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Abstract

A broadcast on a graph G = (V, E) is a function f : V −→ {0, . . . , diam(G)} such that f(v) ≤
eG(v) for every vertex v ∈ V , where diam(G) denotes the diameter of G and eG(v) the eccentricity
of v in G. Such a broadcast f is minimal if there does not exist any broadcast g ̸= f on G such
that g(v) ≤ f(v) for all v ∈ V . The upper broadcast domination number of G is the maximum
value of

∑
v∈V f(v) among all minimal broadcasts f on G for which each vertex of G is at distance

at most f(v) from some vertex v with f(v) ≥ 1. In this paper, we study the minimal dominating
broadcasts of caterpillars and give the exact value of the upper broadcast domination number of
caterpillars with no trunks.
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1. Introduction

Let G = (V, E) be a graph of order n = |V | and size m = |E|. The open neighborhood of a
vertex v ∈ V is the set NG(v) = {u : uv ∈ E} of vertices adjacent to v. Each vertex u ∈ NG(v)
is a neighbor of v. The closed neighborhood of v is the set NG[v] = NG(v) ∪ {v}. The open
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neighborhood of a set S ⊆ V of vertices is NG(S) = ∪v∈SNG(v), while the closed neighborhood
of S is the set NG[S] = NG(S) ∪ S. The degree of a vertex v in G, denoted degG(v), is the size of
the open neighborhood of v.

A (u, v)-geodesic in a graph G is a shortest path joining u and v. We denote by dG(u, v) the
distance between the vertices u and v in G, that is, the length of a (u, v)-geodesic in G. A vertex
or an edge of G lies between two vertices u and v if that vertex or edge is on some (u, v)-geodesic.
The eccentricity eG(v) of a vertex v in G is the maximum distance from v to any other vertex of G.
The radius rad(G) and the diameter diam(G) of a graph G are the minimum and the maximum
eccentricity among the vertices of G, respectively. A diametrical path is a (u, v)-geodesic of
length diam(G), and a peripheral vertex, is a vertex v such that eG(v) = diam(G).

A function f : V −→ {0, . . . , diam(G)} is a broadcast of G if f(v) ≤ eG(v) for every vertex
v ∈ V . The value f(v) is called the f -value of v. An f -broadcast vertex (or an f -dominating
vertex) is a vertex v for which f(v) > 0. The set of all f -broadcast vertices is denoted V +

f (G).
If v ∈ V +

f (G) is an f -broadcast vertex, u ∈ V and dG(u, v) ≤ f(v), then the vertex u hears
a broadcast from v and v broadcasts to (or f -dominates) u. Note that, in particular, each vertex
v ∈ V +

f hears a broadcast from itself and f -dominates itself.
The f -broadcast neighborhood of a vertex v ∈ V +

f is the set of vertices that hear v, that is

Nf (v) = {u ∈ V : dG(u, v) ≤ f(v)}

and the f -broadcast neighborhood of f is the set

Nf (V +
f ) = ∪v∈V +Nf (v).

The f -broadcast boundary of a vertex v ∈ V +
f is the set

Bf (v) = {u ∈ V : dG(u, v) = f(v)}.

The set of f -broadcast vertices that a vertex u ∈ V can hear is the set

Hf (u) = {v ∈ V +
f : dG(u, v) ≤ f(v)}.

For a vertex v ∈ V +
f , the private f -neighborhood of v is the set of vertices that hear only v, that is

PNf (v) = {u ∈ V : Hf (u) = {v}},

and every vertex u ∈ PNf (v) is a private f -neighbor of v. Moreover, the private f -border of v is
either the set of private f -neighbors of v that are at distance f(v) from v, or the singleton {v} if
f(v) = 1 and PNf (v) = {v}, that is

PBf (v) =
{

{v}, if f(v) = 1 and PNf (v) = {v},{
u ∈ PNf (v) : dG(u, v) = f(v)

}
, otherwise.

Every vertex in PBf (v) is a bordering private f -neighbor of v. In particular, if f(v) = 1 and
PNf (v) = {v}, then v is its own bordering private f -neighbor.
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The cost of a broadcast f on a graph G is

σ(f) =
∑

v∈V +
f

f(v).

A broadcast f on G is a dominating broadcast if every vertex in G is f -dominated by some ver-
tex in V +

f , and f is a minimal dominating broadcast if there does not exist a dominating broadcast
g ̸= f on G such that g(u) ≤ f(u) for all u ∈ V .

The broadcast domination number of G is

γb(G) = min{σ(f) : f is a dominating broadcast on G},

and the upper broadcast domination number of G is

Γb(G) = max{σ(f) : f is a minimal dominating broadcast on G}.

A minimal dominating broadcast f on a graph G such that σ(f) = Γb(G) (resp. σ(f) = γb(G))
is a Γb-broadcast (resp. γb-broadcast). If f is a minimal dominating broadcast on G such that
f(v) = 1 for each v ∈ V +, then V + is a minimal dominating set in G, and the minimum (resp.
maximum) cost of such a broadcast is the domination number γ(G) (resp. upper domination
number Γ(G)) of G.

The function fu : V −→ {0, . . . , diam(G)}, defined by fu(u) = e(u) and fu(v) = 0 for every
v ̸= u, is a minimal dominating broadcast with cost e(u). Such a broadcast fu is a radius broadcast
if e(u) = rad(G) and fu is a diameter broadcast if e(u) = diam(G). We then immediately have
the chain of inequalities

Observation 1 (Dunbar, Erwin, Haynes, Hedetniemi and Hedetniemi [6]). For any graph G,

γb(G) ≤ min{γ(G), rad(G)} ≤ max{Γ(G), diam(G)} ≤ Γb(G). (1)

A graph G is radial if γb(G) = rad(G) and is diametrical if Γb(G) = diam(G).

Broadcast domination has been discussed first in [7, 8]. Many of these results appeared later
in [6] and since then several works followed (see the references of [5] for details). Regarding the
upper broadcast domination, the exact value of the parameter Γb is given for grids graphs [4], paths
and cycles [5] and some very specific classes of trees [12]. In [9], the determination of sufficient
conditions for a tree to be non-diametrical as well as the characterization of diametrical caterpillars
are given. Other studies of upper broadcast domination such as the relationships between Γb and
other parameters of broadcast domination can be found in [1, 6, 13]. For a survey of broadcast in
graphs, see the chapter by Henning, MacGillivray and Yang [10].

In this paper, we are interested in the upper broadcast domination number of caterpillars. De-
termining this invariant appears to be a difficult problem in general, and that is why we restrict to
caterpillars with no trunks.

Recall that a caterpillar CT of length n ≥ 0 is a tree such that removing all leaves gives a path
of length n, called the spine. A non-leaf vertex is called a spine vertex and, more precisely, a stem
if it is adjacent to a leaf and a trunk otherwise. A leaf adjacent to a stem v is a pendent neighbor
of v.
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2. Preliminaries

We now review some results on the upper broadcast domination. The characterization of min-
imal dominating broadcasts was first given by Erwin in [8], and then restated in terms of private
borders1 by Mynhardt and Roux in [12].

Proposition 2.1 (Erwin [8], restated in [12]). A dominating broadcast f is a minimal dominating
broadcast if and only if PBf (v) ̸= ∅ for each v ∈ V +

f .

Dunbar et al. proved in [6] the following bound on the upper broadcast domination number of
graphs.

Theorem 2.1 (Dunbar et al. [6]). For every graph G with size m, Γb(G) ≤ m. Moreover, Γb(G) =
m if and only if G is a nontrivial star or path.

This upper bound was later improved in [4].

Theorem 2.2 (Bouchemakh and Fergani [4]). If G is a graph of order n with minimum degree
δ(G), then Γb(G) ≤ n − δ(G), and this bound is sharp.

In all what follows, we will denote by Pn = v0v1 . . . vn, n ≥ 1, the path of length n. Moreover,
we assume that subscripts of vertices of v0v1 . . . vn of Pn are “ordered“ from left to right.
Let T be a tree with diameter d and a diametrical path Pd = v0v1 . . . vd. For each i ∈ {0, . . . , d},
let Ti be the subtree of T induced by all vertices that are connected to vi by paths that are internally
disjoint from P .

In the following lemmas, Gemmrich and Mynhardt proved that there exist some sufficient
conditions for a tree to be non-diametrical.

Lemma 2.1 (Gemmrich and Mynhardt [9]). Let T be a tree with diameter d ≥ 3 and diametrical
path Pd = v0v1 . . . vd. If there exists an i ∈ {1, . . . , d−2} such that each of vi and vi+1 is adjacent
to a leaf other than v0 (if i = 1) or vd (if i + 1 = d − 1), then Γb(T ) > diam(T ).

Lemma 2.2 (Gemmrich and Mynhardt [9]). If there exists an i ∈ {2, . . . , d − 2} such that Ti has
an independent set of cardinality 3 that dominates but does not contain vi,
or if max{degT (v1), degT (vd−1)} = 4, then Γb(T ) > diam(T ).

Lemma 2.3 (Gemmrich and Mynhardt [9]). If there exists an i ∈ {2, . . . , d − 2} such that Ti has
an independent set of cardinality 2 that does not dominate vi, then Γb(T ) > diam(T ).

Lemma 2.4 (Gemmrich and Mynhardt [9]). If diam(Ti) = 4 for some i, or diam(Ti) = 3 and vi

is a peripheral vertex of Ti, then Γb(T ) > diam(T ).

1In their paper, Mynhardt and Roux used a slightly different definition of the set PBf (v) when f(v) = 1 and
Nf (v) ̸= {v}, by including the vertex v in PBf (v). Moreover, they called the set PBf (v) the private f -boundary
of v. We here use the term private f -border to avoid confusion between these two definitions. However, it is easy to
check that the private f -boundary of v is empty if and only if the private f -border of v is empty, so that Proposition 2.1
is still valid in our setting.
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For the particular case of caterpillars, Gemmrich and Mynhardt gave another sufficient condi-
tion for a caterpillar to be non-diametrical. Before stating the result, we recall that a strong stem is
a stem that is adjacent to at least two leaves.

Lemma 2.5 (Gemmrich and Mynhardt [9]). Let T be a caterpillar with diametrical path Pd =
v0v1 . . . , vd. If two vertices vi and vi+2k are strong stems, for some i ≥ 1 and some integer k such
that i + 2k ≤ d − 1, and vi+2r is a stem for each r ∈ {1, . . . , k − 1}, then Γb(T ) > d.

If T is a diametrical caterpillar, then T does not satisfy the hypothesis of any of Lemmas 2.1 -
2.5. The converse remains true and the negation of these hypotheses, applied to caterpillars, gives
the characterization of diametrical caterpillars stated in the following theorem

Theorem 2.3 (Gemmrich and Mynhardt [9]). A caterpillar T with diametrical path Pd = v0v1 . . . , vd

is diametrical if and only if

1. each vi, i ∈ {1, . . . , d − 1}, is adjacent to at most two leaves,

2. for any i ∈ {1, . . . , d − 2}, min{degT (vi), degT (vi+1)} = 2,

3. whenever vi and vj , i < j, are strong stems, there exists a k, i < k < j, such that degT (vk) =
degT (vk+1) = 2.

Let f be any minimal dominating broadcast on a graph G. In view of Proposition 2.1, each v ∈ V +

has a bordering private f -neighbor (denoted vp) such that either vp is at distance f(v) from v, or
vp = v if f(v) = 1 and PNf (v) = {v}. Dunbar et al. defined in [6] a function ϵ on V + as follows:
ϵ(v) = {ev}, where ev is any edge incident with v, if PBf (v) = {v}, while ϵ(v) is the set of all
edges that lie between v and vp if vp is at distance f(v) from v.

In the proof of Theorem 2.1, Dunbar et al. showed that the sets ϵ(v) are pairwise disjoint.

