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Abstract

In this paper, we study the interlace polynomial of a special graph with n vertices, called 4n-
snowflake graph. It is similar as the friendship graph Fn of n vertices, which is made of n 3-cycles
sharing one center vertex. In stead of 3-cycles, the 4n-snowflake graph Qn is constructed by gluing
n 4-cycles to one center vertex. We describe certain properties of such graphs, provide recursive
and explicit formulas for the interlace polynomials, and give some properties of such polynomials
such as special values and patterns for certain coefficients.
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1. Introduction

History and Background
Graph polynomials have been studied and applied to characterize certain properties of the con-

sidered graphs. Two well-known polynomials are Tutte and Martin polynomials [6],[7]. The
concept of interlace polynomial first appeared along with a study of Euler circuits of undirected
4-regular graphs and the transformations [4]. Arratia, Bollóbas, Coppersmith, and Sorkin [3] in-
troduced the interlace polynomial of a graph, a polynomial that represents the information gained
from doing a toggling process on the graph.

The interlace polynomial of a graph gives important information about the graph, for example,
the number of k-component circuit partitions, for any k ∈ N [3]. The interlace polynomials of
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certain special graphs, such as paths, cycles, stars, and complete graphs, were studied ([1, 3, 4].)
Recently, ladder graphs, n-claw graphs, forest graphs, Friendship graphs, and butterfly graphs were
studied ([2, 9, 10, 12].) Work has been done on multi-variate interlace polynomials as well, see
[2, 8].

In this paper, we focus on snowflake graphs, which is similar as the Friendship graphs. In
[12], Friendship graphs were studied. In the Friendship graph Fn with n vertices, n 3-cycles
share exactly one center vertex v. For the 4n-snowflake graphs, instead of 3-cycles, we glue n 4-
cycles to one center vertex. We name it the 4n-snowflake graph. We describe certain properties of
such graphs, provide recursive and explicit formulas for the interlace polynomials, and give some
properties of the polynomials such as special values and patterns for certain coefficients.

Defining the pnterlace Polynomial
The interlace polynomial of a given simple graph G is recursively defined by Arratia, Bollobás,

and Sorkin in [3]. First, the interlace polynomial of the empty graph En with n vertices is defined
to be xn. For any non-empty undirected graph G, we first select one edge ab from G, where a
and b are two adjacent vertices of G. We consider three special neighborhoods related to a and b:
Va = N(a) \ (N(b) ∪ {b}) , Vb = N(b) \ (N(a) ∪ {a}) , and Va,b = N(a) ∩ N(b). A toggling
process on the edge ab is applied to G to create a “pivot” of G based on the neighborhoods for the
two end vertices of a and b. This process creates a new graph Gab such that G and Gab have the
same vertex set and for every pair of vertices u, v belonging to different neighborhoods Va, Vb, Vab

shown above, uv is an edge of Gab if and only if uv is not an edge of G. The resulting graph Gab

is called the pivot of G at ab. The interlace polynomial of a graph G is defined recursively by
applying the pivot process.

Definition 1 (Interlace Polynomial). [3] Let G be any undirected graph with n vertices and ab be
an edge of G. The interlace polynomial q(G, x) of G is defined by

q(G, x) =

{
xn, if E(G) = ∅,
q(G− a, x) + q(Gab − b, x), if ab ∈ E(G).

Figure 1. Toggling a graph on an edge ab

Arratia, Bollobás, and Sorkin in [3] showed that the interlace polynomial is well-defined, that
is, it is independent on the choice of the edge.
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Existing results
Let n be a positive integer. Below we summarize known results of the interlace polynomials of

several popular graphs such as cycles, paths, stars, complete graphs, and bipartite complete graphs.

Theorem 2. [3, 2, 12] The interlace polynomials of Pn, Cn, Sn, Kn, and Km,n are given below:

1. Let Pn be the path with n edges. Then q(P0, x) = x, q(P1, x) = 2x, q(P2, x) = x2+2x, and
q(P3, x) = 3x2 + 2x. For n ≥ 4,

q(Pn, x) = q(Pn−1, x) + xq(Pn−2, x).

2. Let Cn be the cycle with n vertices (n ≥ 3). Then q(C3, x) = 4x, q(C4, x) = 3x2 + 2x, and
for n ≥ 5,

q(Cn, x) = q(Cn−2, x) + q(Pn−2, x) + q(Cn−4, x).

