l’2b+1 —|—6£L'b+c+7—|—6$b+c+6—}—2$b+c+l +
2]}b+10+6$b+9+2$b+5+6$b+4+$c+10+3xc+9+$c+5+
3x0+4 _|_$12 + 3x8 _ (3$2b+8 +4$2b+4 + 6xb+0+8 4
8[L‘b+c+4+2l‘b+11+12$b+7+2{[’b+1+{[‘c+11+6IC+7+
4 3210 + x6),

Q17(H) — xb4+bs+9+3$b4+b5+5+$b4+b5+1 +3xb4+b6+7+3xb4+56+6+
xb4+b6+1 +3xb4+8_|_4:L.b4+4_’_3mb5+b6+7+3xb5+b6+6+
ghothetl 4 3pbot® 4 fgbotd 4 ghot10 4 3abet9 4 gbetd 4
3:L’b6+4 +$11 + 3377 o (xb4+b5—|—10 +3$b4+b5+4 +$b4+b5+3 +
3:L‘b4+b6+8+45L’b4+b6+4+3:L‘b4+7+3xb4+6+$b4+1 +
Bxb5+b6+8+4xb5+b6+4+3$b5+7+3xb5+6+xb5+1 +,’L’b6+11 +

62517 4 bt 4 329 + xs).

Compare the Lr.p. in Q17(G) and the Lr.p. in Q17(H). We have b = 4 or ¢ = 4.

Case 2.2.2.1 b = 4. There is one term in Q,7(H) that equal to —x°. Since bs > 6, we have
b4 =4 or b5 = 4.

If by = 4, then it follows from equation 6 that ¢ 4 4 = bs; + bg. Cancelling the equal terms, we
obtain b5 = 5 and bg = 6. So ¢ = 7. But, Q17(G) # Q17(H ), a contradiction.

If b5 = 4, then it follows from equation 6 that ¢ + 4 = by + bg. Since bg > 6, by cancelling the
equal terms in Q17(G) and Q17(H ), we obtain by = 5. But 3 < by < 4, a contradiction.

Case 2.2.2.2 ¢ = 4. Therefore, b = 3orb = 4. If b = 3, then G = 6(3,3,3,3,3,4). By
Lemma 2.10, G is y-unique. If b = 4, then G = (3, 3,3, 4,4, 4). Similarly, by Lemma 2.10, G is
X-unique.

Case3 a = 4. Therefore, g(G) = g(H) = 2a = 8 and both GG and H has three cycles of
length 8, respectively. Then, we have to consider for b = 7 or bg # 7.

Case 3.1 bg = 7. Therefore, by + by = 8 and by + b3 = 8. So, we know that b, = bs. Hence,
Wehaveb1 :2,b2 :bg :60rb1 :3,b2 :bg :50rb1 :bg :bg = 4.

Case 3.1.1 b, = 2,by = b3 = 6. It follows from equation 3 that 20 + ¢ = by + b5 + 9. Since
4 < b < c, after simplification, we obtain —z? is in Q3(H ) but not in Q13(G), a contradiction.

Case 3.1.2 b, = 3,by = by = 5. It follows from equation 3 that 2b + ¢ = by + b5 + 8. Similar
to Case 3.1.1, we obtain Q15(G) # Q13(H), a contradiction.

Case 3.1.3 b, = by = b3 = 4. But H has four cycles of length 8, a contradiction.
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Case 3.2 0bg # 7. Since the girth of H is 8, then bg > 8. So by + by = 8, by + b3 = 8 and
(b1 + by = 8 or by + by = 8). Hence, we have two cases to consider.

Case 3.2.1 b, + by = 8. Since b; + by = 8 and b; + b3 = 8, we know that by, = b3 = by. So
we have by = 2,by = b3 =by =60rby =3, =bg3 =by =50rb; = by =by =0y =4.

Case 3.2.1.1 b; = 2,by, = b3 = by = 6. It follows from equation 3 that 2b 4 ¢ = bs + bg + 8.
Similar to the above cases, we obtain 13(G) # Q13(H), a contradiction.

Case 3.2.1.2 b, = 3,by = b3 = by = 5. It follows from equation 3 that 2b + ¢ = b; + bg + 6.
Similar to the above cases, we obtain Q13(G) # @Q13(H), a contradiction.

Case 3.2.1.3 b; = by = b3 = by = 4. But H has six cycles of length 8, a contradiction.

Case 3.2.2 by + b3 = 8. Since b; + by = 8 and b; + b3 = 8, we know that by = by = bs.
Therefore, by = by = b3 = 4. It follows from equation 3 that 2b + ¢ = by + b5 + bg. We obtain the
following after simplification.

Qis(G) = 3271 4 3p%FT 4 p2Fh 4 Gt 4 GbetT 4 ogbrert 4
9pPt13 4 bl | gabts o petld | gl 4 yoets | 215
31,9 . (3$2b+10 4 3$2b+5 4 x2b+4 4 6xb+c+10 + 6xb+c+5 +
2xb+0+4 + 21,1)-1-14 + 6.Tb+9 ‘I’ 61’b+8 + 2£Cb+1 + IC+14 + 3xc+9 _|_
3t 4ot 4 3212 4 x6),
QlB(H) — xb4+bs+12 + 3xb4+b5+6 + xb4+b5+1 + 3£L'b4+b6+9 + 3$b4+b6+7 +
wb4+b6+1 + 3$b4+10 + 3$b4+5 + :L‘b4+4 + 3wb5+b6+9 + 3Ib5+b6+7 +
Ib5+b6+1 + 3xb5+10 + 3Ib5+5 _'_ xb5+4 + xb6+13 + Bxb6+11 +
4xb6+5 +.T14 + 31,8 _ (xb4+b5+13 +3xb4+b5+5 +xb4+b5+3 +
be4+b6+10 + 3$b4+b6+5 + $b4+b6+4 + 3:Eb4+9 + 3$b4+7 + :L‘b4+1 +
Bxb5+b6+10 + 3x65+56+5 + xb5+b6+4 + 3xb5+9 + 3$b5+7 + xb5+1 +
phot1d 320649 4 3068 | pbetl 4 g0l 4 x5).
Compare the Lr.p. in Q15(G) and the Lr.p. in Q15(H). We have b = 4 or ¢ = 4.
If b =4, then G = 6(4,4,4,4,4,c). By Lemma 2.10, G is y-unique.
If c=4,then G = 6(4,4,4,4,4,4). By Lemma 2.2, G is x-unique.
This completes the proof of Theorem 3.1. L]

4. Conclusion

It is natural to ask the following question: for which choices (aq, as, - - - ,ag) where a; < as <
-+ < ag, the graph 6(ay, as,- - , ag) is x-unique? In general, this problem still remains open. In
the next paper, the chromaticity of another type of the graph 6(ay, as, - - - , ag) where aq, ag, - - - , ag

assume exactly three distinct values will be given.
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