Lemma 2.6 (Dunbar, Erwin, Haynes, Hedetniemi and Hedetniemi [6], proof of Theorem 5). For
any two f -broadcast vertices u and v, we have ϵ(u) ∩ ϵ(v) = ∅.

Let f be a Γb-broadcast on a caterpillar G with size m. For every f -broadcast vertex v, we
denote by P f

v , according to presented case, a (v, vp)-geodesic path if vp is at distance f(v) from v
or a path with one edge ev if PBf (v) = {v}. We set Pf = {P f

v : v ∈ V +
f (G)}. For brevity, we

also denote by Ef and Ef the sets ∪v∈V +
f

E(P f
v ) and E(G)\Ef , respectively. From Theorem 2.1

and Lemma 2.6, we get
Γb(G) =

∑
v∈V +

f

f(v) = |Ef | ≤ m.

Since Γb(G) = m − |Ef |, it suffices to find a lower bound on |Ef | to get an upper bound on Γb(G).
Thereafter, we will frequently use this idea to reach a conclusion.

Let CT be a caterpillar. We will always draw caterpillars with the spine on a horizontal line,
so that we can say that a spine vertex xi is to the left (resp. to the right) of a spine vertex xj of
CT , and that a pendent neighbor of xi is to the left (resp. to the right) of a pendent neighbor of xj
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Figure 1: CT (1, 0, 0, 3, 2, 2, 1, 0, 1).

whenever the spine vertex xi is to the left (resp. to the right) of the spine vertex xj , that is i < j
(resp. i > j).

Note that a caterpillar of length 0 is a star K1,k for some k ≥ 1, and the upper broadcast domi-
nation number of a star is determined by Theorem 2.1. Therefore, in the rest of the paper, we will
only consider caterpillars with positive length.

Let N⋆ = N \ {0}. Following the terminology of [2] and [14], we denote by CT (ℓ0, . . . , ℓn),
n ≥ 1, with (ℓ0, . . . , ℓn) ∈ N⋆ × Nn−1 × N⋆, the caterpillar of length n ≥ 1 with spine path
x0 . . . xn such that each spine vertex xi has ℓi pendent neighbors. For every i such that ℓi > 0,
i = 0, . . . , n, we denote by L(xi) = {y1

i , . . . , yℓi
i } the set of pendent neighbors of xi. The caterpil-

lar CT (1, 0, 0, 3, 2, 2, 1, 0, 1) is depicted in Figure 1.

We denote by CT [i, j], the sub-caterpillar of CT induced by vertices xi, . . . , xj and their pen-
dent neighbors if 0 ≤ i ≤ j ≤ n, and CT [i, j] = ∅ if i > j.

We say that a pattern of length p + 1, Π = π0 . . . πp, p ≥ 0, πi ∈ N for every i, 0 ≤ i ≤ p,
occurs in a caterpillar CT = CT (ℓ0, . . . , ℓn) if there exists an index i0, 0 ≤ i0 ≤ n − p, such that
CT [i0, i0 + p] = CT (π0, . . . , πp), that is, ℓi0+j = πj for every j, 0 ≤ j ≤ p. We will also say that
the caterpillar CT contains the pattern Π and that the sub-caterpillar CT (ℓi0 , . . . , ℓi0+p) of CT is
an occurrence of the pattern Π.
We can extend the notation for patterns by setting π+

i to mean a spine vertex having at least πi

pendent neighbors.
We first prove a property of optimal dominating broadcasts of caterpillars.

Lemma 2.7. For any caterpillar CT , there exists a Γb-broadcast such that each broadcast vertex
is either a leaf or a trunk.

Proof. Let f be a Γb-broadcast of CT . Assume that there exists an f -broadcast vertex xi ∈
V +

f , i ∈ {1, . . . , n} such that xi is a stem. If f(xi) > 1, then the minimality of the dominating
broadcast f implies that xi has a bordering private f -neighbor s such that d(xi, s) = f(xi) and
f(yj

i ) = 0 for every j, j = 1, . . . , ℓi. Consider the mapping g obtained from f by replacing
the f -values of xi and y1

i by g(xi) = 0 and g(y1
i ) = f(xi) + 1. The mapping g is a minimal

dominating broadcast with cost σ(g) = σ(f) + 1 > Γb(CT ), contradicting the optimality of f .
Hence, f(xi) = 1. Moreover, PBf (xi) contains no trunk, for otherwise the mapping h obtained
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from f by replacing the f -values of xi and y1
i by h(xi) = 0 and h(y1

i ) = 2 would be a minimal
dominating broadcast with cost σ(g) = σ(f) + 1 > Γb(CT ) + 1, contradicting the optimality
of f . Now, the mapping k obtained from f by replacing the f -values of xi and y1

i , . . . , yℓi
i by

k(xi) = 0 and k(yj
i ) = 1 for every j, j = 1, . . . , ℓi, is a minimal dominating broadcast with cost

σ(k) = σ(f) + ℓi − 1. The optimality of f then implies ℓi = 1, so that we have σ(k) = σ(f).
We can repeat the previous transformation on f until we get a Γb-broadcast where each broadcast
vertex is not a stem vertex. This completes the proof.

3. Caterpillars with no trunks

Let CT = CT (ℓ0, . . . , ℓn) be a caterpillar of length n ≥ 1. For any minimal dominating
broadcast f on CT , we assume that f(y1

i ) ≥ · · · ≥ f(yℓi
i ) for every i = 0, . . . , n.

We say that CT is with no trunks if ℓi ≥ 1 for every i, i = 0, . . . , n.
In what follows, the unitary dominating broadcast is the dominating broadcast µ defined by

µ(u) = 1 if u is a leaf and µ(u) = 0 otherwise. Since each stem is µ-dominated by one leaf and
PBµ(v) ̸= ∅ for each v ∈ V +

µ , then µ is a minimal dominating broadcast of cost σ(u) = ∑n
i=0 ℓi.

In order to simplify the reading of this paper, the proofs of the lemmas which are quite technical
are given in the appendix.

Lemma 3.1. If CT is a caterpillar with no trunks, of length n ≥ 1 and f is a Γb-broadcast on CT ,
then, every f -broadcast vertex v is a leaf and the private f -neighbor of v is also a leaf if f(v) ≥ 2.

Proof. By the proof of Lemma 2.7, we already know that every f -broadcast vertex is a leaf. As-
sume to the contrary that there exists some stem xi which is a private f -neighbor of some f -
broadcast vertex v. Since f(v) ≥ 2, then we necessarily have, v ̸= yj

i , and more than that,
yj

i ̸∈ V +
f for every j = 1, . . . , ℓi, so that yj

i cannot be f -dominated, a contradiction. This com-
pletes the proof.

We first determine the upper broadcast domination number of all caterpillars with no trunks of
length at most 2.

Lemma 3.2. If CT is a caterpillar with no trunks, of length n ≤ 2 and size m, then

Γb(CT ) =


m, if n = 1 and m = 3,
m − 1, if n = 1 and m ≥ 4, or n = 2 and ℓ0 = ℓ1 = 1,
m − 2, otherwise.

Lemma 3.3. If CT be a caterpillar with no trunks, of length n ≥ 1, then Γb(CT ) ≥
⌊

3(n+1)
2

⌋
.

Corollary 3.1. If CT = CT (ℓ0, . . . , ℓn) is a caterpillar with no trunks, of length n ≥ 1, then CT
is diametrical if and only if one of the following conditions is satisfied :

1. n = 1, ℓ0 + ℓ1 ∈ {2, 3}.

2. n = 2, ℓ0 = ℓ2 = 1 and ℓ1 ∈ {1, 2}.
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Proof. Let CT = CT (ℓ0, . . . , ℓn) be a caterpillar with no trunks of length n ≥ 1, and size m.
We know by Lemma 3.3 that Γb(CT ) ≥

⌊
3(n+1)

2

⌋
. Since diam(CT ) = n + 2, we deduce that

Γb(CT ) ≥
⌊

3(n+1)
2

⌋
> diam(CT ), whenever n ≥ 3.

If n = 1, then diam(CT ) = 3. From Lemma 3.2, we have Γb(CT ) = m if m = 3, and Γb(CT ) =
m − 1 if m ≥ 4. It follows, Γb(CT ) = diam(CT ) if and only if, (ℓ0, ℓ1) ∈ {(1, 1), (1, 2), (2, 1)}.
If n = 2, then diam(CT ) = 4, and from the same lemma, we also have Γb(CT ) = m − 1, if
ℓ0 = ℓ1 = 1 (or ℓ1 = ℓ2 = 1, by symmetry), and Γb(CT ) = m − 2 otherwise. Hence, we
get Γb(CT ) = diam(CT ) if and only if (ℓ0, ℓ1, ℓ2) ∈ {(1, 1, 1), (1, 2, 1)}. This completes the
proof.

Thanks to Corollary 3.1, we can only consider in the rest of the paper caterpillars CT with
length n ≥ 3. Hence, each such caterpillar CT is not diametrical and each Γb-broadcast f on CT
satisfies |V +

f | ≥ 2.

Proposition 3.1. If CT is a caterpillar of length n ≥ 3, with ℓi ≥ 2 for every i = 0, . . . , n, then
Γb(CT ) = ∑n

i=0 ℓi

Proof. Since the cost of the (minimal) unitary dominating broadcast is
∑n

i=0 ℓi, we get Γb(CT ) ≥∑n
i=0 ℓi. Conversely, let f be a Γb-broadcast on CT , such that each f -broadcast vertex is a leaf

(such a broadcast exists by Lemma 2.7). We first prove that |Ef | ≥ n. For that, consider any
edge xixi+1, i ∈ {0, . . . , n − 1}, of the spine Pn = x0x1 . . . xn. If xixi+1 is an edge of some
P f

v ∈ Pf , then by Lemma 3.1, vp is also a leaf non-adjacent to xi. Thus, the set Ef contains
ℓi ≥ 2 or ℓi − 1 ≥ 1 edges incidents to xi depending on whether xi−1xi is an edge of P f

v , or not.
If none of the paths of Pf has xixi+1 as an edge, then xixi+1 ∈ Ef . It follows, |Ef | ≥ n, and thus
Γb(CT ) = |E(CT )| − |Ef | ≤ |E(CT )| − n = ∑n

i=0 ℓi. This completes the proof.

Lemma 3.4. If CT is a caterpillar of length n ≥ 3, with ℓi = 1 for every i = 0, . . . , n, and f is a
Γb-broadcast on CT , then f(u) ̸= 2 for every f -broadcast vertex u.

Proof. Let f be a Γb-broadcast on CT . Assume, to the contrary, that f(u) = 2 for some u ∈ V +
f .

By Lemma 3.1, u and its private neighbor up are leaves. Since f(u) = 2, then u and up are adjacent
to the same stem, a contradiction with the type of caterpillar, where ℓi = 1 for every i = 0, . . . , n.
This completes the proof.

Theorem 3.1. If CT is a caterpillar of length n ≥ 3, with ℓi = 1 for every i = 0, . . . , n, then
Γb(CT ) =

⌊
3(n+1)

2

⌋
.

Proof. By Lemma 3.3, we already have Γb(CT ) ≥
⌊

3(n+1)
2

⌋
. For the converse, let f be a Γb-

broadcast on CT , such that each f -broadcast vertex is a leaf with an f -value different from 2.
Thanks to Lemma 2.7 and Lemma 3.4, such a broadcast exists. Let V +

f = {v1, . . . , vs} be the set
of f -broadcast vertices, ordered so that, for every i, j = 0, . . . , n − 1, the stem adjacent to vi, in
the spine Pn = x0x1 . . . xn, lies left to the stem adjacent to vj whenever i < j, and let vk ∈ V +

f ,
k = 1, . . . , s. Since vk is a leaf, we have vk = y1

i for some i ∈ {0, . . . , n}. In what follows, we
denote by ej the pendent edge y1

j xj , j ∈ {0, . . . , n}.
To prove the statement, we consider two cases.

