
www.ejgta.org

Electronic Journal of Graph Theory and Applications 11 (2) (2023), 357–380

Multiplicity-free gonality on graphs
Frances Deana, Max Everettb, Ralph Morrisonc

aDepartment of Mathematics, University of California Berkeley, Berkeley, CA, USA
bDepartment of Mathematics, City University of New York, New York, NY, USA
cDepartments of Mathematics and Statistics, Williams College, Williamstown, MA 01267

frances.e.dean2019@gmail.com, maxeverett1@gmail.com, 10rem@williams.edu

Abstract

The divisorial gonality of a graph is the minimum degree of a positive rank divisor on that graph.
We introduce the multiplicity-free gonality of a graph, which restricts our consideration to divi-
sors that place at most 1 chip on each vertex. We give a sufficient condition in terms of vertex-
connectivity for these two versions of gonality to be equal; and we show that no function of gonality
can bound multiplicity-free gonality, even for simple graphs. We also prove that multiplicity-free
gonality is NP-hard to compute, while still determining it for graph families for which gonality is
currently unknown. We also present new gonalities, such as for the wheel graphs.
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1. Introduction

Chip-firing games on graphs provide a discrete, combinatorial analog to divisor theory on al-
gebraic curves. The theory of divisors on graphs mirrors that on algebraic curves through analogs
of such results as the Riemann-Roch theorem [5] and results on graphs imply results on curves
through Baker’s specialization lemma [4]. This allows for purely combinatorial methods to prove
theorems in algebraic geometry. This theory has been developed for both metric graphs and fi-
nite (non-metric) graphs. Throughout this paper we work with finite multigraphs, with multiple
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edges allowed between vertices but no loops from a vertex to itself (if there are no multiple edges
between any pair of vertices, the graph is called simple).

One much-studied invariant of curves, and more recently of graphs, is gonality (specified as
divisorial gonality for graphs). In either setting, it can be defined as the minimum degree of a
positive rank divisor; in the algebro-geometric world it is also the minimum degree of a surjective
morphism from the curve to a projective line. In the graph theoretic world, gonality admits a
description in terms of a game: Player A places k chips on the vertices of a graph, and Player B
adds −1 chips. If Player A can perform certain “chip-firing” moves on the graph to eliminate debt,
then Player A wins; if not, then Player B wins. The gonality of the graph can be defined as the
minimum k such that Player A has a placement of k chips that wins against Player B, no matter how
Player B plays. We note that there are a number of other definitions of graph gonality inequivalent
to divisorial gonality, including stable gonality and stable divisorial gonality [7]. Throughout this
paper “gonality” without a qualifier refers to divisorial gonality.

We introduce a variation of gonality which we call multiplicity-free gonality. Loosely speak-
ing, a divisor is mutiplicity-free if it places either 0 or 1 chips on each vertex. The multiplicity-free
gonality of the graph is then the minimum degree of a multiplicity-free divisor that wins the go-
nality game. It immediately follows that gonality is at most multiplicity-free gonality; we will see
in Section 2 that there are graphs with multiplicity-free gonality strictly larger than gonality, such
as the slashed ladder graph in Figure 1.

u1 u2 u3 u4

v1 v2 v3 v4

Figure 1. The 2× 4 slashed ladder graph, with gonality strictly smaller than multiplicity-free gonality.

One reason for introducing multiplicity-free gonality is that it is in many ways more feasible to
study than traditional gonality. Although both are NP-hard to compute (see [11] for gonality, and
our Theorem 5.3 for multiplicity-free gonality), brute-force methods have to consider significantly
fewer divisors for multiplicity-free gonality. Moreover, multiplicity-free gonality is much more
amenable to proofs utilizing such techniques as Dhar’s burning algorithm [9]; in Section 5 we will
leverage this to compute the multiplicity-free gonality of an arbitrary ℓ-dimensional rook’s graph,
along with other graph families.

The question then becomes when are gonality and multiplicity-free gonality equal. We prove
in Section 3 that if a simple graph has gonality equal to its vertex connectivity, then it also has
gonality equal to multiplicity-free gonality. We also provide several negative results that show
the limitations of relating gonality with multiplicity-free gonality. In Section 4 we prove that for
graphs of any fixed gonality 2 or more, multiplicity-free gonality can take on any larger value,
meaning that we cannot bound multiplicity-free gonality with a function of gonality; except when
the fixed gonality is 2, we can achieve the same result even for simple graphs. We also show in
Section 5 that for any r ≥ 4, there exists an r-regular graph with gonality strictly smaller than
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multiplicity-free gonality; that section also includes our results on particular graph families, and
our proof that multiplicity-free gonality is NP-hard to compute.

2. Background and initial results

A graph G = (V,E) is a finite collection of vertices V (G) with a finite multiset of edges E(G)
connecting unordered pairs of vertices of V (G). Although we allow for multiple edges between
two vertices, we do not allow loops from an edge to itself. A graph is connected if it is possible to
travel from every vertex to every other vertex along edges. A set S ⊂ V (G) of vertices is called
a vertex-cut if deleting the vertices in S from G yields either a disconnected graph, or a graph on
one vertex; the minimum cardinality of a vertex-cut of G is called the vertex-connectivity κ(G) of
G. The number of edges incident to a vertex v is called the valence1 of v, denoted val(v). Given a
subset U ⊂ V (G), the outdegree of U is the number of edges with one endpoint in U and the other
endpoint in UC .

Letting G be a connected graph, we let Div(G) denote the free abelian group on the vertices
of G; as a group, Div(G) is isomorphic to Z|V (G)|. Any element of Div(G) is called a divisor. We
write D ∈ Div(G) as

D =
∑

v∈V (G)

av · (v),

where av ∈ Z. The coefficient of (v) in D is sometimes denoted D(v); that is, D(v) = av. The
degree of a divisor is the sum of the coefficients:

deg(D) =
∑

v∈V (G)

D(v) =
∑

v∈V (G)

av.

We say D is effective, written D ≥ 0, if D(v) ≥ 0 for all v.
The Laplacian matrix L of G is the |V (G)| × |V (G)| matrix whose diagonal entries record the

valences of the vertices of G, and whose off-diagonal entry Lij is equal to minus the number of
edges connecting vertex i to vertex j. We say that two divisors D,D′ ∈ Div(G) are equivalent,
written D ∼ D′ if D−D′ (thought of as a vector) is in the Z-linear span of the columns of L. This
forms an equivalence relation on Div(G).

This equivalence relation admits a more intuitive description in the language of chip-firing
games. We think of a divisor D as a placement of poker chips on a graph, where vertex v has
D(v) chips; note that a vertex may have a negative number of chips, in which case we describe
that vertex as being “in debt.” We can then perform chip-firing moves. The chip-firing move at v
transforms D to D′ by removing val(v) chips from v and moving them along each edge incident
to v to its neighbors. Then two divisors D and D′ are equivalent under our Laplacian definition if
and only if they differ by a sequence of chip-firing moves. Three equivalent divisors are illustrated
in Figure 2; the second is obtained from the first by chip-firing v1, and the third is obtained from
the second by chip-firing u1.