3. Let Sn be the star graph with n edges. Then q(S1, x) = 2, q(S2, x) = q(P2, x), and for
x ≥ 3,

q(Sn, x) = xn + xn−1 + · · ·+ x2 + 2x;

4. q(Kn, x) = 2n−1x, where Kn is the complete graph with n vertices;
5. The complete bipartite graph Km,n satisfies

q(Km,n, x) = (1 + x+ ...+ xm−1)(1 + x+ ...+ xn−1) + xm + xn − 1.

The interlace polynomial of a graph G may give some information about the graph G. Next we
list some existing results about the interlace polynomial which reflect properties of the underlying
graph.

Lemma 3. [3] Given the interlace polynomial q(G, x) of any undirected graph G. Denote the
degree of q(G, x) by deg(q(G, x)). Then

1. If G is connected, then q(G, 0) = 0. That is, the constant term of q(G, x) is 0;
2. The degree of the lowest-degree term of q(G, x) is k(G), the number of connected compo-

nents of G.
3. deg(q(G, x)) ≥ α(G), where α(G) is the independence number, i.e., the size of a maximum

independent set.
4. Let µ(G) denote the size of a maximum matching (maximum set of independent edges) in a

graph G. If G is a forest with n vertices, then deg(q(G, x)) = n− µ(G).

The 4n-Snowflake graphs and examples
In this research, we focus on a type of graph made by n 4-cycles, called 4n-snowflake graphs.

Refer to Figure 2. The formal definition is given below.

Definition 4. Let Qn be the graph by gluing n 4-cycles C4 at a common vertex (called the center
vertex) such that every two of the n 4-cycles share exactly one vertex, the center vertex. We call
Qn the 4n-snowflake graph.
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· · ·

Figure 2. The Graph Qn Made by n 4-Cycles (left) and Q4 (right)

The graph Qn is similar to the Friendship Graph Fn ([12]), which is the graph resulted by
gluing n 3-cycles, instead of n 4-cycles. Obviously, the graph Q1 = C4. In this paper, we study
the properties of the graph Qn and its interlace polynomial q(Qn, x). We give a useful recursive
formula for q(Qn, x) and use it to investigate certain special values, coefficients, the properties
of this polynomial. The adjacency matrix of Qn and related matrices are studied. The interlace
polynomial helps to describe the ranks of the matrices and some properties of the ground graph
Qn.

2. Interlace Polynomial q(Qn, x) and Its Properties

First we list some basic graph theory properties about the graph Qn. We skip the proof because
it is straightforward.

Lemma 5. Let n ≥ 1. Consider the graph Qn = (V (Qn), E(Qn)) defined before. Then

1. |V (Qn)| = 3n+ 1 and |E(Qn)| = 4n.
2. The degree sequence of Qn is 2n, 2, . . . , 2︸ ︷︷ ︸

3n

copies.

3. Qn has exactly one cut vertex, the center vertex of degree 2n.
4. The independence number of Qn is α(Qn) = 2n.

5. The size of a maximal matching of Qn is µ(Qn) = n+ 1.

Since Q1 = C4, the interlace polynomial q(Q1, x) = q(C4, x) = 3x2 + 2x. For n = 2, we
decompose the graph Q2 by two toggling processes. The graph Q2 and its pivot Qab

2 at the edge ab
are shown in Figure 3. By toggling at the edge ab, we decompose Q2 into the two graphs Q2 − a
and Qab

2 − b shown in Figure 4. Thus, we have

q(Q2, x) = q(Q2 − a, x) + q(P1, x)q(C4, x).

We further toggle the graph Q2 − a at the edge bu and then at the edge uc (see Figure 4). It
results in

q(Q2 − a, x) = x2q(P2, x) + q(C4, x) + xq(P2, x).
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Figure 3. (a) The Graph Q2; (b) Qab
2

By Theorem 2(1)(2), q(P1, x) = 2x, q(P2, x) = x2+2x, and q(C4, x) = 3x2+2x. Combining
these formulas,

q(Q2, x) = (2x+ 1)q(C4, x) + (x2 + x)q(P2, x)

= (2x+ 1)(3x2 + 2x) + (x2 + x)(x2 + 2x)

= x4 + 9x3 + 9x2 + 2x.

b

c

a

c
u

(a) (b)

Figure 4. (a) The Graph Q2 − a; (b) Qab
2 − b

Next, we give a recursive formula for the interlace polynomial of Qn for any positive integer
n > 1. The process is very similar as the pivot process for Q2.