226



www.ejgta.org

Upper broadcast domination number of caterpillars with no trunks | S. Bouchouika et al.

1. f(vk) ≥ 3.
By Lemma 3.1, we know that the private neighbor vp

k is a leaf. Hence, the (vk, vp
k)-geodesic

Pvk
is the path vkxixi+1 . . . xi+f(vk)−2v

p
k or vkxixi−1 . . . xi−f(uk)+2v

p
k.

Therefore, {ei+1, . . . , ei+f(vk)−3} ⊂ Ef or {ei−1, . . . , ei−f(vk)+3} ⊂ Ef . In the case where
0 ≤ k < s, Ef contains another edge, which is either xi+f(vk)−2xi+f(vk)−1 or xixi+1, depend-
ing on whether vk is to the left or to the right of vp

k. It follows, |Ef | ≥ f(vk) − 3 if k = s,
and |Ef | ≥ f(vk) − 2 otherwise.

2. f(vk) = 1.
Since, Pvk

= y1
i xi (recall that vk = y1

i ), we infer that xixi+1 ∈ Ef , and thus |Ef | ≥ 1, if
0 ≤ k < s.

Note that if an edge xjxj+1, j = 0, . . . , n−1, of the spine Pn, appears in Ef , then xj is adjacent
to the last pendent vertex, namely y1

j , of some path of Pf , and since the paths of Pf are pairwise
disjoint by Lemma 2.6, we can say that

|Ef | =
s−1∑
k=1

f(vk)≥3

(f(vk) − 2) +
s−1∑
k=1

f(vk)=1

1 +
{

f(vs) − 3, if f(vs) ≥ 3,
0, if f(vs) = 1.

Hence,

|Ef | =

 s∑
k=1

f(vk)≥3

(f(vk) − 2)

 +
s∑

k=1
f(vk)=1

1 − 1.

It follows,
|Ef | ≥ Γb(CT ) − 2|{vk : f(vk) ≥ 3}| − 1.

Since Γb(CT ) = |E(CT )| − |Ef | and the size of the caterpillar CT is 2n + 1, we infer

2Γb(CT ) ≤ |E(CT )| + 2|{vk : f(vk) ≥ 3}| + 1 = (2n + 2) + 2|{vk : f(vk) ≥ 3}|,

which leads to
Γb(CT ) ≤ n + 1 + |{vk : f(vk) ≥ 3}|.

It is not difficult to see that, in each sub-caterpillar CT [i, i + 3], i = 0, . . . , n − 3, the number of
f -broadcast vertices v with an f -value f(v) ≥ 3 cannot exceed 2. Then |{vk : f(vk) ≥ 3}| ≤ n+1

2
and Γb(CT ) ≤ 3(n+1)

2 . This completes the proof.

Lemma 3.5. If CT is a caterpillar CT with no trunks, of length n ≥ 3, then CT admits a Γb-
broadcast f with f(u) ̸= 2 for every u ∈ V +

f .

Proof. Let g be a Γb-broadcast on the caterpillar CT and let u ∈ V +
g , with g(u) = 2. By

Lemma 3.1, u and its private neighbor up are leaves. Since g(u) = 2, then u = y1
i for some

i ∈ {1, . . . , n}, and up are adjacent to the same stem xi. Consider the mapping f obtained from
g by replacing the g-values of yj

i , j = 1, . . . , ℓi, by f(yj
i ) = 1, j = 1, . . . , ℓi. The mapping f is a

minimal dominating broadcast on CT with cost σ(f) = σ(g) + ℓi − 2. The optimality of g implies

227



www.ejgta.org

Upper broadcast domination number of caterpillars with no trunks | S. Bouchouika et al.

ℓi = 2, so that we have σ(f) = σ(g). We then repeat this transformation on each g-broadcast ver-
tex with a value equal to 2 until we obtain a mapping with the required condition. This completes
the proof.

Lemma 3.6. If CT is a caterpillar with no trunks, of length n ≥ 3, then CT admits a Γb-broadcast
f with f(u) ≤ 3 for every u ∈ V +

f .

Lemma 3.7. If CT is a caterpillar with no trunks, of length n ≥ 3, then CT admits a Γb-broadcast
f , such that

1. If ℓ0 + ℓ1 ≥ 3, then f(yj
0) ̸= 3 for every j, j = 1, . . . , ℓ0 (or, if ℓn−1 + ℓn ≥ 3, then f(yj

n) ̸= 3
for every j, j = 1, . . . , ℓn).

2. If y1
i is a f -broadcast vertex for some i = 1, . . . , n, with f(y1

i ) = 3, then PBf (y1
i ) is equal

to either L(xi−1) or L(xi+1) (in that case, y1
i is said to have only one private side).

3. If there exists a pendent vertex f -dominated by two f -broadcast vertices u et u′, then d(u, u′) =
3.

Let CT 4
5 be a caterpillar with no trunks of length 3, and having five pendent edges. Then CT 4

5
must be one of the caterpillars CT (2, 1, 1, 1), CT (1, 2, 1, 1), CT (1, 1, 2, 1), or CT (1, 1, 1, 2). We
say that a caterpillar CT is CT 4

5 -free if CT contains none of the patterns 2111, 1211, 1121 or 1112.
Further, in the following, we say that a mapping g on a caterpillar CT is a good Γb-broadcast if g
is a Γb-broadcast satisfying the conditions of Lemmas 3.1, 3.5, 3.6 and 3.7.

Lemma 3.8. If CT is a caterpillar with no trunks, of length n ≥ 3, then CT admits a Γb-broadcast
f such that f(yj

i ) = 1 for every j = 1, . . . , ℓi, whenever ℓi ≥ 3, or ℓi = 2 if CT is a CT 4
5 -free

caterpillar.

Let CT be a caterpillar with no trunks, of order n ≥ 3, and let f be a Γb-broadcast on CT . For
any stem xi, i = 0, . . . , n, with ℓi = 2, we denote by F j

i = CT [i − j + 1, i − j + 4], j = 1, . . . , 4, a
caterpillar of type CT 4

5 . On F j
i , we consider a mapping θj

i , defined by θj
i (y1

i−j+2) = θj
i (y1

i−j+3) = 3
and θj

i (v) = 0 otherwise ( see Figure 2).

Lemma 3.9. If CT is a caterpillar of length n ≥ 3 and xi is a stem with ℓi = 2 for some
i ∈ {0, . . . , n}, then CT admits a Γb-broadcast f such that

1. If xi does not appear in any F j
i , j = 1, . . . , 4, then f(y1

i ) = f(y2
i ) = 1.

2. If xi is a stem of a sub-caterpillar CT ′ of CT , of type CT 4
5 , then either f(y1

i ) = f(y2
i ) = 1,

or f(y1
i ) = θj

i (y1
i ) and f(y2

i ) = θj
i (y2

i ) for some j ∈ {1, . . . , 4}, in which case CT ′ = F j
i

and the restriction of f on CT ′ is θj
i .

Let CT1 and CT2 be two caterpillars of lengths n1 and n2 respectively. The concatenation of
CT1 and CT2 is the caterpillar CT1 + CT2, of length n1 + n2 + 1, where

(CT1 + CT2)[0, n1] = CT1,

(CT1 + CT2)[n1 + 1, n1 + n2 + 1] = CT2,

CT1 + ∅ = CT1, and, ∅ + CT2 = CT2.

228



www.ejgta.org

Upper broadcast domination number of caterpillars with no trunks | S. Bouchouika et al.

0 0 3 3 0

xi

(a) j = 1

0 3 0 3 0

xi

(b) j = 2

0 3 3 0 0

xi

(c) j = 3

0 3 3 0 0

xi

(d) j = 4

Figure 2: The function θj
i , for some value of j.

Using the concatenation operation, we can define some transformations on any caterpillar CT of
length n. For an integer i, i = 0, . . . , n − n1, let

• CT [CT1/∅, i] be the caterpillar obtained from CT by removing CT1 = CT [i, i + n1],

CT [CT1/∅, i] =


CT [n1 + 1, n], if i = 0,
CT [0, n − n1 − 1], if i = n − n1,
CT [0, i − 1] + CT [i + n1 + 1, n], if i = 1, . . . , n − n1 − 1,

• CT [∅/CT2, i] be the caterpillar obtained from CT by inserting CT2 between the stems xi−1
and xi of CT if i ̸= 0, and the concatenation of CT2 with CT otherwise,

CT [∅/CT2, i] =
{

CT2 + CT, if i = 0,
CT [0, i − 1] + CT2 + CT [i, n], if i = 1, . . . , n − n1,

• CT [CT1/CT2, i] be the caterpillar obtained from CT by removing CT1 = CT [i, i + n1] and
by inserting CT2 between the stems xi−1 and xi of CT ,

CT [CT1/CT2, i] =


CT2 + CT [n1 + 1, n], if i = 0,
CT [0, n − n1 − 1] + CT2, if i = n − n1,
CT [0, i − 1] + CT2 + CT [i + n1 + 1, n], if i = 1, . . . , n − n1 − 1.

Lemma 3.10. Let CT be a caterpillar with no trunks, of length n ≥ 4, and containing the patterns
1 and 2+. If M = CT (1, 1, 1, 1) is a sub-caterpillar of CT , then

Γb(CT ) = Γb(CT [M/∅, i]) + 6.
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For any caterpillar CT with no trunks and containing the patterns 1 and 2+, if the pattern
Π = 1 . . . 1, of length p + 1, p ≥ 3, occurs in CT , we can iteratively remove all sub-caterpillars
isomorphic to M . The resulting caterpillar, denoted by CT r, is called the reduced caterpillar of
CT . We denote by z0 . . . zk the spines vertices of CT r and by L(zi) = {t1

i , . . . , tmi
i } the set of

pendent neighbors of zi.
In view of Lemma 3.10, the following result is immediate.

Proposition 3.2. If CT is a caterpillar with no trunks, of length n ≥ 4, containing the patterns 1
and 2+, and CT r is a caterpillar of length k, then

Γb(CT ) = Γb(CT r) + 6nM ,

where nM = n+1−k
4 is the number of steps required to transform CT into CT r.

Thanks to Proposition 3.1, if the length of CT r is k and each spine zi of CT r has mi pendent
neighbors, with mi ≥ 2, then

Γb(CT ) = Γb(CT r) + 6nM =
∑

i:mi≥2
mi + 6nM ,

so we henceforth assume that CT r is a caterpillar with a pattern 1 and 2+, and the pattern 1 . . . 1,
of length p + 1, occurs in CT r only if 0 ≤ p ≤ 2.

Let H be one of the three sub-caterpillars CT (1), CT (1, 1) or CT (1, 1, 1), of CT . In order
to prove the next proposition, we introduce a new definition. A dominating broadcast h on H is
H-pendent restricted if the pendent vertices of CT , different from those of H , are not h-dominated
by some h-broadcast vertex of V +

h .
Denote

F̃H = {h : h is a minimal H-pendent restricted dominating broadcast on H},

and let h̃H be a minimal H-pendent restricted dominating broadcast on H with maximum cost

σ(h̃H) = max{σ(h) : h ∈ F̃H}.

Since h̃H is a minimal dominating broadcast on H , we get

σ(h̃H) ≤ Γb(H).

Proposition 3.3. Let CT be a caterpillar with no trunks, of length n ≥ 4, and let H = [i0, i1] be
one of the three sub-caterpillars CT (1), CT (1, 1) or CT (1, 1, 1), of CT . If f is a Γb-broadcast on
CT , then

σ(h̃H) =
{

Γb(H), if x0 ∈ H or xn ∈ H, or p = 0 and x0, xn /∈ H,
p + 1, if p = 1, 2 and x0, xn /∈ H.