1Often this is called the degree of v; in this paper we reserve the word “degree” for another meaning.
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u1 u2 u3 u4

v1 v2 v3 v4
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Figure 2. Three equivalent divisors on the 2 × 4 slashed ladder graph: 2(u1) + (v1), 3(u1) − (v1) + (v2), and
(u2) + 2(v2).

Performing the same collection of chip-firing moves in a different order does not change the
resulting divisor. Thus we can think of simultaneously chip-firing a subset U ⊂ V (G); the net
effect is that one chip moves along every edge connecting U to UC , since any two adjacent vertices
both in U being fired cancel out with respect to each other. If chip-firing U does not introduce any
new debt on G, then we refer to U as a legal firing move.

Given a divisor D, a natural question is: does there exist a divisor D′ with D ∼ D′ and D ≥ 0?
Or in the language of chip placements, can we perform chip-firing moves to eliminate all debt in
D? This question, sometimes called the Dollar Game, can be answered using q-reduced divisors
and Dhar’s burning algorithm.

Let q ∈ V (G). We say that a divisor D is q-reduced if the following two conditions are
satisfied:

(i) D(v) ≥ 0 for all v ∈ V (G)− q; and

(ii) there does not exist a nonempty subset U ⊂ V (G)− q that is a legal firing move.

For each q, every divisor D is equivalent to a unique q-reduced divisor, denoted Dq [5, Proposition
3.1]; and D is equivalent to an effective divisor if and only if Dq is effective (note that it suffices
to check that this holds for a single q).

Thus being able to find q-reduced divisors is incredibly important. Achieving condition (i) is
always feasible; for instance, chip-firing q a large number of times will introduce enough chips
into the rest of the graph to allow for the elimination of all debt away from q. From there, we use
Dhar’s burning algorithm [9] to find subsets of V (G)− q that can perform chip-firing moves. This
algorithm works by starting a “fire” at q, and letting the fire propagate through the graph according
to the following rules:

• If an edge is incident to a burning vertex, then that edge burns.

• If a vertex is incident to more than D(v) burning edges, then that vertex burns.

If the entire graph burns, then D is q-reduced. If there is an unburned set U ⊂ V (G)−q of vertices,
then U is a legal firing move. Chip-fire U , and run the burning process on the new divisor. In each
iteration, either the whole graph burns or there is a new subset of vertices to fire. Eventually
the process terminates with the whole graph burning, at which point we have found our unique
q-reduced divisor equivalent to D.

To generalize the question of whether or not D is equivalent to an effective divisor, we introduce
the notion of rank. Roughly speaking, the rank of a divisor indicates how much added debt the
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divisor can eliminate, regardless of where that debt is placed. More formally, we define r(D) = −1
if D is not equivalent to an effective divisor (meaning that D cannot even eliminate its own debt);
and otherwise r(D) = r where r is the maximum nonnegative integer such that for any divisor
E ≥ 0 of degree r, we have that D − E is equivalent to an effective divisor. The following result,
called the Riemann-Roch Theorem for graphs, is one of the most famous results regarding the
ranks of divisors. It is phrased in terms of the canonical divisor K =

∑
v∈V (G)(val(v)−2)(v), and

in terms of the graph’s first Betti number g = |E(G)| − |V (G)|+ 1.

Theorem 2.1 ([5]). If D is a divisor on a graph G, then

r(D)− r(K −D) = deg(D) + 1− g.

The divisorial gonality (or simply gonality) of a graph G, denoted gon(G), is the minimum
degree of a divisor of positive rank. Informally, it is the smallest number of chips we can place on
a graph such that no matter where −1 debt is placed, one can eliminate all debt with chip-firing
moves. If a divisor D has positive rank and deg(D) = gon(G), we say that D achieves gonality.

Proving that the gonality of a graph is equal to k is quite involved. First, one needs to prove
that there exists a divisor of degree k and positive rank; and more challengingly, one needs to show
that every effective divisor of degree k − 1 has rank 0. The following lemma will be useful for us
in the latter part of such arguments.

Lemma 2.1. Let q, v ∈ V (G) be distinct vertices, and let D be a q-reduced effective divisor such
that D(v) = 0. Run one iteration of Dhar’s algorithm on D from the vertex v. If the vertex q burns,
then r(D) = 0.

Proof. Suppose for the sake of contradiction the algorithm does not burn the whole graph, although
it does burn q. Then the unburned set of vertices U ⊂ V (G) − v gives a legal chip-firing move.
However, since q is burned we have that U ⊂ V (G) − q is a legal firing move, a contradiction to
D being q-reduced. Thus Dhar’s algorithm burns the whole graph. It follows that D is v-reduced,
and since D(v) = 0, we have that r(D) = 0.

Some graphs are more susceptible to arguments using Dhar’s burning algorithm than others.
Due to the number of edges along which fires can spread, complete graphs allow for detailed
analysis using such methods, as illustrated in the following lemma.

Lemma 2.2 (Lemma 14 from [2]). The gonality of the complete graph Kn is equal to n − 1, and
is achieved only by placing n − 1 chips on a single vertex, or by placing 1 chip on n − 1 distinct
vertices. Moreover, a single iteration of Dhar’s burning algorithm will burn the entire graph when
run on any other effective divisor of degree at most n− 1 starting from a vertex with zero chips.

Proof. First, we argue that a divisor of degree n − 1 in either of the given arrangements will be
able to eliminate debt from the graph. In the first case, where n − 1 chips are placed on a single
vertex, this vertex can be fired to send 1 chip to every other vertex of the graph, thus eliminating
debt from wherever it was placed. In the second case, we can do the opposite: fire every vertex of
the graph except for the one vertex v without a chip, eliminating debt from v.
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Let D be another effective divisor of degree at most n− 1, let q be any vertex with D(q) = 0,
and suppose for the sake of contradiction that the whole graph does not burn on the first iteration of
Dhar’s burning algorithm run on D starting from q. Then there must be u unburned vertices where
1 ≤ u ≤ n − 1. Since every vertex is adjacent to every other vertex, this means that each of the
u unburned vertices will be incident to n − u burning edges, so each unburned vertex must have
n−u chips (otherwise they would burn). So, we have deg(D) ≥ u(n−u). As a function of u, this
expression is concave down, and therefore will achieve its minimum on the interval at one of the
boundary points, in this case u = 1 or u = n−1. If u = 1 or u = n−1, we have u(n−u) = n−1;
however, these values of u correspond exactly to the two arrangements discussed above! If 1 vertex
doesn’t burn, it has n − 1 chips on it, and thus all of the chips in the chip configuration. And if
n − 1 vertices don’t burn, then each vertex must have 1 chip on them. Since D was not one of
these placements, we must have 2 ≤ u ≤ n − 2. Since u(n − u) is concave down, any value
of u in this smaller range will result in n(n − u) > n − 1, contradicting deg(D) = n − 1 since
deg(D) ≥ n(n− u). This completes the proof.