Theorem 6. For any integer n > 1,

q(Qn, x) = (2x+ 1)q(Qn−1, x) + xn(x+ 1)(x+ 2)n−1.

Proof. We fix an edge ab of Qn. The graph Qn and the pivot Qab
n are show in Figure 5. We perform

a similar toggling process on ab as shown for the graph Q2:

1. Toggling Qn at ab to obtain two graphs Qn − a and Qab
n − b (refer to Figure 6). Obviously,

Qab
n − b = P1∪̇Qn−1, the disjoint union of the path P1 and Qn−1. Thus q(Qab

n − b, x) =
2xq(Qn−1, x).

2. Toggling the graph Qn − a at the edge bu which decomposes the graph into (Qn − a) − b
and the disjoint union of the empty graph E2 with n− 1 copies of P2 (Figure 7). Thus,

q(Qn − a, x) = q((Qn − a)− b, x) + x2q(P2, x)
n−1.

3. Similarly, toggling the graph (Qn − a)− b at the edge cu, we obtain the graph Qn−1 and the
disjoint union of E2 with n− 1 copies of P2.
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The above procedure produces the recursive relation:

q(Qn−1 − a, x) = q(Qn−1, x) + xq(P2, x)
n−1 + x2q(P2, x)

n−1.

Since P2 = x2 + 2x by Theorem 2, we obtain

q(Qn, x) = (2x+ 1)q(Qn−1, x) + x(x+ 1)(q(P2, x))
n−1

= (2x+ 1)q(Qn−1, x) + xn(x+ 1)(x+ 2)n−1.

b

a

c

a

c

u

b

u...
...

(a) (b)

Figure 5. (a) The Graph Qn; (b) Qab
n

b

c

a

c

u u...
...

(a) (b)

Figure 6. (a) The Graph Qn − a; (b) Qab
n − b = P1∪̇Qn−1

Theorem 6 enables us to recursively describe the interlace polynomials q(Qn, x) for all positive
integers n. Below we show those for n = 1, 2, 3, 4, 5, 6, 7, 8. One can see some interesting patterns
on the coefficients. They will be discussed later.

Example 1. 1. q(Q1, x) = q(C4, x) = 3x2 + 2x;
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c
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Figure 7. (a) (Qn − a)− b; (b) (Qn − a)bu − u = E2∪̇(n− 1)P2;

2. q(Q2, x) = x4 + 9x3 + 9x2 + 2x;
3. q(Q3, x) = x6 + 7x5 + 27x4 + 31x3 + 13x2 + 2x;
4. q(Q4, x) = x8 + 9x7 + 33x6 + 81x5 + 97x4 + 57x3 + 17x2 + 2x;
5. q(Q5, x) = x10 + 11x9 + 51x8 + 131x7 + 243x6 + 291x5 + 211x4 + 91x3 + 21x2 + 2x;
6. q(Q6, x) = x12 + 13x11 + 73x10 + 233x9 + 473x8 + 729x7 + 857x6 + 713x5 + 393x4 +

133x3 + 25x2 + 2x;
7. q(Q7, x) = x14+15x13+99x12+379x11+939x10+1611x9+2187x8+2507x7+2283x6+

1499x5 + 659x4 + 183x3 + 29x2 + 2x.

Using the iterative formula given in Theorem 6 we develop an explicit formula for q(Qn, x) at
the value x = 1.

Theorem 7. For any positive integer n, q(Qn, 1) = (2n+ 3) · 3n−1.

Proof. We prove the theorem by mathematical induction.
From Example 1, q(Q1, x) = 3x2 + 2x. So, q(Q1, 1) = 5 = (2 · 1 + 3) · 31−1 and the formula is
true for n = 1. For n > 1, we evaluate the recursive formula given in Theorem 6 at x = 1 which
gives q(Qn+1, 1) = 3q(Qn, 1) + 2 · 3n. By the induction hypothesis q(Qn, 1) = (2n+ 3) · 3n−1,

q(Qn+1, 1) = 3(2n+ 3) · 3n−1 + 2 · 3n = (2(n+ 1) + 3) · 3n.