Proof. Let H = [i0, i1], with 1 ≤ i1 − i0 + 1 ≤ 3, and let h be a minimal H-pendent restricted
dominating broadcast on H . We distinguish two cases.
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1. x0 ∈ H or xn ∈ H , or p = 0 and x0, xn /∈ H .
By symmetry, it suffices to consider the case xn ∈ H or, p = 0 and x0, xn /∈ H .
The mapping defined in Lemma 3.3 is a minimal H-pendent restricted dominating broadcast
on H with cost

⌊
3(n+1)

2

⌋
. Then,

⌊
3(n + 1)

2

⌋
≤ σ(h̃H) ≤ Γb(H)

Since Γb(H) =
⌊

3(n+1)
2

⌋
, we get σ(h̃H) = Γb(H) =

⌊
3(n+1)

2

⌋
.

2. p = 1, 2 and x1, xn /∈ H .
If p = 1, then i1 = i0 + 1 and only these possibilities can occur:

h(xi0) = h(xi1) = 0 and h(y1
i0) = h(y1

i1) = 1, or
h(xi0) = h(xi1) = 1 and h(y1

i0) = h(y1
i1) = 0, or

h(xi0) = h(y1
i1) = 0 and h(y1

i0) = h(xi1) = 1, or
h(xi0) = h(y1

i1) = 1 and h(xi1) = h(y1
i0) = 0.

Since in each case, σ(h) = 2, we get σ(h̃H) = 2 = p + 1.
If p = 2, then i1 = i0 + 2 and only these possibilities can occur:

h(y1
i0) = h(y1

i0+1) = h(y1
i0+2) = 1 and h(xi0) = h(xi0+1) = h(xi0+2) = 0, or

h(xi0+1) = h(y1
i0) = h(y1

i0+2) = 1 and h(xi0) = h(xi0+2) = h(y1
i0+1) = 0, or

h(xi0) = h(xi0+1) = h(xi0+2) = 1 and h(y1
i0) = h(y1

i0+1) = h(y1
i0+2) = 0, or

h(xi0) = h(xi0+2) = h(y1
i0+1) = 1 and h(y1

i0) = h(y1
i0+2) = h(xi0+1) = 0, or

h(xi0) = h(xi0+2) = h(y1
i0) = h(y1

i0+1) = h(y1
i0+2) = 0 and h(xi0+1) = 2, or

h(xi0) = h(xi0+1) = h(xi0+2) = h(y1
i0) = h(y1

i0+2) = 0 and h(y1
i0+1) = 3.

Since in each case, σ(h) is equal to 2 or 3, we get σ(h̃H) = 3 = p + 1.

This completes the proof.

Let H1,. . . ,Hs be the sequence of all maximal sub-caterpillars CT (1), CT (1, 1) and CT (1, 1, 1)
in CT r. In view of the previous results (Lemmas 1, 8-12,15 and 16), we can at this step, give the
exact value of Γb(CT r) when the reduced caterpillar CT r of CT contains the patterns 1 and 2+,
and is CT 4

5 -free.

Lemma 3.11. If CT is a caterpillar with no trunks of length n ≥ 3 and let CT r be the reduced
caterpillar of CT containing the patterns 1 and 2+. If CT r is and CT 4

5 -free, then

Γb(CT r) =
s∑

i=1
σ(h̃Hi

) +
∑

i:mi≥2
mi.

From Proposition 3.2, and Lemma 3.11, we deduce the following formula.
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Theorem 3.2. If CT is a caterpillar with no trunks, of length n ≥ 3, containing the patterns 1 and
2+, and CT 4

5 -free, then

Γb(CT ) = 6 × nM +
s∑

i=1
σ(h̃Hi

) +
∑

i:mi≥2
mi.

Concerning reduced caterpillars CT r of length k, the formula of Γb(CT r) cannot be deduced
so simply when CT 4

5 is an induced subgraph of CT r, we need to prove some results beforehand.
For that, we introduce a new mapping which gives, for a given dominating broadcast f , the f -
values of the pendent neighbors of a stem zi, with mi = 2, i = 0, . . . , k, where all possibilities of
these f -values are known thanks to Lemma 3.9.

Let D = {d1, d2, . . . , ds′} be the set of stems in CT r which are adjacent to exactly two leaves.
We assume that the sequence D is ordered according to CT r, that is di occurs before dj in D if
i < j.

For di ∈ D and j = 1, . . . , 4, let Pf be the function from D to {θj
i , j = 1, . . . , 5}, defined as

follows

Pf (di) =


θj

i , if CT [i − j + 1, i − j + 4] is a caterpillar of type CT 4
5

and (f(t1
i ), f(t2

i )) = (θj
i (t1

i ), θj
i (t2

i )),
θ5

i , if f(t1
i ) = f(t2

i ) = 1.

We use the notation CT i
f to denote either the caterpillar F j

i = CT [i − j + 1, i − j + 4] or CT [i, i]

CT i
f =

{
F j

i , if Pf (di) = θj
i , j = 1, . . . , 4,

CT [i, i], if Pf (di) = θ5
i .

Using previous results and applying them on the reduced caterpillar CT r with CT 4
5 , we obtain

the following theorem.

Theorem 3.3. Let CT be a caterpillar with no trunks such that the reduced caterpillar CT r has
length k ≥ 3. If CT r contains CT 4

5 , then CT r admits a Γb-broadcast f such that

1. V +
f contains no stems.

2. For every f -broadcast vertex u, f(u) ∈ {1, 3}.

3. For every pendent vertex tj
i , with mi ≥ 3 and j = 1, . . . , mi, f(tj

i ) = 1.

4. For every f -broadcast vertex t1
i with f(t1

i ) = 3,

(a) If i = 0 (resp. i = k), then m0 + m1 = 2 (resp. mk−1 + mk = 2).
(b) If i /∈ {0, k}, then zi ∈ CT 4

5 and Pf (zi) ∈ {θ1
i , θ2

i , θ3
i , θ4

i }.
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Proof. From Lemmas 1, 8-11, CT r admits a Γb-broadcast f satisfying Items 1, 2, 3 and 4(a). We
have to prove Item 4(b).
Let zi be a stem of CT r, i /∈ {0, k}. The caterpillar CT r contains CT 4

5 and thus CT r contains
the patterns 1 and 2+. From Lemma 3.7(2), we have either PBf (t1

i ) = L(zi−1) or PBf (t1
i ) =

L(zi+1), and if there exists a pendent vertex f -dominated by two f -broadcast vertices u and u′,
then d(u, u′) = 3. Hence, the f -values of the pendent vertices of the sub-caterpillar CT [i−1, i+2]
(or, similarly CT [i − 2, i + 1]) of CT r, are zero except for t1

i and t1
i+1 in CT [i − 1, i + 2], where

f(t1
i ) = f(t1

i+1) = 3. Since f satisfies the item 3 and CT r contains no pattern 1111, we get mj ≤ 2
for every j = i−1, . . . , i+2 in CT [i−1, i+2], and more precisely mi−1 +mi +mi+1 +mi+2 ≤ 6,
for otherwise we could define a mapping on CT r by modifying to 1 the f -values of each leaf of
CT [i − 1, i + 2], giving a minimal dominating broadcast on CT r with cost greater than Γb(CT ),
a contradiction. On the other hand, if mi−1 + mi + mi+1 + mi+2 = 6, we use the previous
mapping, in order to have each leaf with an f -value different from 3, without modifying the cost
of f . Therefore, mi−1 + mi + mi+1 + mi+2 = 5 and we are done.

Lemma 3.12. Let CT be a caterpillar with no trunks such that the reduced caterpillar CT r has
length k ≥ 3. If CT r contains CT 4

5 , then CT r admits a Γb-broadcast f such that, for every stem
di ∈ D, we have

1. If Pf (di) = θj
i for some j ∈ {1, . . . , 4}, then Γb(CT r) = Γb(CT r[CT i

f/K1,6, i − j + 1])

2. If Pf (di) = θ5
i , then Γb(CT r) = Γb(CT r[CT i

f/K1,6, i]) − 4.

Using Lemma 3.12 |D| times, we can infer the value of Γb(CT r) as a function of Γb(CT r
D2

),
where CT r

D2
is the reduced caterpillar of a caterpillar CT with no pattern 2.

Theorem 3.4. If CT is a caterpillar with no trunks such that the reduced caterpillar CT r has
length k ≥ 3, then

Γb(CT r) = Γb(CT r
D2

) − 4nP2 ,

where nP2 is the number of stems in D, for which Pf (di) = θ5
i .

It should be noted that the exact value of Γb(CT r
D2

) is completely defined by Proposition 3.1
or Lemma 3.11 depending on whether CT r

D2
contains the pattern 1 or not.

To use Lemma 3.12, we need to know, for a given Γb-broadcast f , the values of Pf (di), for
every stem di of CT r adjacent to two leaves. Lemmas 3.13 and 3.14 provide a response to this
need. For this, let us recall some notations previously introduced.
Let CT r = CT (m0, . . . , mk) be the reduced caterpillar of CT , z0, . . . , zk the spines vertices
of CT r, L(zi) = {t1

i , . . . , tmi
i } the set of pendent neighbors of zi, for every i = 0, . . . , k, and

D = {d1, d2, . . . , ds′} the set of stems in CT r adjacent to two leaves. Denote by zi0 and zi1 , the
first and the last stems of CT r respectively, with mi0 , mi1 ≥ 2.

We first study, in Lemma 3.13, the case where mi0 , mi1 ≥ 3 by proving that CT r admits a
Γb-broadcast f such that if d1 = zi for some index i, does not appear in any F j

i (of type CT 4
5 ),

j = 1, . . . , 4, then Pf (d1) = θ5
i . Otherwise, Pf (d1) = θj

i , where j is the smallest integer for which
F j

i = CT [i − j + 1, i − j + 4].
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Lemma 3.13. Let CT be a caterpillar with no trunks such that the reduced caterpillar CT r has
length k ≥ 3, and satisfying mi0 , mi1 ≥ 3. If CT r contains CT 4

5 and d1 = zi for some index i,
then CT r admits a Γb-broadcast f such that

1. If mi−3 = mi−2 = mi−1 = 1, then Pf (d1) = θ4
i .

2. If mi−2 = mi−1 = 1, mi+1 = 1 and mi−3 ̸= 1, then Pf (d1) = θ3
i .

3. If mi−1 = 1, mi+1 = mi+2 = 1 and mi−2 ̸= 1, then Pf (d1) = θ2
i .

4. If mi+1 = mi+2 = mi+3 = 1 and mi−1 ̸= 1, then Pf (d1) = θ1
i .

5. If d1 does not appear in any sub-caterpillar F j
i , j = 1, . . . , 4, then Pf (d1) = θ5

i .

Thanks to Lemma 3.13, we are able to determine Pf (d1). Afterwards, we consider the cater-
pillar CT r[CT i

f/K1,6, i − j + 1] or CT r[CT i
f/K1,6, i], according to Pf (d1) = θj

i for some j ∈
{1, . . . , 4} or Pf (d1) = θ5

i . We use again Lemma 3.13 for the concerned caterpillar, with |D| − 1
stems adjacent to two leaves. Repeating this procedure |D| times, we obtain a caterpillar without
pattern 2 (that is, a CT 4

5 -free caterpillar) and Pf (di) is determined for every i = 1, . . . , s′. The
value of Γb(CT r) is deduced from Lemma 3.11 and Theorem 3.4.

Lemma 3.14. Let CT be a caterpillar with no trunks such that the reduced caterpillar CT r has
length k ≥ 3. If CT r contains CT 4

5 and d1 = zi0 , then CT r admits a Γb-broadcast f such that

1. Pf (d1) /∈ {θ3
i0 , θ4

i0}.