We say that an effective divisor D is multiplicity-free if D(v) ≤ 1 for every vertex v. In other
words, D is multiplicity-free if it places 0 or 1 chips on each vertex. The multiplicity-free gonality
mfgon(G) of a graph G is the minimum degree of a multiplicity-free divisor of positive rank.

We immediately have that gon(G) ≤ mfgon(G). Not every graph has gon(G) = mfgon(G);
for instance, a graph G with V (G) = {v1, v2, v3} and edge multiset {v1v2, v1v2, v2v3, v2v3} has
gonality 2, but every rank 1 divisor of degree 2 is of the form 2(vi) for some i. It turns out there
are also simple graphs with a gap between the two versions of gonality, as shown in the following
examples.

Example 2.1. Consider the graph G on 8 vertices illustrated in Figure 1. We refer to this as
the 2 × 4 slashed ladder graph. If we construct a divisor D by placing 3 (or fewer) chips on
distinct vertices, there exists some i such that ui and vi both lack chips. We claim that running
Dhar’s burning algorithm on D starting fro ui then burns the whole graph. Certainly vi also
burns, and then any neighboring uj , vj pair will burn as well: even if each has a chip, one has
2 incident burning edges and burns, and then the other has 2 incident burning edges and burns.
This propagates until the whole graph burns, implying that r(D) = 0. However, there does exists
a divisor of positive rank and degree 3, namely D = 2(u1)+(v1); this divisor appears in Figure 2.
This is equivalent to the divisors (u2) + 2(v2), 2(u3) + (v3), and (u4) + 2(v4); since together they
cover all vertices of G, we have r(D) > 0. Some quick case-checking verifies that gon(G) > 2,
so G is a graph of gonality 3 such that no multiplicity-free divisor achieves gonality. Indeed,
generalizing to the 2 × m slashed ladder graph, we can find examples of graphs with gonality 3
and multiplicity-free gonality at least (and in fact equal to) m.

There also exist regular simple graphs with a gap between gonality and multiplicity-free go-
nality.

Example 2.2. The antiprisms are 4-regular graphs that give us a gap between gonality and
multiplicity-free gonality. Consider the antiprism A11 on 2 · 11 = 22 vertices pictured in Figure 3.
This graph has vertices u1, . . . , u11 and v1, . . . , v11 arranged in two 11-cycles, with ui attached to
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Figure 3. The antiprism on 11 vertices, and a degree 10 divisor achieving gonality.

vi and vi+1, working modulo 11. The divisor 3(u1)+(u2)+(u3)+(v1)+(v2)+3(v3) pictured has
positive rank, as can be checked using Dhar’s burning algorithm, implying that gon(A11) ≤ 10.

We claim that no multiplicity-free divisor on A11 has degree 10 or less, implying gon(G) <
mfgon(G). Let D be an effective multiplicity-free divisor on A11 of degree 10. Since there are
11 {ui, vi} pairs, at least one such pair has no chips on it. Choose such a pair, and run Dhar’s
burning algorithm on D starting from ui. Certainly vi will burn as well. Letting j = i±1, we claim
that uj and vj now burn as well. Indeed, one of them has two burning edges coming from the pair
{ui, vi}, so it will burn; and then the other has one burning edge from {ui, vi} and one from the
other element of {uj, vj}. Thus the fire spreads through the whole graph, implying that r(D) = 0.
Thus A11 is a 4-regular graph such that no multiplicity-free divisor on it achieves gonality.

For a 5-regular graph, we can add more edges to the antiprism. In addition to connecting
ui to vi and vi+1, connect ui to vi−1 (again working cyclically). Building such a graph G on
2 · 9 = 18 vertices, we see that gon(G) ≤ 8, since the divisor illustrated in Figure 4 has positive
rank. However, an argument identical to that for the antiprism shows that any multiplicity-free
divisor of degree 8 or less has rank 0. Thus this is a 5-regular graph with multiplicity-free gonality
strictly larger than gonality. We will see in Proposition 5.2 that for any r ≥ 4, there exist simple
(and non-simple) r-regular graphs with a gap between gonality and multiplicity-free gonality.

We now present several useful lemmas on multiplicity-free gonality.

Lemma 2.3. Let G be a graph on n vertices such that every pair of adjacent vertices share at least
2 edges. Then mfgon(G) = n.

Proof. Let D be a multiplicity-free divisor on G with deg(D) < n. At least one vertex v ∈ V (G)
has no chip from D. Run Dhar’s burning algorithm on D starting from v. Anytime a vertex burns,
all of its neighbors will burn, since they will have at least two incident burning edges, and each
vertex has at most 1 chip on it. Since G is connected, the whole graph will burn. It follows that
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Figure 4. A 5-regular graph with a positive rank divisor of degree 8.

r(D) = 0, implying that mfgon(G) ≥ n. Since placing 1 chip on every vertex gives a positive
rank divisor, we have mfgon(G) ≤ n, completing the proof.

A set S ⊂ V (G) is called an independent set if no two vertices of S share an edge. The
independence number of G, denoted α(G), is the maximum possible size of an independent set.

Lemma 2.4. If G is a simple graph, then mfgon(G) ≤ n− α(G).

Proof. Let S be an independent set with |S| = α(G), and consider the multiplicity-free divisor D
with D(v) = 0 for v ∈ S and D(v) = 1 for v /∈ S. As proved in [8, Proposition 3.1], this divisor
has positive rank; to see this, note that for v ∈ S, chip-firing the set {v}C moves chips onto v
without introducing new debt, since each neighbor of v has 1 chip and is connected to v by exactly
one edge. Since D is multiplicity-free, we have mfgon(G) ≤ deg(D) = n− α(G).

We close this section by remarking on a possible generalization of multiplicity-free gonality,
leaving it as a direction for future research. Just as the gonality of a graph G can be defined as the
minimum degree of a divisor with rank at least 1, for any positive integer r we can define the rth

gonality of a graph G to be the minimum degree of a divisor with rank at least r. This number is
denoted gonr(G).

It is natural to try to define mfgonr(G) as the minimum degree of a multiplicity-free divisor
with rank at least r; however, this number is not always well-defined. This is because there are only
finitely many multiplicity-free divisors on a graph, and thus the maximum rank of such a divisor
is bounded. Thus we define mfgonr(G) as the minimum degree of a multiplicity-free divisor with
rank at least r if such a divisor exists, and ∞ otherwise. A natural question then becomes:

Question. Given a graph G, for what values r do we have mfgonr(G) < ∞?

Note that the maximum rank of a multiplicity-free divisor is achieved by the divisor D1 that
places 1 chip on every vertex. Thus, mfgonr(G) < ∞ if and only if r ≤ r(D1). So really, the
question is: given a graph G, what is r(D1)?