Thus, the formula q(Qn, 1) is true for all positive integers.

3. Explicit Formula for q(Qn, x)

Theorem 7 gives an explicit formula for q(Qn, x) at x = 1. In this section, we develop an
explicit formula for q(Qn, x) for every x ̸= 1.

Theorem 8. For x ̸= 1 and n ≥ 1,

q(Qn, x) =
(x2 − 2x)(2x+ 1)n + xn+1(x+ 2)n

x− 1
.
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Proof. It is by mathematical induction again. For n = 1, the formula is true because by Example
1:

(x2 − 2x)(2x+ 1) + x2(x+ 2)

x− 1
=

x(3x+ 2)(x− 1)

x− 1
= 3x2 + 2x = q(Q1, x).

Apply the induction hypothesis and the recursive formula given in Theorem 6 again,

q(Qn+1, x) = (2x+ 1)q(Qn, x) + xn+1(x+ 1)(x+ 2)n

= (2x+ 1) · (x
2 − 2x)(2x+ 1)n + xn+1(x+ 2)n

x− 1
+ xn+1(x+ 1)(x+ 2)n

=
(x2 − 2x)(2x+ 1)n+1 + xn+2(x+ 2)n+1

x− 1
.

Many properties of q(Qn, x) can be developed from the above recursive formula and the ex-
plicit formula. It is known that some special values of the interlace polynomial can tell some-
thing about the underlying graph. The following proposition gives special values of q(Qn, x) at
x = 2,−1, and 2. Formulas for the degree of the polynomial Qn and some coefficients are given
as well.

Proposition 9. The interlace polynomial q(Qn, x) (n ≥ 1) satisfies the following:

1. deg(q(Qn, x)) = 2n and the leading coefficient of q(Qn, x) is 1 for n > 1.
2. The coefficient of the x-term is always 2 and the constant term is always 0. That is, q(Qn, 0)

= 0 and d
dx
q(Qn, x)|x=0 = 2;

3. q(Qn, 2) = 23n+1;
4. q(Qn,−1) = (−1)n+1;
5. q(Qn,−2) = 8(−3)n−1;
6. The parity of q(Qn, x) is the same as that of x, that is, q(Qn, x) is even if and only if x is

even.

Proof. From Theorem 6, for n > 1 we have

q(Qn, x) = (2x+ 1)q(Qn−1, x) + xn(x+ 1)(x+ 2)n−1. (1)

From Theorems 7 and 8, we have

q(Qn, x) =

{
(2n+ 3)3n−1, if x = 1,
(x2−2x)(2x+1)n+xn+1(x+2)n

x−1
, if x ̸= 1.

(2)

We use equations (1) and (2) to prove the assertions stated in Proposition 9.

1. We apply mathematical induction on the number k > 0 which is the number of copies of
C4 in Qk. Since Q1 = C4, q(Q1, x) = 3x2 + 2x. Hence deg(q(Q1, x)) = 2. Suppose
deg(q(Qk, x)) = 2k. We will prove the claim for Qk+1. From Equation (1),

q(Qk+1, x) = (2x+ 1)q(Qk, x) + xk+1(x+ 1)(x+ 2)k.
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Obviously, deg(xk+1(x + 1)(x + 2)k) = 2k + 2. By the induction hypothesis, deg((2x +
1)q(Qk, x)) = 2k + 1 and the leading term of q(Qk+1, x) is x2k+2. Hence, the degree
of the polynomial q(Qk+1, x) is 2k + 2 = 2(k + 1) with leading coefficient 1. Thus by
mathematical induction, the leading term of q(Qn, x) is x2n and deg(q(Qn, x)) = 2n for
every positive integer n;

2. Since q(Q1, x) = 3x2 + 2x, we see that the coefficient of the x-term is 2. Suppose that the
coefficient of the x-term in q(Qk, x) is 2. We will prove the claim for q(Qk+1, x). Refer to
Equation (1) again. Since the constant terms of q(Qk, x) is 0, the lowest degree term is 2x
in q(Qk+1, x). Thus, by the principle of mathematical induction, the x-term in q(Qn, x) has
coefficient 2 for all n ≥ 1.