2. If i0 ∈ {1, 3} and d1 ∈ F 2
i0 , then Pf (d1) = θ2

i0 .

3. If i0 ∈ {0, 2} and d1 ∈ F 1
i0 , then Pf (d1) = θ1

i0 .

4. If d1 does not appear in any sub-caterpillar F j
i0 , j ∈ {1, 2}, then Pf (d1) = θ5

i0 .

For any reduced caterpillar with mi0 = 2 (or mi1 = 2 by symmetry), we are able to determine
Pf (d1) (and Pf (ds′) when mi1 = 2), from Lemma 3.14. Similarly to what was discussed previously
(case mi0 > 2 and mi1 > 2), we consider the caterpillar CT1 representing CT r[CT i0

f /K1,6, i0 −
j + 1] or CT r[CT i0

f /K1,6, i0], according to Pf (d1) = θj
i0 for some j ∈ {1, . . . , 4} or Pf (d1) = θ5

i0 .
By symmetry, we do the same thing again on CT1 when mi1 = 2. Then, we use Lemma 3.13 for
the resulting caterpillar, with |D| − 1 (or |D| − 2 when mi1 = 2) stems adjacent to two leaves.
Repeating this procedure |D| times, we obtain a caterpillar without pattern 2 (that is, a CT 4

5 -free
caterpillar) and for every i = 1, . . . , s′, Pf (di) is determined. The value of Γb(CT r) is deduced
from Lemma 3.11 and Theorem 3.4.
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θ5
3

1 1

z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14

(a) CT r

0 3 30 0

θ3
13

z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14

(b) CT r
1

0 3 3 00

θ4
8

z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11

(c) CT r
2

11

θ5
7

z0 z1 z2 z3 z4 z5 z6 z7 z8

(d) CT r
3

z0 z1 z2 z3 z4 z5 z6 z7 z8

(e) CT r
4

Figure 3: Determination of CT r
4 .
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

3 0 1 1 1 0 3 3 0 1 1 1 0 3 3 0

M M
(a)

x13 x14 x15 x16 x17 x18 x19 x20 x21 x22

0 3 3 0 0 0 3 0 3 0 1 1 1

(b)

Figure 4: Γb-broadcast on CT .

4. Example

We illustrate through an example how we can find a Γb-broadcast for caterpillars CT which
contains the patterns 1 and 2+, and containing CT 4

5 . For this, we consider the following caterpillar
CT [(1)3, 2, (1)4, 3, (1)7, 2, 1, 2, (1)2, 2, 1].

Step 1. We delete the two occurrences of M in CT, that is CT [4 : 7] and CT [9 : 12].
Let CT r = [(1)3, 2, 3, (1)3, 2, 1, 2, (1)2, 2, 1] (see Figure 3.(a)) and nM = 2.
We have Γb(CT ) = Γb(CT r) + 6 × nM = Γb(CT r) + 12.

Step 2. We determine θj
i for each pattern 2.

1. In CT r, i0 = 3, d1 = z3 and m3 = 2. According to Lemma 3.14, we have Pf (d1) = θ5
3.

We consider CT r
1 = [(1)3, 6, 3, (1)3, 2, 1, 2, (1)2, 2, 1](see Figure 3.(b)).

2. In CT r
1 , mi1 = 2, d|D2| = z13, and i0 = n − 1 . According to Lemma 3.14, Pf (d|D2|) =

θ3
13. We consider CT r

2 = [(1)3, 6, 3, (1)3, 2, 1, 2, 6](see Figure 3.(e)).

3. In CT r
2 , mi0 ≥ 3, d1 = z8, m5 = m6 = m7 = 1 and m4 = 3 ̸= 1. According to

Lemma 3.13, Pf (d1) = θ4
8. We consider CT r

3 = [(1)3, 6, 3, 6, 1, 2, 6](see Figure 3.(c)).

4. In CT r
3 , mi0 ≥ 3, d1 = z7, and d1 /∈ F j

7 , ∀j ∈ {1, ..., 4} . According to Lemma 3.13,
Pf (d1) = θ5

7. We consider CT r
4 = [(1)3, 6, 3, 6, 1, 6, 6](see Figure 3.(d)).

The last reduced caterpillar CT r
4 = [(1)3, 6, 3, 6, 6, 6, 1] is a caterpillar without pattern 2 and

nP2 = 2.
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Step 3. Calculation of Γb(CT ).
Thanks to Proposition 3.2 and Theorem 3.4, we have
Γb(CT ) = Γb(CT r

4 ) + 6 × nM − 4 × nP2 = Γb(CT r
4 ) + 4.

The cost of Γb on caterpillar CT r
4 [(1)3, 6, 3, 6, 6, 6, 1] is calculate from the formula givin by

Lemma 3.11. It follows, Γb(CT ) = 36 and the Γb-broadcast on CT is depicted in Figure 4.

5. Conclusion

In this paper, we gave the exact value of Γb for any caterpillar without trunks. The study of
caterpillars containing trunks seems more complicated in general. For future research, several
problems seem interesting.

• Determine the value of Γb(CT ) for more general caterpillar classes, such that the class of
caterpillars with no k consecutive trunks, k ≥ 2.

• Let m and n be two positive integers. The value of Γb(Pm□Pn), where □ stands for the
Cartesian product of graphs, has been determined in [4]. Determine the value of Γb(Pm◦Pn),
for any other operation ◦, as it was done for the variant γb in [15].

• Determine the ratio between Γb and any other broadcast invariant (to our knowledge, this
question has been studied in the literature only for boundary independence numbers in [13]).
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6. Appendix

Proof of Lemma 3.2. Let CT be a caterpillar with no trunks, of length n ≤ 2 and size m, and let
f be a Γb-broadcast on CT .

If n = 1 and m = 3, then CT is a path and Γb(CT ) = m (see Figure 5 (a)).
If n ≥ 2 or m ≥ 4, then CT is neither a path nor a star. By Theorem 2.1, we get Γb(CT ) ≤ m − 1.
For the converse, we have to define a minimal dominating broadcast on CT with cost m − 1 or
m − 2, according to the studied case.
Let µ be the unitary dominating broadcast on CT . Since µ is a minimal dominating broadcast
with cost m − n, we infer Γb(CT ) ≥ m − n. For n = 1 and m ≥ 4, we immediately get
Γb(CT ) ≥ m − 1, and thus Γb(CT ) = m − 1 (see Figure 5 (b)).
If n = 2 and ℓ0 = ℓ1 = 1 (the case ℓ1 = ℓ2 = 1 is similar, by symmetry), then the mapping g
defined by g(yj

2) = 1 for every j, j = 1, . . . , ℓ2, g(y1
0) = 3, and g(x) = 0 otherwise is a minimal

dominating broadcast with cost m − 1. Hence, Γb(CT ) ≥ m − 1, and thus Γb(CT ) = m − 1 (see
Figure 5 (c)).
If n = 2 and ℓ1 ≥ 2, then f(y1

1) ≤ 2. Indeed, since the f -value for each vertex of CT does not
exceed its eccentricity, we have f(yj

1) ≤ 3 for every j = 1, . . . , ℓ1. On the other hand f(y1
1) = 3

cannot hold (recall that we assumed f(y1
i ) ≥ · · · ≥ f(yℓi

i ) for every i = 0, . . . , n), since otherwise
V +

f = {y1
1} and we could set g(x) = 1 for every leaf x, giving a minimal dominating broadcast

with cost σ(g) ≥ 4 ≥ σ(f) + 1, contradicting the optimality of f .
According to the f -values of pendent vertices yj

1, j = 1, . . . , ℓ1, we discuss three cases. In each
case, we prove the existence of at least two elements in Ef , which allows us to get Γb(CT ) ≤ m−2.

1. f(yj
1) = 1 for every j = 1, . . . , ℓ1.

We have PBf (yj
1) = {yj

1} and then, Pyj
1

= yj
1x1 for every j = 1, . . . , ℓ1 and x1 does not lie

to any path P f
v , where v is an f -broadcast vertex of CT , v ̸= yj

1. Thus, the edges x0x1 and
x1x2 belong to Ef .

2. f(yj
1) = 0 for every j = 1, . . . , ℓ1.

By Lemma 2.7, yj
1 is f -dominated by y1

0 or y1
2 . By Lemma 2.6, we have either PBf (y1

0) =
L(x1) or PBf (y1

2) = L(x1). Therefore, we have either Py1
0

= y1
0x0x1y

j
1 or Py1

2
= y1

2x2x1y
j
1,

for some j ∈ {1, . . . , ℓ1}, and the set Ef contains ℓ1 − 1 ≥ 1 pendent edges and one of the
edges x0x1 or x1x2.

3. f(y1
1) = 2.

We have PBf (y1
1) = {y2

1, . . . , yℓ1
1 }, for otherwise the leaves adjacent to x0 or to x2 would

not be dominated. Hence, Py1
1

= y1
1yj

1 for some j ∈ {2, . . . , ℓ1} and x1 cannot lie on some
path P f

v , where v is a broadcast vertex different from y1
1 . Therefore, the edges x0x1 and x1x2

belong to Ef .

If n = 2, ℓ0 ≥ 2, ℓ1 = 1 and ℓ2 ≥ 2, then, by the same arguments as above, the f -values of the
leaves cannot exceed 3. We distinguish six cases.
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3 0

(a) n = 1, m = 3

1 1 1 1 1

(b) n = 1, m = 5

3 0 1 1

(c) n = 2, ℓ0 = 1, ℓ1 = 1

1 1 1 1

(d) n = 2, ℓ0 = 1, ℓ1 = 2

1 1 1 1 1

(e) n = 2, ℓ0 = 2, ℓ1 = 1

Figure 5: Examples of Γb-broadcasts for n = 1, 2.

1. f(yj
0) = 0 for every j = 1, . . . , ℓ0.

The vertex yj
0 is f -dominated by y1

2 , for otherwise σ(f) = f(y1
1) = 3, contradicting the

optimality of f . Therefore, V +
f = {y1

2} and Py1
2

= y1
2x2x1x0y

j
0 for some j ∈ {1, . . . , ℓ0}.

Hence, |Ef | ≥ (ℓ0 − 1) + ℓ1 + (ℓ2 − 1) = ℓ0 + ℓ2 − 1 ≥ 3.

2. f(yj
0) = 1 for every j = 1, . . . , ℓ0, and f(yl

2) = 1 for every l = 1, . . . , ℓ2.
We have PBf (yj

0) = {yj
0} and PBf (yl

2) = {yl
2}, and then Pyj

0
= yj

0x0 and Pyl
2

= yl
2x2.

Therefore, both edges x0x1 and x1x2 are in the set Ef .

3. f(yj
0) = 1 for every j = 1, . . . , ℓ0, and f(y1

2) = 2 (the case f(y1
0) = 2 and f(yl

2) = 1 for
every l = 1, . . . , ℓ2 is similar, by symmetry).
We have PBf (yj

0) = yj
0 and PBf (y1

2) = {y2
2, . . . , yℓ2

2 }, and then Pyj
0

= yj
0x0 and Py1

2
= y1

2yl
2

for some l ∈ {2, . . . , ℓ2}. We have again both edges x0x1 and x1x2 in the set Ef .

4. f(yj
0) = 1 for every j = 1, . . . , ℓ0, and f(y1

2) = 3 (the case f(y1
0) = 3 and f(yl

2) = 1 for
every l = 1, . . . , ℓ2 is similar, by symmetry).
We have PBf (yj

0) = {yj
0} for every j = 1, . . . , ℓ0, and PBf (y1

2) = y1
1 , and then Pyj

0
= yj

0x0

and Py1
2

= y1
2x2x1y

k
1 for some k ∈ {1, . . . , ℓ1}. Thus, the edges x0x1 and the ℓ2 − 1 ≥ 1

leaves yl
2x2, l = 2, . . . , ℓ2 belong to Ef .