We answer this question in a few cases. Recall that g = |E(G)| − |V (G)|+ 1 is the first Betti
number of the graph.
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• If G is a tree, then r(D1) = deg(D1) = |V (G)|; and if G is a cycle, then r(D1) = deg(D1)−
1 = |V (G)| − 1. This is because for a graph with g = 0 (i.e. a tree), the rank of a divisor
is equal to its degree; and for a graph with g = 1, the rank of an effective divisor of positive
degree is one less than its degree (both results follow from Theorem 2.1).

• If G is a simple graph, we have r(D1) ≥ 2: the only non-effective divisor of the form
D1 − E where E ≥ 0 and deg(E) = 2 is D1 − 2(v) for some vertex v; this divisor can
be made effective by chip-firing all vertices but v. On the flip side, if G is a multigraph
where every pair of adjacent vertices are connected by 2 or more edges, then r(D1) = 1; this
is because running Dhar’s burning algorithm on D1 − (v) starting from v burns the whole
graph, implying that debt cannot be eliminated in D1 − 2(v) (the proof is similar to that of
Lemma 2.3). Thus any simple graph has mfgon2(G) ≤ |V (G)|, while any graph with all
edges multiedges has mfgon2(G) = ∞.

• If G is a 3-regular graph, then D1 is K, the canonical divisor on G from the Riemann-Roch
Theorem for graphs. By that theorem, we know that r(K) = g − 1. Thus for any 3-regular
graph we have mfgonr(G) < ∞ if and only if r ≤ g − 1.

• More generally, if G is a k-regular graph, then D1 is a divisor D such that (k − 2)D = K.
Note that g−1 = r(K) = r((k−2)D) ≥ (k−2)r(D), so we have r(D) ≤ (g−1)/(k−2).

However, for k > 3, r(D1) need not be determined by g. Consider the two 4-regular graphs
with g = 7 in Figure 5. As previously argued, the simple graph has r(D1) ≥ 2, while the
graph with all edges multiedges has r(D1) = 1.

Figure 5. Two 4-regular graphs with g = 7 with different values for the rank of D1.

A more thorough study of this question would be an interesting direction for future work.

3. A condition for equality

In this section we provide a sufficient condition for a graph to have gonality equal to multiplicity-
free gonality. We start with the following lemma.

Lemma 3.1. Let G be a k-connected simple graph, and let U ⊂ V (G) be a set of vertices with
2 ≤ |U | ≤ k − 1. Then the outdegree of U is at least k + 1.
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Proof. The outdegree of U can be computed as the total valence of the vertices in U , minus twice
the number e of edges between vertices of U due to double-counting; thus the outdegree is

outdeg(U) =
∑
v∈U

val(v)− 2e.

As G is a k-connected graph, any vertex in G must be incident to at least k edges, since the set of
neighbors of a vertex forms a vertex cut. Thus

∑
v∈U val(v) ≥ k|U |. On the other hand, since G is

simple, the total number of edges in U is at most
(|U |

2

)
= |U |(|U |−1)

2
. Thus we have

outdeg(U) ≥ k|U | − |U |(|U | − 1).

To show that k|U | − |U |(|U | − 1) is at least k + 1, it is equivalent to show that

k · (|U | − 1)− |U | · (|U | − 1) ≥ 1

since we can subtract k from both sides. Factoring transforms this expression into the following:

(k − |U |) (|U | − 1) ≥ 1.

Since k > |U | and |U | > 1, both k− |U | and |U | − 1 are positive integers, so this inequality holds
for all values of k and |U |. This completes the proof.

Now that we have this lemma, we can prove the following proposition:

Proposition 3.1. For any simple graph G, if gon(G) = κ(G) = k, then gon(G) = mfgon(G).

Proof. If κ(G) = gon(G) = 1, then G is a tree and we are done. Henceforth we assume that
κ(G) ≥ 2. Since gon(G) = κ(G) = k, there exists an effective divisor D of degree k and positive
rank.

Let S be the set of vertices on which D places chips, and let ℓ = |S|. Suppose for the sake of
contradiction that 2 ≤ ℓ ≤ k− 1. Let q be a vertex with no chip, and run Dhar’s burning algorithm
on D starting from q. Since κ(G) = k, removing the ℓ ≤ k − 1 vertices of S won’t disconnect
the graph, so every vertex not in S will burn. Since r(D) > 0, the burning process stops before
the entire set S burns. Call the set of unburned vertices U . If |U | = 1, then the single unburned
would need k chips on it, contradicting the condition that |S| ≥ 2, since U ⊆ S. Thus we have
2 ≤ |U | ≤ k − 1. But by Lemma 3.1, U has outdegree at least k + 1, so it requires at least k + 1
chips for no vertices in it to burn, a contradiction to deg(D) = k.

Thus ℓ = 1 or ℓ = k. If ℓ = k, then D is multiplicity-free and we are done. If ℓ = 1, then D
places all chips on a single vertex v. Since κ(G) ≥ 2, we know that G−v is connected. Choose any
vertex w ̸= v, and run Dhar’s burning algorithm on D starting from w. The whole graph besides
v will burn, since G − v is connected; but v will not burn since r(D) > 0. Thus it is possible to
chip-fire v by itself without introducing debt. This means v is adjacent to at most k vertices; but
since κ(G) = k, it is also adjacent to at least k vertices, so it must be adjacent to exactly k vertices.
Thus chip-firing v turns D into a multiplicity-free divisor, with one chip on each of the k neighbors
of v. Either way, there exists a multiplicity-free divisor on G achieving gonality.
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There are many familiar families of graphs to which Proposition 3.1 applies, including:

• trees, which have κ(G) = gon(G) = 1 [6, Lemma 1.1] (indeed, that lemma proves that the
trees are the only graphs of gonality 1);

• complete multipartite graphs Kn1,...,nℓ
, which have κ(G) = gon(G) =

(∑ℓ
i=1 ni

)
−maxi ni

[14, Example 4.3];

• cycle graphs, which have κ(G) = gon(G) = 2 [13, §4.2].

In fact, the last example falls into a more general class of graphs with gonality equal to
multiplicity-free gonality:

Proposition 3.2. If G is a simple graph, then gon(G) = 2 if and only if mfgon(G) = 2.

Proof. If mfgon(G) = 2, then G is not a tree, so 1 < gon(G) ≤ mfgon(G) = 2. It follows that
gon(G) = 2.

Now let G be simple with gon(G) = 2, and let D = (u) + (v) be an effective divisor with
deg(D) = 2 and r(D) = 1. If u ̸= v, then D is multiplicity-free, and we are done. If u = v, choose
any vertex q ̸= u and run one iteration of Dhar’s burning algorithm on D starting from q. Since
r(D) ≥ 1, the whole graph will not burn, and so a subset U of chips will be made to fire. Let D′ be
the divisor obtained by performing this subset-firing move. At least one chip moved from u, and
even if both chips moved they could not have moved to the same vertex, since the graph is simple.
Thus D′ is a multiplicity-free divisor of rank 1 and degree 2, implying that mfgon(G) = 2.

We will see in the next section that Proposition 3.2 no longer holds if we drop the assumption
that G is simple.