3-5. The statements 3, 4, 5 can be shown by substituting 2,−1,−2 in the formula given in Theo-
rem 8.

6. By Theorem 7, it is true for n = 1. For n ̸= 1, note that in Equation (1), xn(x+1)(x+2)n−1

is even for all integers x. Then the parity of q(Qn+1, x) is the same as that of q(Qn, x).
However, q(Q1, x) is even if and only if x is even.

Next, we examine the coefficients of q(Qn, x). Since the degree of q(Qn, x) is 2n and the
constant is 0, we write

q(Qn, x) = an,(2n)x
2n + an,(2n−1)x

2n−1 + · · ·+ an,2x
2 + an,1x

=
2n∑
k=1

an,kx
k.

From the previous results, an,1 = 2, an,2n = 1. To obtain the other coefficients of q(Qn, x), we
introduce another function fn(x):

fn(x) = (x2 − 2x)(2x+ 1)n + xn+1(x+ 2)n.

By Theorem 8, for x ̸= 1, fn(x) = (x− 1)q(Qn, x). Assume the coefficient of xk for fn(x) is bn,k,
that is,

fn(x) =
2n+1∑
k=1

bn,kx
k = (x− 1)q(Qn, x).

We now describe the coefficients of fn(x).

Theorem 10. Let n ≥ 4 and k ≥ 1. Then

bn,1 = −2, bn,2 = 1− 4n, bn,(2n+1) = 1, bn,n+1 = 2n−1(n− 2),

bn,n+2 = 2n−1(n+ 2), and furthermore,

bn,k =


(
n+1
k−1

)
· 2k−2(5k−4n−9)

n+1
, if 3 ≤ k ≤ n,(

n
2n+1−k

)
· 22n+1−k, if n+ 3 ≤ k ≤ 2n.
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Proof. Assume n ≥ 4. By binomial expansion,

fn(x) = (x2 − 2x)(2x+ 1)n + xn+1(x+ 2)n

=
n∑

j=0

(
n

j

)
2jxj+2 −

n∑
j=0

(
n

j

)
2j+1xj+1 +

n∑
j=0

(
n

j

)
2n−jxn+j+1

=
n+1∑
k=2

[(
n

k − 2

)
2k−2 −

(
n

k − 1

)
2k
]
xk + 2nxn+2

+
2n+1∑
k=n+1

(
n

2n+ 1− k

)
22n+1−kxk − 2x

= x2n+1 +
2n∑

k=n+3

(
n

k − n− 1

)
· 22n+1−k · xk

+2n−1(n+ 2)xn+2 + 2n−1(n− 2)xn+1

+
n∑

k=3

(
n+ 1

k − 1

)
· 2

k−2(5k − 4n− 9)

n+ 1
xk + (1 + 4n)x2 − 2x.

Thus we obtain the expression for every coefficient bn,k as stated in the Theorem. Note that for
3 ≤ k ≤ n, it is straightforward to check that(

n

k − 2

)
2k−2 −

(
n

k − 1

)
2k =

(
n+ 1

k − 1

)
· 2

k−2(5k − 4n− 9)

n+ 1
.

The relationship between the coefficients of f(x) and q(Qn, x) is given by

Lemma 11. Let n, k be positive integers with k ≤ 2n.

(1) bn,1 = −an,1 = −2 and bn,2n+1 = an,2n = 1;

(2) If 2 ≤ k ≤ 2n, bn,k = an, k−1 − an,k.

(3) For any 1 ≤ k ≤ 2n, an,k = −
∑k

j=1 bn,j.

(4)
∑2n+1

j=1 bn,j = 0.

Proof. The claims (1) and (2) are directly from the formula fn(x) = (x − 1)q(Qn, x). From (2),
for 1 ≤ k ≤ 2n,

k∑
j=1

bn,j = −an,1 + (an,1 − an,2) + (an,2 − an,3) + · · ·+ (an,k−1 − an,k) = −an,k.

It proves (3). For (4), applying (1) and (3).

The above lemma and the Theorem 10 can help in developing the explicit formula for each
coefficient an,k of the polynomial q(Qn, x). Now we discuss these coefficients.
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Theorem 12. For n ≥ 1, q(Qn, x) can be expressed as

1.

q(Qn, x) = x2n −
2n−1∑
k=2

(
k∑

j=1

bn,j

)
xk + 2x.