5. f(y1
0) = 2 and f(y1

2) = 2.
We have PBf (y1

0) = {y2
0, . . . , yℓ0

0 } and PBf (y1
2) = {y2

2, . . . , yℓ2
2 }, and then Py1

0
= y1

0yj
0 for

some j ∈ {2, . . . , ℓ0}, and Py1
2

= y1
2y2

2 for some l ∈ {2, . . . , ℓ2}. It follows, f(y1
1) = 1 and

PBf (y1
1) = {x1}. Thus, both edges x0x1 and x1x2 belong to Ef .

6. f(y1
0) = 2 and f(y1

2) = 3 (the case f(y1
0) = 3 and f(yl

2) = 2 is similar, by symmetry).
We have PBf (y1

0) = {y2
0, . . . , yℓ0

0 } and PBf (y1
2) = {y1

1}, and then Py1
0

= y1
0yj

0 for some
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0 3 3 0 0

(a) n = 3

0 3 3 0 0 0 0 1 1

(b) n = 4

0 0 0 3 3 0 0 3

(c) n = 5

0 0 3 3 0 1 0 0 0 3

(d) n = 6

Figure 6: Examples of the broadcast f defined in Lemma 3.3.

j ∈ {2, . . . , ℓ0}, and Py1
2

= y1
2x2x1y

l
1. Hence, the edges x0x1 and the ℓ2 − 1 ≥ 1 leaves yl

2x2,
l = 2, . . . , ℓ2 belong to Ef .

In each case, we proved that Γb(CT ) ≤ m − 2. Since Γb(CT ) ≥ m − n ≥ m − 2, we get
Γb(CT ) = m − 2 (see Figure 5 (d) and (e)). This completes the proof.

Proof of Lemma 3.3. Let CT = CT (ℓ0, . . . , ℓn) be a caterpillar with no trunks, where n + 1 =
4q + r, q ∈ N∗ and r = 0, . . . , 3. We define a mapping f (see Figure 6), by setting, for i =
0, . . . , n − r

f(y1
i ) = 3 if i ≡ 1, 2[4]

f(yj
n) = 1 for every j = 1, . . . , ℓn, if r = 1

f(y1
n) = 3, if r = 2

f(y1
n) = 3 and f(yj

n−2) = 1 for every j = 1, . . . , ℓn−2, if r = 3
f(u) = 0, otherwise.

For all other vertex u of CT , we set f(u) = 0. The mapping f is clearly a minimal dominating
broadcast, with cost

σ(f) =


3(n+1)

2 , if r = 0, 2,
3n
2 + ℓn, if r = 1,

3n
2 + ℓn−2, if r = 3.

It follows, σ(f) ≥
⌊

3(n+1)
2

⌋
, and then, Γb(CT ) ≥

⌊
3(n+1)

2

⌋
. This completes the proof.
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0 0 5 0 0 0

xi0 xi1

(a) i = 2, g(u) = 5 and i − g(u) + 2 < 0

0 0 0 5 0 0

xi0 xi1

(b) i − g(u) + 2 ≥ 0 and i + g(u) − 2 > n

0 0 0 5 0 0 0

xi0 xi1

(c) i − g(u) + 2 ≥ 0 and i + g(u) − 2 ≤ n

Figure 7: Illustration for the proof of Lemma 3.6, Case 1.

Proof of Lemma 3.6. Let g be a Γb-broadcast of CT . Assume that there exists a g-broadcast vertex
u = y1

i for some i ∈ {0, . . . , n}, with g(u) ≥ 4 and u is the leftmost g-broadcast vertex with this
property. By Lemma 3.1, u and its private neighbor up are leaves.
We will consider the sub-caterpillar CT ∗ = CT [i0, i1], where i0 and i1 will be defined depending
on the two following cases.

1. Every pendent vertex in Bg(u) belongs to PBg(u).
In that case, we set

i0 = 0 and i1 = i + g(u) − 2, if i − g(u) + 2 < 0,
i0 = i − g(u) + 2 and i1 = n, if i + g(u) − 2 > n,
i0 = i − g(u) + 2 and i1 = i + g(u) − 2, otherwise.

(see Figure 7)

Obviously, we have i0 < i1. Moreover, i1 − i0 + 1 ≤ 3 holds if and only if i = 0 and
g(u) = 4 (or, i = n and g(u) = 4, by symmetry). Indeed,
If i = 0 and g(u) = 4, then i − g(u) + 2 = −2 < 0 and i1 − i0 + 1 = 3 ≤ 3.
Conversely, assume that i1 − i0 + 1 ≤ 3 and g(u) ≥ 4. If i1 − i0 + 1 = i + g(u) − 1 ≤ 3,
then i+3 ≤ 3, that is i = 0, and i−g(u)+2 < 0. If i1 − i0 +1 = n− i+g(u)−1 ≤ 3, then
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4 0 0 0
3 0 0 1

x0

(a) i0 = 0

0 0 0 4
1 0 0 3

xn

(b) i1 = n

Figure 8: Illustration for the proof of Lemma 3.6, Case 1.

n − i + 3 ≤ 3, that is i = n, and i + g(u) − 2 > n. If 0 ≤ i − g(u) + 2 < i + g(u) − 2 ≤ n,
then i1 − i0 + 1 = 2g(u) − 3 ≤ 3 leads to g(u) ≤ 3, a contradiction.

2. There exists a pendent vertex v, such that v ∈ Bg(u) and v /∈ PBg(u).
In that case, there exists a broadcast vertex u′, u′ ̸= u, such that v is g-dominated by u
and by u′ with g(u′) ≥ 3. Since u′ is a leaf, let u′ = y1

j for some j > i. The bordering

private g-neighbors of u and u′ are PBg(u) = {y1
i−g(u)+2, . . . , y

ℓi−g(u)+2
i−g(u)+2} and PBg(u′) =

L(x1
j+g(u′)−2), respectively.

We set i0 = i−g(u)+2 and i1 = j +g(u′)−2. The equality i1 − i0 +1 ≥ 4 must hold in this
case since i1 − i0 +1 = j − i+g(u)+g(u′)−4+1 ≥ 5, so we can write i1 − i0 +1 = 4q +r,
where q ∈ N∗ and 0 ≤ r ≤ 3.

We define a mapping h, obtained from g by modifying only the g-values of the leaves between y1
i0

and y
ℓi1
i1 (we already know that the stems must have h-value 0), according to the value of i1 −i0 +1.

We have two cases to consider.

1. i1 − i0 + 1 ≤ 3.
In that case, every pendent vertex in Bg(u) belongs to PBg(u), i = 0 and g(u) = 4 (the case
i = n and g(u) = 4 is similar, by symmetry).

If i = 0, we set h(y1
0) = 3, h(yj

2) = 1 for every j = 1, . . . , ℓ2, and h(z) = 0 for every z ∈
{y2

0, . . . , yℓ0
0 , y1

1, . . . , yℓ1
1 }(see Figure 8). The mapping h is a minimal dominating broadcast

with cost σ(h) = σ(g) + 3 + ℓ2 − g(u) = σ(g) + ℓ2 − 1. The optimality of g then implies
ℓ2 = 1, so that σ(h) = σ(g).

2. i1 − i0 + 1 ≥ 4.
For t = i0, . . . , i1 − r, we set h(yj

t ) = 0 for every j = 2, . . . , ℓt with ℓt ≥ 2, and

h(y1
t ) =

{
0, if t − i0 + 1 ≡ 0, 1[4],
3, if t − i0 + 1 ≡ 2, 3[4].

For the case r = 0, all the vertices have a h-value. We can thus now assume r ̸= 0. We
consider two sub-cases depending on i0 = 0 or not.
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(a) i0 ̸= 0.
We set h(yj

t ) = 1 for every t = i1 − r + 1, . . . , i1 and j = 1, . . . , ℓt,

(b) i0 = 0.
We set



h(yj
i1) = 1 for every j = 1, . . . , ℓi1 , if r = 1

h(yj
i1−1) = 0 for every j = 1, . . . , ℓi1−1, h(y1

i1) = 3 and
h(yj

i1) = 0 for every j = 2, . . . , ℓi1 , if r = 2
h(yj

i1−2) = 0 for every j = 1, . . . , ℓi1−2,

h(yj
i1−1) = 0 for every j = 1, . . . , ℓi1−1,

h(y1
i1) = 3 and h(yj

i1) = 0 for every j = 2, . . . , ℓi1 , if r = 3.

We now determine the cost of the minimal dominating broadcast h. We distinguish three cases.

(i) Every pendent vertex in Bg(u) belongs to PBg(u) and i − g(u) + 2 < 0.
(the case i + g(u) − 2 > n is similar by symmetry).

In that case, 4 ≤ i1 − i0 + 1 = i + h(u) − 1, that is i + h(u) ≥ 5. We get

σ(h) = σ(g) − g(u) +



3(i1−i0+1)
2 , if r = 0,

3(i1−i0)
2 + 1, if r = 1,

3(i1−i0−1)
2 + 3, if r = 2,

3(i1−i0−2)
2 + 4, if r = 3,

that is,

σ(h) = σ(g) +
{

i + i+g(u)−3
2 , if r = 0, 2,

i + i+g(u)−4
2 , if r = 1, 3.

(see Figure 9)

Since, i + h(u) ≥ 5, we obtain σ(h) ≥ σ(g) + i + 1 if r = 0, 2 and σ(h) ≥ σ(g) + i + 1
2 ,

otherwise, contradicting the optimality of g.

(ii) Every pendent vertex in Bg(u) belongs to PBg(u) and 0 ≤ i − g(u) + 2 < i + g(u) − 2 ≤ n.
In that case, 4 ≤ i1 − i0 + 1 = 2h(u) − 3 is odd.

We get

σ(h) = σ(g) − g(u) +
{ 3(2g(u)−4)

2 + 1, if r = 1,
3(2g(u)−6)

2 + 4, if r = 3,

and then σ(h) = σ(g)+2g(u)−5 ≥ σ(g)+3, contradicting the optimality of g (see Figure 10
).

(iii) Items (i) and (ii) are not satisfied.
In that case, we have i1 − i0 + 1 = j − i + g(u′) + g(u) − 3 ≥ 6. Indeed, we have g(u) ≥ 4,
g(u′) ≥ 3, j − i ≥ 1 and if j − i = 1, then g(u′) = g(u) ≥ 4, for otherwise u′ g-dominates
up.

For i0 = 0, we get
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0 4 0 0
0 3 3 0

x0

(a) r = 0

0 4 0 0 0
0 3 3 0 1

x0

(b) r = 1

0 0 5 0 0 0
3 0 0 3 3 0

x0

(c) r = 2

0 0 0 5 0 0 0
3 0 1 0 3 3 0

x0

(d) r = 3

Figure 9: Illustration for the proof of Lemma 3.6, Case 2.(i).
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0 0 4 0 0
0 3 3 0 1

xi0 xi1

(a) r = 1

0 0 4 0 0 0 0
0 3 3 0 1 1 1

xi0 xi1

(b) r = 3

Figure 10: Illustration for the proof of Lemma 3.6, Case 2.(ii).

σ(h) = σ(g) − g(u) − g(u′) +



3(i1−i0+1)
2 , if r = 0,

3(i1−i0)
2 + 1, if r = 1,

3(i1−i0−1)
2 + 3, if r = 2,

3(i1−i0−2)
2 + 4, if r = 3,

that is,

σ(h) = σ(g) +
{

j − i + j−i+g(u′)+g(u)−9
2 , if r = 0, 2,

j − i + j−i+g(u′)+g(u)−10
2 , if r = 1, 3.

Therefore, σ(h) > σ(g), contradicting the optimality of g (see Figure 11).