4. Multiplicity-free gonality cannot be bounded by gonality

We have that gon(G) = 1 if and only if mfgon(G) = 1 if and only if G is a tree; and for simple
graphs that gon(G) = 2 if and only if mfgon(G) = 2 by Proposition 3.2. In this section we will
prove that these are the only cases in which gonality determines multiplicity-free gonality, or even
in which some function of gonality can bound multiplicity-free gonality.

Proposition 4.1. If 2 ≤ i ≤ j, then there exists a multigraph with gon(G) = i and mfgon(G) = j.

Proof. Consider the multipath on j vertices, with i edges between each pair of adjacent vertices.
By [1, §5], we have gon(G) = min(i, j) = i; and by Lemma 2.3, we have mfgon(G) = j.

The corresponding result for simple graphs will take more work to prove.

Theorem 4.1. For any integers i, j, with 3 ≤ i ≤ j, there exists a simple graph G with gon(G) = i
and mfgon(G) = j.
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Figure 6. The complete slashed ladder KL6,5.

In order to prove this theorem, we introduce the complete slashed ladder graph, KLm,n, ob-
tained by attaching a complete graph on n vertices to the end of a 2 × m slashed ladder graph,
overlapping on 2 vertices (throughout this section we assume m ≥ 2 and n ≥ 3). The complete
slashed ladder KL6,5 is illustrated in Figure 6.

Lemma 4.1. For all m ≥ 2 and n ≥ 3, the complete slashed ladder graph KLm,n has gonality n.

Proof. First we present a positive rank divisor of degree n. This divisor places 3 chips on the first
column of the slashed ladder graph, with 2 chips on the vertex incident to the diagonal edge and
1 chip on the other vertex, and adds 1 chip to all but one of the remaining n − 2 vertices of the
complete portion of the graph. This divisor is shown in Figure 7 for KL6,5.

2

1

1

1

Figure 7. Divisor of degree 5 for KL6,5.

This divisor has positive rank, because if debt is introduced on the slashed ladder portion of
the graph, we can use the slashed ladder graph strategy to eliminate it; namely, chip-fire the entire
complete graph portion of KLm,n to move the 3 chips over to the second column of the slashed
ladder graph, then chip-fire larger and larger subsets until the chips have eliminated the debt on
the slashed ladder graph. If debt is instead introduced on the last remaining vertex of the complete
portion of the graph, chip-firing every single other vertex will eliminate debt from the graph. So,
gon(KLm,n) ≤ n.

Suppose for the sake of contradiction that there is a positive rank effective divisor D of degree
n− 1. Of the two vertices in the overlap of the complete graph and the slashed ladder, choose q to
be the one with higher valence. Without loss of generality we may assume that D is q-reduced, so
there is at least 1 chip on q. To reach a contradiction at this point, it suffices by Lemma 2.1 to find
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a vertex v ∈ V (G) with D(v) = 0 such that running Dhar’s burning algorithm on D starting from
v burns the vertex q.

Since there are only n − 1 chips, there must be at least one vertex v in the Kn portion of the
graph with no chips on it. Run Dhar’s burning algorithm on D starting from v. We know by
Lemma 2.2 that for the Kn subgraph (including q) not to burn with at most n − 1 chips on it, it
must have all n− 1 chips, and either they must all be at q, or 1 chip must be on each vertex of the
Kn except for v. Based on this information regarding the structure of D, we may now change our
choice of v.

If D has all n − 1 chips on q, as in Figure 8, then any choice of v immediately burns the
connected subgraph G− q, and then q as well since it is adjacent to more than n− 1 vertices.

4 −1

Figure 8. Degree 4 divisor on KL6,5 where all 4 chips are on q, with −1 chips on a different vertex.

If, instead, D has 1 chip on every vertex of Kn except for one, as in Figure 9, then choose v to
be in the complete slashed ladder portion of the graph. Running Dhar’s burning algorithm from v
burns the whole slashed ladder away from Kn, and then q burns as well since it has one chip and
is incident to two burning edges, again giving us a contradiction.

1

1

1

1

−1

Figure 9. Degree 4 divisor on KL6,5 where each vertex has 1 chip, with −1 chips on a vertex of the slashed ladder.

Thus, it is impossible for a degree n − 1 divisor to have positive rank. We conclude that the
complete slashed ladder graph KLm,n has gonality n.

Lemma 4.2. For all m ≥ 2 and n ≥ 3, the complete slashed ladder graph KLm,n has multiplicity-
free gonality n+m− 2.
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Proof. One multiplicity-free divisor of degree n + m − 2 that has positive rank is the one that
places a chip on each of the m vertices along the diagonal of the slashed ladder portion of the
graph, plus a chip on each of the n − 2 vertices of the Kn portion of the graph that aren’t part of
the slashed ladder. Indeed, this is a placement of chips on the complement of an independent set,
which always has positive rank for a simple graph [8, Proposition 3.1]. This divisor can be seen on
KL6,5 in Figure 10.

1

1

1

1

1

1

1

1

1

Figure 10. Degree 9 multiplicity-free divisor on KL6,5.

Now let D be an arbitrary multiplicity-free divisor. We claim that if a column of the slashed
ladder graph portion has no chips on it from D, then there exists a choice of vertex v such that the
whole graph burns when running Dhar’s burning algorithm on D starting from v. This can be seen
as follows: if a column has no chips, we can start a fire on one of the vertices in that column. Then,
the other vertex in the column will burn, as well as all incident edges to each vertex in the column.
Because of the structure of the slashed ladder graph, there will be a vertex in each adjacent column
that now has two burning edges incident to it, and at most 1 chip on it, so it will burn, and then
the other vertex in its column will burn as well for the same reason. This process continues until
the entire slashed ladder is burning. Once the entire slashed ladder burns, the complete graph will
already have 2 burning vertices, and thus no vertex with at most 1 chip on it will avoid burning. So,
for D to have positive rank, it must place at least m chips on the complete slashed ladder portion
of the graph (at least one on each column).

Similarly, if the Kn portion of the complete slashed ladder graph burns, then the entire graph
will burn, because the Kn portion contains a complete column of the slashed ladder graph within
it. Thus, if Kn burns, the slashed ladder will burn as well, and therefore the whole graph will burn.
We know by Lemma 2.2 that there must be n− 1 chips on Kn to prevent it from burning, and the
chips must be placed on all but 1 vertex of Kn. Thus there is a chip on at least n− 1 of the vertices
of the complete graph, and at least one chip on each of the m columns of the slashed ladder graph.
This means there are at least m+n−2 chips in total, where the savings of 1 comes from the ability
to have one of the columns of the slashed ladder taken care of by the complete graph’s chips. We
conclude that the multiplicity-free gonality of the complete slashed ladder graph is at least, and
therefore exactly, m+ n− 2.

We are now ready to prove Theorem 4.1.
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Proof of Theorem 4.1. For 3 ≤ i ≤ j, let n = i and m = j − n + 2. Then, the complete slashed
ladder graph KLm,n has gonality i and multiplicity-free gonality j, for any desired values of i and
j.