2.

q(Qn, x) = x2n + 2x2n−1 +
2n−1∑
k=n

(
n

k − n

)
· k · 22n−k−1

n
· xk

+
2n−2∑
k=2

(2an−1, k−1 + an−1, k)x
k + 2x.

Proof. (1) is directly from Lemma 11(3). For (2), by Theorem 6,

q(Qn, x) = (2x+ 1)q(Qn−1, x) + xn(x+ 1)(x+ 2)n−1.

Recall that q(Qn−1, x) =
∑2n−2

k=1 an−1, kx
k and the leading coefficient is an−1, 2(n−1) = 1. The first

part of q(Qn−1, x) can be expressed as:

(2x+ 1)q(Qn−1, x) =
2n−2∑
k=1

2an−1, kx
k+1 +

2n−2∑
k=1

an−1, kx
k

= 2x2n−1 +
2n−2∑
k=2

(2an−1, k−1 + an−1, k)x
k + 2x.

By the binomial expansion formula, the second part of q(Qn−1, x) can be written as

xn(x+ 1)(x+ 2)n−1 = xn+1(x+ 2)n−1 + xn(x+ 2)n−1

=
n−1∑
j=0

(
n− 1

j

)
2n−j−1xn+j+1 +

n−1∑
j=0

(
n− 1

j

)
2n−j−1xn+j

= x2n +
n−1∑
j=1

[(
n− 1

j − 1

)
2n−j +

(
n− 1

j

)
2n−j−1

]
xn+j + 2n−1xn

= x2n +
n−1∑
j=1

(
n

j

)
n+ j

n
· 2n−j−1xn+j + 2n−1xn

= x2n +
2n−1∑
k=n

(
n

k − n

)
· k · 22n−k−1

n
· xk.

Combining all the above, we obtain the desired expression for q(Qn, x).

Applying Theorems 12 and 10, we can describe the coefficients an, k as follows:

175



www.ejgta.org

Interlace polynomials of 4n-snowflake graphs | J. Champanerkar and A. Li

Theorem 13. For any integer n ≥ 4,

1. The second leading coefficient of q(Qn, x) is an,(2n−1) = 2n+ 1.
2. The coefficient of the xn+1-term in q(Qn, x) is an. n+1 = 3n;
3. The coefficient of the xn-term is an, n = 3n + (n− 2)2n−1.

4. For 2 ≤ k ≤ n− 1, an, k = 2an−1, k−1 + an−1, k.
5. For n+ 1 ≤ k ≤ 2n− 2,

an, k = 2an−1, k−1 + an−1, k +

(
n

k − n

)
· k · 22n−k−1

n
.

Proof. Throughout the proof, we need apply Theorems 12,10, and Lemma 11.

1. The second leading coefficient is given by

an, 2n−1 = bn,(2n) + an,(2n) =

(
n

2n− n− 1

)
· 22n+1−2n + 1 = 2n+ 1.

2. By Lemma 11 and Theorem 10, an−1, n+1 = an−1, n − bn−1, n+1 = an−1, n − 2n−2(n + 1).
Then

an, n+1 =

(
n

1

)
n+ 1

n
· 2n−2 + 2an−1, n + an−1, n+1

= (n+ 1)2n−2 + 2an−1, n + an−1, n − bn−1, n+1

= (n+ 1)2n−2 + 3an−1, n − (n+ 1)2n−2 = 3an−1, n.

Example 1 shows that a3, 4 = 33 = 27. Then for any n ≥ 4,

an, n+1 = 3an−1, n = 32 · an−2, n−1 = · · · = 3n−3a3, 4 = 3n−3 · 33 = 3n.

3. Similarly as in the above proof, an, n = an, n+1 + bn, n+1. Applying the result from the above
part 4 and Theorem 10, we have an, n = 3n + (n− 2)2n−1.

4. (4) and (5) are straightforward. We skip the proof.

Corollary 14. For any integer n ≥ 4,

1. The third leading coefficient of q(Qn, x) is an, (2n−2) = 2n2 + 1;
2. Coefficients for x2 and x3 are respectively an,2 = 4n+ 1 and an,3 = 4n2 − 2n+ 1.