For i0 > 0, we get

σ(h) = σ(g) − g(u) − g(u′) +



3(i1−i0+1)
2 , if r = 0,

3(i1−i0)
2 + ℓi1 , if r = 1,

3(i1−i0−1)
2 + ℓi1−1 + ℓi1 , if r = 2,

3(i1−i0−2)
2 + ℓi1−2 + ℓi1−1 + ℓi1 , if r = 3,

that is,

σ(h) = σ(g)+


j − i + j−i+g(u′)+g(u)−9

2 , if r = 0,
j − i + j−i+g(u′)+g(u)−12

2 + ℓi1 , if r = 1,
j − i + j−i+g(u′)+g(u)−15

2 + ℓi1−1 + ℓi1 , if r = 2,
j − i + j−i+g(u′)+g(u)−18

2 + ℓi1−2 + ℓi1−1 + ℓi1 , if r = 3.

(see F igure 12)
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0 0
3

4
3

0
0

0
0

4
3

0
3

0
00 3 3 0 0 3 3 0

(a) r = 0

0 0 4 0 0 0 4 0 0
0 3 3 0 0 3 3 0 1

(b) r = 1

0 0 4 4 0 0
3 0 0 3 3 0

(c) r = 2

0 0 4 0 4 0 0
3 0 1 0 3 3 0

(d) r = 3

Figure 11: Illustration for the proof of Lemma 3.6, Case 2.(iii) and i0 = 0.
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0 0 4 0 0 4 0 0
0 3 3 0 0 3 3 0

(a) r = 0

0 0 4 0 0 0 4 0 0
0 3 3 0 0 3 3 0 1

(b) r = 1

0 0 4 4 0 0
0 3 3 0 1 1

(c) r = 2

0 0 4 0 4 0 0
0 3 3 0 1 1 1

(d) r = 3

Figure 12: Illustration for the proof of Lemma 3.6, Case 2.(iii) and i0 > 0.
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If r = 0 or r = 1, we immediately obtain σ(h) > σ(g), contradicting the optimality of g. If
r = 2, then σ(h) = σ(g) + j − i + j−i+g(u′)+g(u)−15

2 + ℓi1−1 + ℓi1 ≥ σ(g) − 2 + ℓi1−1 + ℓi1 .
The optimality of g then implies ℓi1−1 = ℓi1 = 1, in which case σ(h) = σ(g). If r = 3, then
σ(h) = σ(g) + j − i + j−i+g(u′)+g(u)−18

2 + ℓi1−2 + ℓi1−1 + ℓi1 and j − i + g(u′) + g(u) must be
even. Hence

σ(h) ≥ σ(g) + (j − i) − 4 + ℓi1−2 + ℓi1−1 + ℓi1 ≥ σ(g) − 3 + ℓi1−1 + ℓi1 .

The optimality of g implies ℓi1−2 = ℓi1−1 = ℓi1 = 1, in which case σ(h) = σ(g). We repeat this
transformation on each g-broadcast vertex with a value greater than 3 until obtaining a mapping
with required condition. This completes the proof.

Proof of Lemma 3.7. Let g be a Γb-broadcast on the caterpillar CT , satisfying the conditions of
Lemmas 2.7, 3.5 and 3.6. Then each g-broadcast vertex u is a leaf and has a g-value g(u) ∈ {1, 3}.
Since n ≥ 3, |V +

g | ≥ 2 by Corollary 3.1.

1. ℓ0 + ℓ1 ≥ 3 and g(y1
0) = 3.

In that case, we consider the mapping f obtained from g by replacing the g-values of the
leaves of CT [x0, x1] by the value 1 . The mapping f is a minimal dominating broadcast
on CT with cost σ(f) = σ(g) − 3 + ℓ0 + ℓ1 ≥ Γb(CT ). The optimality of g implies
ℓ0 + ℓ1 = 3, so that we have σ(f) = σ(g). By symmetry, we also get f(yj

n) = 1 for every j,
j = 1, . . . , ℓn, if ℓn−1 + ℓn ≥ 3.

2. y1
i is a f -broadcast vertex for some i = 1, . . . , n, with f(y1

i ) = 3.
By the minimality of the dominating broadcast g, PBf (y1

0) = L(x1) (resp. PBf (y1
n) =

L(xn−1)) if g(y1
0) = 3 (resp. g(y1

n) = 3). Now, assume to the contrary that there exists
a g-broadcast vertex y1

i , i = 2, . . . , n − 1, with g(y1
i ) = 3 and PBg(y1

i ) = L(xi−1) ∪
L(xi+1). Consider the mapping f obtained from g by replacing the g-values of the leaves
of CT [i − 1, i + 1] by the value 1. The mapping f is a minimal dominating broadcast on
CT with cost σ(f) = σ(g) − 3 + ℓi−1 + ℓi + ℓi+1 ≥ Γb(CT ). The optimality of g implies
ℓi−1 + ℓi + ℓi+1 = 3, so that we have σ(f) = σ(g). By symmetry, we also get f(yj

n) = 1 for
every j, j = 1, . . . , ℓn, if ℓn−1 + ℓn ≥ 3.

3. There exists a pendent vertex f -dominated by two f -broadcast vertices u et u′.
Let u and u′ be two g-broadcast vertices such that Nf [u] ∩ Nf [u′] contains some leaf, say
y1

i , and assume that u is to the left of u′. Then, we have g(u) = g(u′) = 3. If d(u, u′) ̸= 3
then necessarily d(u, u′) = 4, PBf (u) = L(xi−2) and PBf (u′) = L(xi+2). Consider a
mapping f defined by f(yj

i−2) = 1 for every j = 1, . . . , y
ℓi−2
i−2 , f(y1

i ) = f(y1
i+1) = 3,

f(yj
i−1) = f(yk

i ) = f(yl
i+1) = 0 for every j = 1, . . . , y

ℓi−1
i−1 , k = 2, . . . , yℓi

i , l = 2, . . . , y
ℓi+1
i+1 ,

and f(v) = g(v) otherwise. The mapping f is a minimal dominating broadcast on CT with
cost σ(f) = σ(g) + ℓi−2, contradicting the optimality of g. This completes the proof.
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(d) ℓi−3 + ℓi−2 + ℓi−1 = 3

Figure 13: Illustration for the proof of Lemma 3.8, Case (1.a) and Case 2.

Proof of Lemma 3.8. Let CT be a caterpillar with no trunks, of length n ≥ 3, and let g be a good
Γb-broadcast on CT . Assume to the contrary that there exists a stem xi with ℓi ≥ 2 and g(y1

i ) ̸= 1
(that is, g(yj

i ) ̸= 1 for every j = 1, . . . , ℓi).
If i = 0 (the case i = n is similar, by symmetry), then ℓ0 + ℓ1 ≥ 3 and g(y1

0) ̸= 3 by
Lemma 3.7(1). Hence, g(y1

0) = 0 and y1
0 is g-dominated by y1

1 with a g-value g(y1
1) = 3.

By considering the same mapping f as in the proof of Lemma 3.7(1), we are done.
Assume now 0 < i < n. We have either g(y1

i ) = 3, or g(y1
i ) = 0.

1. g(y1
i ) = 3.

The leaf y1
i has only one private side by Lemma 3.7(2), and assume, without loss of general-

ity, that PBg(y1
i ) = L(xi−1), which gives i+1 ̸= n. By Lemma 3.7(3), we have g(y1

i+1) = 3
and by Lemma 3.7(2), we have PBg(y1

i+1) = L(xi+2).
Consider the mapping f obtained from g by replacing the g-values of the leaves of
CT [xi−1, xi+2] by the value 1. The mapping f is a minimal dominating broadcast on CT
with cost σ(f) = σ(g) − 6 + ℓi−1 + ℓi + ℓi+1 + ℓi+2. According to the value of ℓi, we have
two subcases to consider.

(a) ℓi ≥ 3.
In this case, the optimality of g implies ℓi = 3 and ℓi−1 = ℓi+1 = ℓi+2 = 1, so that we
have σ(f) = σ(g) (see Figure 13(a)).

(b) ℓi = 2 and CT is CT 4
5 -free.

In this case, it must be at least six pendent edges in the sub-caterpillar CT [i − 1, i + 2],
and then σ(f) = σ(g) − 6 + ℓi−1 + ℓi + ℓi+1 + ℓi+2 ≥ σ(g) = Γb(CT ). The optimality
of g implies ℓi−1 + ℓi + ℓi+1 + ℓi+2 = 6, that is the existence of two stems adjacent to
two leaves and both others to one leaf, so that we have σ(f) = σ(g).
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(d) ℓi−1 + ℓi−2 + ℓi−3 = 4

Figure 14: Illustration for the proof of Lemma 3.9, Case 1.

2. g(y1
i ) = 0.

In that case, y1
i is g-dominated by some g-broadcast vertex, say without loss of generality

y1
i+1, of g-value g(y1

i+1) = 3, and then y1
i is a private g-border of y1

i+1 by Lemma 3.7(3).
Since ℓi + ℓi+1 ≥ 3, then i + 1 ̸= n, by Lemma 3.7(1). Further, i + 2 ̸= n, for otherwise
y1

n, . . . , yℓn
n would be in PBg(y1

i+1), contradicting Lemma 3.7(2). It follows, as in previous
case, PBg(y1

i+1) = L(xi), g(y1
i+2) = 3 and PBg(y1

i+2) = L(xi+3). As before, we consider
the mapping f obtained from g by replacing the g-values of the leaves of CT [xi, xi+3] by
the value 1 (see Figure 13 (c) and (d)). The mapping f is a minimal dominating broadcast
on CT with cost σ(f) = σ(g) − 6 + ℓi + ℓi+1 + ℓi+2 + ℓi+3 and we conclude as previously.
This completes the proof.

Proof of Lemma 3.9. Let g be a good Γb-broadcast on the caterpillar CT satisfying Lemma 3.8. If
g(y1

i ) = g(y2
i ) = 1, we are done. Assume now g(y1

i ) ̸= 1, that is (g(y1
i ), g(y2

i )) ∈ {(0, 0), (3, 0)}.
The vertices y1

i and y2
i are g-dominated by some g-broadcast vertex u (u = y1

i can occur), with
g(u) = 3 (observe that, by Lemma 3.7(1), i ̸= 0). By Lemma 3.7(2), u has only one private side,
and by Lemma 3.7(3), there exists a g-broadcast vertex u′, such that g(u′) = 3 and d(u, u′) = 3.
Let X = CT [i0, i0+3] be the sub-caterpillar of CT , whose leaves are those which are g-dominated
by u or u′ in CT . We consider two cases according to whether xi appears in F j

i or not.

1. xi does not appear in any F j
i , j = 1, . . . , 4.

In that case, X must have at least six pendent edges. Consider the mapping f obtained from
g by replacing the g-values of the leaves of X by the value 1. The mapping f is a minimal
dominating broadcast on CT with cost σ(f) = σ(g)−6+ℓi0+ℓi0+1+ℓi0+2+ℓi0+3 ≥ Γb(CT ).
The optimality of g implies ℓi0 + ℓi0+1 + ℓi0+2 + ℓi0+3 = 6, so that we have σ(f) = σ(g) and
f satisfies the property (item 1) of the lemma, as required (see Figure 14).
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2. xi is a stem of a sub-caterpillar CT ′ of CT , of type CT 4
5 .

In that case, ℓi0 + ℓi0+1 + ℓi0+2 + ℓi0+3 ≤ 6, for otherwise we could replace the g-values
of every leaf of X by the value 1, and would get a minimal dominating broadcast on CT ,
with cost σ(g) > Γb(CT ), a contradiction with the optimality of g. On the other hand, if the
equality ℓi0 + ℓi0+1 + ℓi0+2 + ℓi0+3 = 6 holds, then we consider the mapping f obtained from
g by replacing the g-values of the leaves of CT [i0, i0 + 3] by the value 1. The mapping f is a
minimal dominating broadcast on CT with cost σ(f) = σ(g) and satisfies f(y1

i ) = f(y2
i ) =

1. Hence, we assume in what follows, ℓi0 + ℓi0+1 + ℓi0+2 + ℓi0+3 = 5, and we distinguish
two cases depending on the value of g(y1

i ) and g(y2
i ).