5. Families of graphs

We close our paper by studying the mutiplicity-free gonality of graphs for certain graph fam-
ilies, or graphs with a particular structure. In some cases we compute multiplicity-free gonalities
where gonalities are unknown, and in other cases we can compare the two types of gonality.

5.1. ℓ-dimensional rook’s graphs
The Cartesian product G□H of two simple graphs G and H is the graph G□H whose vertex

set is V (G) × V (H), where (u1, v1) is adjacent to (u2, v2) if and only if either u1 = u2 and v1
is adjacent to v2 in H , or v1 = v2 and u1 is adjacent to u2 in G. An ℓ-dimensional rook’s graph
is a Cartesian product of ℓ complete graphs. For n = 2, it was shown that gon(Km□Kn) =
min{m(n − 1), n(m − 1)} for min{m,n} ≤ 5 in [2]. This was extended to all m and n in
[12], where it was also shown that gon(K2□Km□Kn) = mn for 2 ≤ m ≤ n. Restricting to
multiplicity-free divisors, we can deliver a complete answer for ℓ-dimensional rook’s graphs.

Proposition 5.1. Let n1 ≤ · · · ≤ nℓ, and consider G = Kn1 � . . . � Knℓ
. We have

mfgon(G) = (n1 − 1)n2 . . . nℓ.

Proof. To see that mfgon(G) ≤ (n1 − 1)n2 · · ·nℓ, we consider the following multiplicity-free
divisor of this degree: we may view G as n1 copies of Kn2 � · · · � Knℓ

, connected according
to Kn1 . Choose one copy H = Kn2 � · · · � Knℓ

inside G, and place a chip on every vertex in
V (G) \ V (H). This divisor is multiplicity-free of degree (n1 − 1)n2 · · ·nℓ and has positive rank,
as we may fire all vertices outside of H to eliminate debt wherever it is placed on H .

We will now prove by induction on ℓ that if D is a multiplicity-free divisor of degree (n1 −
1)n2 · · ·nℓ − 1 on Kn1 � · · · � Knℓ

, then there exists a vertex v on the graph with D(v) = 0
such that the entire graph burns on one iteration of Dhar’s burning algorithm on D starting from v.
It will follow that no such multiplicity-free divisor has positive rank, giving us the desired lower
bound on multiplicity-free gonality.

For the base case of ℓ = 1, our claim amounts to saying that if Kn has an effective divisor D of
degree (n− 1)− 1 = n− 2, then there exists v ∈ V (Kn) such that the whole graph burns on one
iteration of Dhar’s burning algorithm run on D starting from v. This follows from Lemma 2.2.

Now let ℓ ≥ 2, and assume our claim holds for (ℓ−1)-fold products of complete graphs. Let D
be an effective multiplicity-free divisor of degree (n1−1)n2 · · ·nℓ−1 on G = Kn1 �· · ·�Knℓ

. We
can view G as nℓ copies of Kn1 � · · ·�Knℓ−1

, with matching vertices connected according to Knℓ
.

Refer to these copies as H1, · · · , Hnℓ
. At least one Hi has at most (n1− 1)n2 · · ·nℓ−1− 1 chips on

it: otherwise the degree of D would be at least (n1−1)n2 · · ·nℓ. By our inductive hypothesis, there
exists a vertex v ∈ V (Hi) such that all of Hi burns under one iteration of Dhar’s burning algorithm.
There exists some other index j such that Hj has at most n1n2 · · ·nℓ−1 − 1 chips: otherwise the
degree of D would be at least n1n2 · · ·nℓ−1(nℓ−1) ≥ (n1−1)n2 · · ·nℓ−1nℓ. So at least one vertex
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in Hj , say w, does not have a chip. Every vertex in Hj is adjacent to a vertex in Hi, and so is
incident to a burning edge. This means the vertex w burns. From there every vertex in Hj adjacent
to w will burn; then every vertex in Hj adjacent to those vertices will burn; and so on. Since Hj is
connected, every vertex in Hj will burn. Every other vertex u in G is adjacent to a vertex in Hi and
to a vertex in Hj , meaning that u is incident to two burning edges, and u will burn as well. Thus
the whole graph G burns.

Since no multiplicity-free divisor of degree (n1 − 1)n2 · · ·nℓ − 1 has positive rank, we have
mfgon(G) ≥ (n1 − 1)n2 · · ·nℓ. We conclude that mfgon(G) = (n1 − 1)n2 · · ·nℓ.

5.2. Wheel graphs
The wheel graph Wn on n + 1 vertices consists of a cycle on n vertices (referred to as radial

vertices) together with a universal vertex. To determine which wheel graphs have multiplicity-free
gonality equal to gonality, we must first determine the gonality of Wn.

Theorem 5.1. For all n ≥ 3, we have gon(Wn) = ⌈
√
n⌉ − 1 +

⌈
n

⌈
√
n⌉

⌉
Proof. Let D be an effective divisor achieving gonality on Wn, and suppose for the sake of con-
tradiction that deg(D) ≤ ⌈

√
n⌉ − 2 +

⌈
n

⌈
√
n⌉

⌉
. Let w be the universal vertex. Without loss of

generality, we will assume that D is w-reduced.
Let k = D(w); we know that k ≥ 1, since D is w-reduced and r(D) = 1. We claim that

there exist k + 1 radial vertices v1, . . . , vk+1 forming a path such that D(vi) = 0 for all i. Suppose
not. This means that there are at least ⌈ n

k+1
⌉ chips placed on the radial vertices; otherwise the

prescribed gap would exist. It follows that k ≤ deg(D)−
⌈

n
k+1

⌉
≤ ⌈

√
n⌉ − 2 +

⌈
n

⌈
√
n⌉

⌉
−

⌈
n

k+1

⌉
.

This can be rewritten as

(k + 1) +

⌈
n

k + 1

⌉
+ 1 ≤ ⌈

√
n⌉+

⌈
n

⌈
√
n⌉

⌉
Note that (k + 1) + ⌈ n

k+1
⌉ + 1 =

⌈
(k + 1) + n

k+1
+ 1

⌉
. Consider the function x + n

x
+ 1. This

function is concave up for all positive x, and is minimized at x =
√
n. If k can be any positive

integer, it follows that (k+1)+ n
k+1

+1 is at its minimum when k+1 is either ⌊
√
n⌋ or ⌈

√
n⌉; the

same is true for
⌈
(k + 1) + n

k+1
+ 1

⌉
. In fact, by Proposition Appendix A.1, these two choices for

k + 1 give the same output. It follows that

⌈
√
n⌉+

⌈
n

⌈
√
n⌉

⌉
+ 1 ≤ (k + 1) +

⌈
n

k + 1

⌉
+ 1 ≤ ⌈

√
n⌉+

⌈
n

⌈
√
n⌉

⌉
,

a contradiction. This lets us conclude that there exist v1, . . . , vk+1 as claimed.
Run Dhar’s burning algorithm on D starting from v1. The vertices v1, . . . , vk+1 all burn, since

they are connected and D(vi) = 0 for all i. The vertex w is now incident to k + 1 burning edges,
and so will burn as well since D(w) = k. If the graph does not burn, then some subset of V (Wn)
not including w can fire, contradicting the fact that D is w-reduced. Thus the whole graph will burn
and r(D) < 1, a contradiction. We conclude that the gonality of Wn is at least ⌈