Proof. 1. By Lemma 11 and Theorem 10,

an, 2n−2 = bn,(2n−1) + an,(2n−1) =

(
n

n− 2

)
· 22 + (2n+ 1) = 2n2 + 1.
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2. The coefficients of x2 and x3 are obtained by the follow the relations:

an, 2 = an,1 − bn,2 = 2− (1− 4n) = 4n+ 1 and then

an, 3 = an, 2 − bn, 3 = 4n+ 1−
(
n+ 1

2

)
· 2(6− 4n)

n+ 1
= 4n2 − 2n+ 1.

We observe that the coefficient sequence (an,k)2nk=1 seems to be one mode with a maximal value
around in the middle (an,n) and all coefficients are odd except for the leading one. For example,

(a5,k)
k=10
k=1 = (2, 21, 91, 211, 291, 243, 131, 51, 11, 1).

We claim that the coefficient sequence is one mode, but the maximum does not necessarily occur
in the middle. Also, the leading coefficient is the only even coefficient. Consider the sequence
(an,k)

2n
k=1, representing the coefficients of the polynomial q(Qn, x).

Proposition 15. Consider the sequence (an,k)
2n
k=1 with n ≥ 7. Denote rn = ⌊4n+9

5
⌋.

1. (an,k)
2n
k=1 is increasing from k = 1 to k = rn and then decreasing from k = Rn to k = 2n.

That is,

2 = an,1 < · · · < an,n−1 < an, rn > an,n+1 > · · · > an,2n = 1.

2. max(an,k)
2n
k=1 = an,n ⇐⇒ n ∈ {7, 8, 9}.

3. an,1 = 2 and an,k is odd for all k with 2 ≤ k ≤ 2n.

Proof. (1) By Theorem 13 and Corollary 14,

an,2n = 1 < an, 2n−1 = 2n+ 1 < an, 2n−2 = 2n2 + 1,

an, n+1 = 3n < an, n = 3n + (n− 2)2n−1, and
an,3 = 4n2 − 2n+ 1 > an,2 = 4n+ 1 > an,1 = 2.

It remains to show that an, k < an, k−1 for n+1 ≤ k ≤ 2n−3 and an, k > an, k−1 for 3 ≤ k ≤ n−1.
By Lemma 11(1), an, k = an, k−1 − bn, k for 2 ≤ k ≤ 2n and by Theorem 10, bn,k > 0 for
n+ 1 ≤ k ≤ 2n+ 1. Thus an, k < an, k−1 is true for n+ 1 ≤ k ≤ 2n− 2.

For 3 ≤ k ≤ n, since an, k = an, k−1 − bn,k, an, k ≥ an, k−1 if and only if bn,k ≤ 0. While, by
Theorem 10,

bn,k ≤ 0 ⇐⇒ 5x− 4n− 9 ≤ 0 ⇐⇒ k ≤ 4n+ 9

5
⇐⇒ k ≤ rn.

Thus, an, 3 ≤ an, 4 ≤ · · · ≤ an, rn and an, rn ≥ an, k+1 · · · ≥ an, n.
For (2), note that n ≤ 4n+9

5
< n + 1 ⇐⇒ 5n ≤ 4n + 9 < 5n + 5 ⇐⇒ n ≤ 9 and n > 4.

Thus, if and only if n = 7, 8, or 9, the peak value occurs at the middle.
(3) is immediately from Theorem 13(4).
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4. The Rank of a Related Matrix

In graph theory, the adjacency matrix of a given graph is used to describe the adjacency of the
vertices and some connectivity properties. In particular, certain operations on the adjacency matrix
help in counting the numbers of paths and cycles in the graph. In [5], Balister, Bollóbas, Cutler,
and Peabody gave an explicit formula for the interlace polynomial of a graph at x = −1 involving
the rank of the adjacency matrix plus the identity matrix modulo 2.

Theorem 16. [5] Let A be the adjacency matrix of a graph G with m vertices and let r =
rank(A+ I) modulo 2, where I is the m×m identity matrix. Then

q(G,−1) = (−1)m(−2)m−r.

Recall that the graph Qn has 3n+1 vertices. Denote the adjacency matrix of Qn by A3n+1 and
let B3n+1 = A3n+1 + I3n+1, where I3n+1 is the (3n+1)× (3n+1) identity matrix. In this section,
we examine the adjacency matrix A3n+1 and B3n+1. We apply the above result to determine the
rank of the adjacency matrix B3n+1.

Example 2. Consider the graph Q1 = C4. The adjacency matrix A4 of Q1 and B4 = A4 + I are
shown below:

A4 =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 and B4 = A4 + I =


1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1

 .

one can easily check that modulo 2, det(B4) = 1 ̸= 0 =⇒ rank(B4) = 4,, that is, B4 is of full
rank modulo 2.

Refer to the graph of Qn with vertices labeled as follows:

v3

v2

v1

v0

v4

v5

v6

v3n

v3n−1

v3n−2

...

Figure 8. The Graph Qn with labeled vertices

Assume the ith row of the adjacency matrix A3n+1 represents the vertex vi (i = 0, 1, . . . , 3n+
1). The 1 × 3 matrix C = [1, 0, 1] occurs repeatedly as a sub-matrix of A3n+1. Then the first row
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of A3n+1, representing v0, is [1, C, C, . . . , C] with n copies of C. For 1 ≤ k ≤ n, the adjacency
matrix for the induced subgraph by v3k−2, v3k−2, v3k is given by

MA =

 0 1 0
1 0 1
0 1 0

 and MB = MA + I3 =

 1 1 0
1 1 1
0 1 1

 ,

where I3 is the 3× 3 identity matrix. We now give the structures of the matrices A3n+1 and B3n+1:

Lemma 17. Let n be any positive integer and A3n+1, B3n+1, C, MA, MB be as above. Then the
two (3n+ 1)× (3n+ 1) matrices A3n+1 and B3n+1 are structured below:

A3n+1 =


1 C · · · C
CT MA

... . . .
CT MA

 and B3n+1 =


1 C · · · C
CT MB

... . . .
CT MB

 ,

where the empty places are occupied by 0’s.

As an application of the result for interlace polynomials stated in Theorem 16, we claim that
for every positive integer n, the matrix B3n+1 is of full rank modulo 2.

Theorem 18. For any positive integer n, the matrix B3n+1 is of full rank modulo 2. That is,
rank(B3n+1) = 3n+ 1 modulo 2.

Proof. Let rn be the rank of B3n+1 modulo 2. By Proposition 13, q(Qn,−1) = (−1)n+1. But By
Theorem 16, the value q(Qn,−1) = (−1)3n+1(−2)(3n+1)−rn modulo 2. Thus

(−1)3n+1(−2)(3n+1)−rn = (−1)n+1 =⇒ (−2)(3n+1)−rn = 1 =⇒

rn = 3n+ 1. Therefore, B3n+1 is of full rank (mod 2).

Of course, the above result can be achieved by the traditional linear algebra method through
elementary row operations. But the process is more complicated. We sketch the process briefly.

Refer to Example 2. Since the matrix A4 is of full rank, it is row equivalent to I4. By applying
the same row reduction that reduces A4 to I4, we obtain the matrix below which is row equivalent
(∼) to B3n+1:

B3n+1 ∼



1 C C · · · · · · C
0 I3 ∗ · · · · · · ∗
CT 0 MB ∗ · · · ∗

...
... . . . . . . ...

CT 0
. . . MB ∗

CT 0 · · · · · · 0 MB


(3n+1)×(3n+1)

= B′
3n+1,
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Using the number 1 in the (1,1) position of B′
3n+1, we can perform elementary row operations to

make the resulting matrix having 0 in the (i, 1) positions for all i > 1. Similarly, by performing
corresponding elementary column operations, we can reduce the matrix into one with 0 in all of
the (1, j) positions. That is, by multiplying an invertible matrix A from left and some invertible
matrix A′ from right, we obtain

AB3n+1A
′ =



1 0 0 · · · · · · 0
0 I3 ∗ · · · · · · ∗
0 0 MB ∗ · · · ∗
...

... . . . . . . ...

0 0
. . . MB ∗

0 0 · · · · · · 0 MB


(3n+1)×(3n+1)

= B′′
3n+1.

Since MB a 3 × 3 matrix of full tank, the rank of B′′
3n+1 is 3n + 1 and so does that of B3n+1.

Certainly the method using the interlace polynomial of Qn to determine the rank of B3n+1 is easier
(Theorem 18). It is nice to see an application of a graph theory result in solving a linear algebra
problem.
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