√
n⌉−1+

⌈
n

⌈
√
n⌉

⌉
.
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To see that the gonality of Wn is at most ⌈
√
n⌉ − 1 +

⌈
n

⌈
√
n⌉

⌉
, place ⌈

√
n⌉ − 1 chips on w, and

place
⌈

n
⌈
√
n⌉

⌉
chips around the radial vertices so that no two chipped vertices in a row are more

than ⌈
√
n⌉ apart on the outer cycle. This is illustrated for n = 12 on the wheel with 13 vertices

in Figure 11. The only vertices without chips are then radial vertices in clusters of length at most
⌈
√
n⌉ − 1. If −1 is placed on such a vertex, then firing all vertices not in its cluster eliminates all

debt from the graph. Thus, there exists a positive rank divisor of degree ⌈
√
n⌉ − 1 +

⌈
n

⌈
√
n⌉

⌉
.

1

1 1

3

Figure 11. A winning placement of chips on the wheel with 13 vertices

Now we determine the multiplicity-free gonality of Wn. We will use the following lemma.

Lemma 5.1. Let G be a simple graph with a universal vertex v such that G−v is connected. Then
mfgon(G) = n− α(G).

Proof. We have mfgon(G) ≤ n − α(G) by Lemma 2.4. Now let D be a multiplicity-free divisor
of degree less than n− α(G). It follows that D that has two adjacent vertices u and w that do not
have chips. Run Dhar’s burning algorithm starting from either of these vertices, so that both u and
w burn. Either v ∈ {u,w}, in which case both v and a vertex of G − v burn; or v /∈ {u,w}, in
which case v has two burning edges and at most 1 chip and thus we still have both v and a vertex
of G − v burn. At this point every vertex in G − v has at least one burning edge coming from v,
meaning that one more burning edge is enough to make them burn; and since G − v is connected
with at least one burning vertex, the fire spreads through the whole graph. Thus r(D) = 0, and so
there does not exist a multiplicity-free divisor of degree less than n− α(G) of positive rank. This
gives us mfgon(G) ≥ n− α(G), completing the proof.

Corollary 5.1. For all n ≥ 3, we have mfgon(Wn) = ⌈n/2⌉+ 1.

Proof. This follows from Lemma 5.1, the fact that α(Wn) = ⌊n/2⌋, and the identity (n + 1) −
⌊n/2⌋ = ⌈n/2⌉+ 1.

Theorem 5.2. The wheel Wn has gonality equal to multiplicity-free gonality if and only if n ≤ 8
or n = 10.
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We reserve the proof of this result for Proposition Appendix A.2 in Appendix Appendix A; it
is simply a verification that these are the only values of n that make the formulas from Theorem
5.1 and Corollary 5.1 equal to one another. The small wheel graphs that do have gonality achieved
by a multiplicity-free divisor are pictured in Figure 12, along with such a divisor.

1

1

1

1 1 1

1

1

1
1

1

1

1

1 1

1

1

1

1

1

1 1

1

1 1

1
1

1

1
1

Figure 12. Wheel graphs with multiplicity-free divisors achieving gonality.

5.3. Simple graphs with high minimum valence
In [10], it was shown that if a simple graph G on n vertices has minimum valence δ(G) ≥

⌊n/2⌋+ 1, then
gon(G) = n− α(G).

Since gon(G) ≤ mfgon(G) ≤ n− α(G), we immediately have the following result:

Corollary 5.2. Let G be a simple graph on n vertices with minimum valence δ(G) ≥ ⌊n/2⌋ + 1.
Then gon(G) = mfgon(G) = n− α(G).

The authors of [10] leveraged their result to provide a new proof that it is NP-hard to compute
the gonality of a simple graph, a result originally proved in [11]. We can mirror their argument to
do the same for multiplicity-free gonality.

Theorem 5.3. Computing mfgon(G) is NP-hard.

Proof. Let H be any simple connected graph on m vertices, and let G be the mth cone over H .
That is, G is obtained from H by iteratively adding m universal vertices to it. Letting n = 2m,
we have that G is a graph on n vertices with δ(G) ≥ n/2 + 1, implying by Corollary 5.2 that
mfgon(G) = n− α(G). Noting that α(H) = α(G), we have mfgon(G) = n− α(H). This means
we may compute the independence number of any simple graph H by computing the multiplicity
free gonality of a graph G that is polynomial in the size of H . Since independence number is
NP-hard to compute, we conclude that mfgon(G) is NP-hard to compute as well.

5.4. Regular graphs
In this subsection we consider the question: for which values of r do there exist r-regular graphs

with a gap between gonality and multiplicity-free gonality? We remark that the only connected 1-
regular graph is K2, which has gonality and multiplicity-free gonality equal to 1; and the only
connected 2-regular graphs are the cycle graphs Cn, which have gonality and multiplicity-free
gonality both equal to 2. Once we have r ≥ 4, however, we can find graphs exhibiting a gap
between the two gonalities, both among simple graphs and multigraphs.
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Proposition 5.2. For any r ≥ 4, there exist simple and non-simple r-regular graphs G with
gon(G) < mfgon(G).

Proof. The non-simple graph is easier, so we construct that one first. We illustrate our constructed
graphs for r = 4 and r = 5 in Figure 13. If r is even, construct a multigraph G on r+1 vertices with
the cycle Cr+1 as the underlying simple graph, where each adjacent pair of vertices is connected
by r/2 edges; this makes G an r-regular graph. Then for any v ∈ V (G), the divisor r(v) has
nonnegative rank: it is equivalent to r

2
(v′)+ r

2
(v′′) for any pair of vertices v′ ̸= v′′ equidistant from

v on the cycle. Thus gon(G) ≤ r < r + 1 = |V (G)|. Since there are r/2 ≥ 2 edges between each
pair of neighboring vertices, we may apply Lemma 2.3 to conclude that G has gonality strictly
smaller than multiplicity-free gonality.

If r is odd, write r = 2s + 1. Construct G on 2s(s + 1) + 2 vertices with the cycle C2s(s+1)+2

as the underlying graph, where the number of edges between two vertices alternates between s and
s + 1 as we move around the cycle. Thus the degree of each vertex is s + s + 1 = 2s + 1 = r,
making G an r-regular graph, Choose two vertices v1 and v2 connected by s edges, and consider
the divisor D = s(s + 1)(v1) + s(s + 1)(v2). By chip-firing the set {v1, v2} a total of s times,
we have that D is equivalent to s(s + 1)(w1) + s(s + 1)(w2), where wi is the neighbor of vi
not in {v1, v2}. Then, by chip-firing the set {v1, v2, w1, w2} a total of s + 1 times, we have that
D is equivalent to s(s + 1)(u1) + s(s + 1)(u2), where ui is the neighbor of wi not in {v1, v2}.
Continuing in this way, we may move our chips around the whole graph, so r(D) > 0. This means
that gon(G) ≤ deg(D) = 2s(s + 1) < 2s(s + 1) + 2 = |V (G)|. Since r ≥ 5, there are at least
s ≥ 2 edges between each pair of neighboring vertices, so we may apply Lemma 2.3 to conclude
that G has gon(G) < mfgon(G).

6 6

4

Figure 13. The 4-regular and 5-regular non-simple graphs constructed in the proof, along with positive rank divisors.

We now construct a simple graph with our desired properties. The graph we will end up con-
structing for r = 7 appears in Figure 14; there are 9 copies of K4, connected as pictured.

If r = 4 or r = 5, we can use one of the graphs from Example 2.2. Now let r ≥ 6. Choose
N such that 4(r−3)

r−4
< N , and construct N copies of Kr−3, referring to them as K

(1)
r−3,· · · ,K(N)

r−3.

Label the vertices of K(i)
r−3 as v

(i)
1 , · · · , v(i)r−3. Let n denote n mod N . For pairs i1 and i2 with

i2 = i1 + 1, connect v(i1)j to both v
(i2)
j and v

(i2)

j+1
for all j. (Without the v

(i1)
j v

(i2)

j+1
edges, this graph

375



www.ejgta.org

Multiplicity-free gonality on graphs | Frances Dean et al.

· · ·

Figure 14. A simple 7-regular graph with gon(G) < mfgon(G); there are 9 copies of K4.

would simply be the Cartesian product Kr−3 �CN , which is a regular graph with all degrees equal
to r − 4 + 2 = r − 2. The additional edges increase this to r, making G an r-regular graph.)

Note that every vertex v in G has valence (r−4)+4 = r, where r−4 edges come from the Kr−3

containing v and the other 4 edges connect v to other copies of Kr−3. Also note that gon(G) ≤
4(r − 3): placing 4 chips on every vertex of one copy of Kr−3 yields a positive rank divisor, as
we may spread these chips around the graph by iteratively firing copies of Kr−3. Suppose G has
a multiplicity-free divisor D achieving gonality. Then deg(D) ≤ 4(r − 3). Since we chose N

such that 4(r−3)
r−4

< N , we have 4(r−3)
N

< r − 4, so
⌊
4(r−3)

N

⌋
≤ r − 5, and thus by the Pigeonhole

Principle at least one copy of Kr−3 has at most r − 5 chips on it. Choose a vertex q of this Kr−3

with no chips on it, and run Dhar’s burning algorithm on D starting from q. By Lemma 2.2, the
copy of Kr−3 containing q burns. Then, the two neighboring copies of Kr−3 burn as well: each of
their vertices has two incident burning edges, but at most one chip. Their neighboring Kr−3’s burn
as well, until the whole graph burns, contradicting r(D) > 0. Thus G is an r-regular simple graph
with gonality strictly smaller than multiplicity-free gonality.

We pose the following as an open question.

Question. Does there exist a 3-regular graph with gon(G) < mfgon(G)?

If G is 3-regular, then every divisor D on G with positive (indeed, nonnegative) rank with
degree at most g − 1 is equivalent to a divisor D′ that places at most 2 chips on each vertex;
this is a consequence of work in [3], stated explicitly in the discussion following [2, Lemma 16].
We might hope that by performing chip-firing moves, we could transform such a divisor into a
multiplicity-free one. The next example shows that this strategy will not work for all divisors on
3-regular graphs.

Example 5.1. Consider the “loop of loops” L5 of genus 5. This 3-regular graph is pictured in
Figure 15, with six equivalent divisors; in fact, pictured are all effective representatives of an
equivalence class of divisors. Letting D refer to any one of these divisors, we have that r(D) > 0,
and deg(D) = 4. It turns out that L5 has gonality 4, as can be shown with an exhaustive Dhar’s
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Figure 15. The effective representatives of a divisor class of positive rank, with no multiplicity-free representatives.

burning algorithm argument. Thus, even though D achieves gonality, it is not equivalent to any
multiplicity-free divisor.

1

1

1

1

Figure 16. A multiplicity-free divisor on L5 achieving gonality.

However, L5 does have gon(L5) = mfgon(L5): a multiplicity-free divisor achieving gonality
is pictured in Figure 16. Nonetheless, this example illustrates that if we wish to prove that any
3-regular graph has gon(G) = mfgon(G), it will not work to start with an arbitrary divisor
achieving gonality and then perform chip-firing moves until it is multiplicity-free.
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Appendix A. Lemmas for the wheel graph

Proposition Appendix A.1. For any positive integer n, we have ⌈
√
n⌉ − 1 +

⌈
n

⌈
√
n⌉

⌉
= ⌊

√
n⌋ −

1 +
⌈

n
⌊
√
n⌋

⌉
.

Proof. The claim is immediately true for square numbers n, since everything being rounded is
already an integer. Thus, assume n is not a square number. Let s = ⌊

√
n⌋. It suffices to show

⌈n
s
⌉ = ⌈ n

s+1
⌉+ 1. Note that s2 < n and since n is an integer, (s+ 1)2 − 1 ≥ n ⇒ s2 + 2s ≥ n.

Suppose n ≤ s2 + s. Then it follows that

s <
n

s
≤ s+ 1

⇒
⌈n
s

⌉
= s+ 1

s− 1 <
n

s+ 1
≤ s

⇒
⌈

n

s+ 1

⌉
= s

Thus, the claim is true.

Suppose n > s2 + s. Then it follows that

s+ 1 <
n

s
≤ s+ 2

⇒
⌈n
s

⌉
= s+ 2

s <
n

s+ 1
< s+ 1

⇒
⌈

n

s+ 1

⌉
= s+ 1

And the claim is also true.

Proposition Appendix A.2. Let n ≥ 3. We have ⌊
√
n⌋ − 1 + ⌈ n

⌊
√
n⌋⌉ = ⌈n

2
⌉ + 1 if and only if

n ≤ 8 or n = 10.
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Proof. We have

⌊
√
n⌋ − 1 +

⌈
n

⌊
√
n⌋

⌉
<
√
n+

n

⌊
√
n⌋

=n ·
(

1√
n
+

1

⌊
√
n⌋

)
≤n · 2

⌊
√
n⌋

.

Note that for n ≥ 16, we have 2
⌊
√
n⌋ ≤

2
⌊
√
16⌋ =

1
2
, so we have

⌊
√
n⌋ − 1 +

⌈
n

⌊
√
n⌋

⌉
<

n

2
<

⌈n
2

⌉
+ 1.

Thus it suffices to compare the two formulas for 3 ≤ n ≤ 15. By direct computation we find
equality precisely when 3 ≤ n ≤ 8 and n = 10.
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