(a) g(y1
i ) = g(y2

i ) = 0.
In that case, X = CT [i − 3, i] with u = y1

i−1 and u′ = y1
i−2, or X = CT [i, i + 3] with

u = y1
i+1 and u′ = y1

i+2. In the first case, and since ℓi−3 + ℓi−2 + ℓi−1 + ℓi = 5 holds, we
deduce that CT [i − 3, i] is of type CT 4

5 , g(y1
i ) = θ4

i (y1
i ) and g(y2

i ) = θ4
i (y2

i ), in which
case CT ′ = X = F 4

i and the restriction of g on CT ′ is θ4
i . In the second case, and

since ℓi + ℓi+1 + ℓi+2 + ℓi+3 = 5 holds, we also deduce that CT [i, i + 3] is of type CT 4
5 ,

g(y1
i ) = θ1

i (y1
i ) and g(y2

i ) = θ1
i (y2

i ), in which case CT ′ = X = F 1
i and the restriction

of g on CT ′ is θ1
i .

(b) g(y1
i ) = 3 and g(y2

i ) = 0.
In that case, u = y1

i and u′ ∈ {y1
i−1, y1

i+1}. The case u′ = y1
i−1, leads to PB(y1

i ) =
L(xi+1) and PB(y1

i−1) = L(xi−2), that is X = CT [i−2, i+1]. Since ℓi−2 +ℓi−1 +ℓi +
ℓi+1 = 5 holds, CT [i − 2, i + 1] is of type CT 4

5 , g(y1
i ) = θ3

i (y1
i ) and g(y2

i ) = θ3
i (y2

i ), in
which case CT ′ = X = F 3

i and the restriction of g on CT ′ is θ3
i . The case u′ = y1

i+1,
implies PB(y1

i ) = L(xi−1) and PB(y1
i+1) = L(xi+2), that is X = CT [i − 1, i + 2].

Since ℓi−1 + ℓi + ℓi+1 + ℓi+2 = 5 holds, CT [i − 1, i + 2] is of type CT 4
5 , g(y1

i ) = θ2
i (y1

i )
and g(y2

i ) = θ2
i (y2

i ), in which case CT ′ = X = F 2
i and the restriction of g on CT ′ is

θ2
i .

This completes the proof.

Proof of Lemma 3.10. Let CT be a caterpillar of length n ≥ 4, with no trunks and containing
the patterns 1 and 2+, and let v0v1v2v3 be the spine of the sub-caterpillar M , where wi is the
leaf adjacent to vi for i = 0, . . . , 3. Proving the equality Γb(CT ) = Γb(CT [M/∅, i]) + 6, is
equivalent to proving both inequalities: (1) Γb(CT ) + 6 ≤ Γb(CT [∅/M, i]) and (2) Γb(CT ) − 6 ≤
Γb(CT [M/∅, i]).

1. Let f be a good Γb-broadcast on the caterpillar CT satisfying Lemmas 3.8 and 3.9. To
prove (1), it is enough to find a minimal dominating broadcast g on CT [∅/M, i] with cost
Γb(CT ) + 6.
If i = 0, then either f(yj

0) ∈ {0, 1} for every j = 1, . . . , ℓ0 (that is, f(yj
0) = 0 for every j =

1, . . . , ℓ0 or f(yj
0) = 1 for every j = 1, . . . , ℓ0), or f(y1

0) = 3 (and then f(yj
0) = 0 for every

j = 2, . . . , ℓ0). We distinguish two cases depending on the value of f(yj
0), ∀j ∈ {1, . . . , ℓ0}.

252



www.ejgta.org

Upper broadcast domination number of caterpillars with no trunks | S. Bouchouika et al.

0 0

v1 v2 v3 v4 x0

0 3 3 0

M

1 1

v1 v2 v3 v4 x0

0 3 3 0

M

(a)

3 0

v1 v2 v3 v4 x0 x1

3 0 0 3

M

(b)

Figure 15: Illustration for the proof of Lemma 3.10, Case 1 i = 0, Cases (a) and (b).

(a) f(yj
0) = 0 (resp. f(yj

0) = 1) for every j = 1, . . . , ℓ0.
In that case, PBf (y1

1) = L(x0) (resp. PBf (yj
0) = {yj

0} for every j = 1, . . . , ℓ0 when
ℓ0 > 1, or PBf (y1

0) = {x0} when ℓ0 = 1). We consider the mapping g defined by
g(w1) = g(w2) = 3, g(w0) = g(w3) = g(vi) = 0 for i = 0, 1, 2, 3, and g(u) = f(u)
otherwise (see Figure 15.(a)). We have PBg(w1) = {w0} and PBg(w2) = {w3}, which
implies that g is a minimal dominating broadcast on CT [∅/M, i] with cost Γb(CT )+6.

(b) f(y1
0) = 3.

In that case, PBf (y1
0) = L(x1) in CT and we consider the mapping g defined by

g(w0) = g(w3) = 3, g(w1) = g(w2) = g(vi) = 0 for i = 0, 1, 2, 3, and g(u) = f(u)
otherwise (see Figure 15.(b)). We have PBg(w0) = {w1} and PBg(w3) = {w2},
which implies that g is a minimal dominating broadcast on CT [∅/M, i] with cost
Γb(CT ) + 6.

Let i ∈ {1, . . . , n}. We distinguish four cases :

(a) f(yj
i−1) and f(yk

i ) ∈ {0, 1} for every j = 1, . . . , ℓi−1 and k = 1, . . . , ℓi.
In that case, every leaf yj

i−1 (resp. yk
i ) is either its own private neighbor or is a private

neighbor of y1
i−2 (resp. y1

i+1). We consider the mapping g defined as in Case 1a (see
Figure 16.(a)).
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Figure 16: Illustration for the proof of Lemma 3.10, Case 1 i ̸= 0, Cases (a)-(d).

254



www.ejgta.org

Upper broadcast domination number of caterpillars with no trunks | S. Bouchouika et al.

(b) f(y1
i−1) = f(y1

yi
) = 3.

In that case, PBf (y1
i−1) = L(xi−2) and PBf (y1

i ) = L(xi+1) in CT . We consider the
mapping g defined as in Case 1b (see Figure 16.(b)).

(c) f(y1
i−1) = 3 and f(yk

i ) ∈ {0, 1} for every k = 1, . . . , ℓi.
In that case, PBf (y1

i−1) = L(xi) in CT . We consider the mapping g defined by
g(w2) = g(w3) = 3, g(w0) = g(w1) = g(vi) = 0, for i = 0, 1, 2, 3, and g(u) = f(u)
otherwise (see Figure 16.(b)). We have PBg(y1

i−1) = {w0}, PBg(w2) = {w1} and
PBg(w3) = L(xi). Therefore, g is a minimal dominating broadcast on CT [∅/M, i]
with cost Γb(CT ) + 6.

(d) f(yj
i−1) ∈ {0, 1} for every j = 1, . . . , ℓi and f(y1

i ) = 3.
In that case, PBf (y1

i ) = L(xi−1) in CT . We consider the mapping g defined by
g(w0) = g(w1) = 3, g(w2) = g(w3) = g(vi) = 0 for i = 0, 1, 2, 3, and g(u) = f(u)
otherwise (see Figure 16.(b)). We have PBg(w0) = L(xi−1), PBg(w1) = {w2} and
PBg(y1

i ) = {w3}. Therefore, g is a minimal dominating broadcast on CT [∅/M, i] with
cost Γb(CT ) + 6.

2. Let f be a good Γb-broadcast on the caterpillar CT satisfying Lemmas 3.8 and 3.9. We
prove the existence of a minimal dominating broadcast g on CT [M/∅, 0] with cost σ(g) ≥
Γb(CT ) − 6.
We distinguish two cases, depending on whether i ∈ {0, n − 4} or not.
Assume first i = 0 (the case i = n − 4 is similar by symmetry). We consider two subcases.

(a) f(y1
0) = f(y1

3) = 0 and f(y1
1) = f(y1

2) = 3.
In that case, PBf (y1

1) = {y1
0} and PBf (y1

2) = {y1
3}. The mapping g, defined as the re-

striction of f on CT [M/∅, 0] remains a minimal dominating broadcast on CT [M/∅, 0]
with cost Γb(CT ) − 6.
Similarly, if f(y1

0) = f(y1
3) = 3 and f(y1

1) = f(y1
2) = 0, then PBf (y1

0) = {y1
1} and

PBf (y1
3) = {y1

1}. The previous broadcast g remains available.

(b) f(y1
0) = 3, f(y1

2) = 1 and f(y1
1) = f(y1

3) = 0.
In that case, PBf (y1

0) = {y1
1}, and PBf (y1

4) = {y1
3} and and PBf (y1

2) = {y1
2},

where f(y1
4) = 3. If n = 4, then CT [M/∅, 0] = CT [4, 4] and by Theorem 2.1,

Γb(CT [M/∅, 0]) = ℓ4. The relation ℓ4 = 1 must be held, for otherwise we could set
h(y1

1) = h(y1
2) = 3, h(yj

4) = 1 for every j = 1, . . . , ℓ4 and h(u) = 0 otherwise which
would be a minimal dominating broadcast with cost 6+ℓ4, contradicting the optimality
of f when ℓ4 > 1. Thus, Γb(CT ) − 6 = 1 = Γb(CT [M/∅, 0]).
Since y1

4 has one private side by Lemma 3.7(2), we have n ̸= 5. Let then n ≥ 6. We
have CT [3, 6] = CT (1, 1, 1, 1) or CT [3, 6] is a caterpillar of type CT 4

5 , different from
F 1

i , by Lemmas 3.8 and 3.9 and by the fact that ℓ3 = 1. It follows, f(y1
5) = 3 and

f(u) = 0 for every other vertex of CT [3, 6]. On CT [M/∅, 0], consider a mapping g,
obtained from f by replacing the f -values of y1

5 and y1
6 by g(y1

5) = 0 and g(yj
6) = 1

for every j = 1, . . . , ℓ6. So we have PBg(y1
4) = L(x5) and PBg(yj

6) = {yj
6} for

every j = 1, . . . , ℓ6, which allows to say that g is a minimal dominating broadcast on
CT [M/∅, 0] with cost σ(g) = Γb(CT ) + ℓ6 − 7 ≥ Γb(CT ) − 6.
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Figure 17: Illustration for the proof of Lemma 3.10, Case 2 i ̸= 0, Case (a)

Let now i ∈ {1, . . . , n − 1}. We distinguish five sub-cases.

(a) f(y1
i ) = f(y1

i+3) = 0 and f(y1
i+1) = f(y1

i+2) = 3.
In that case, PBf (y1

i+1) = {y1
i } and PBf (y1

i+2) = {y1
i+3}. The mapping g defined

as the restriction of f on CT [M/∅, i] remains a minimal dominating broadcast on
CT [M/∅, i] with cost Γb(CT ) − 6 (see Figure 17.(a)).
Similarly, if f(y1

i ) = f(y1
i+3) = 3 and f(y1

i+1) = f(y1
i+2) = 0, then PBf (y1

i ) =
{y1

i+1} and PBf (y1
i+3) = {y1

i+2}. The previous broadcast g remains available (see Fig-
ure 17.(b)).
If f(y1

i ) = f(y1
i+1) = 3 and f(y1

i+2) = f(y1
i+3) = 0, then PBf (y1

i+1) = {y1
i+2},

PBf (y1
i ) = L(xi−1) and PBf (y1

i+4) = {y1
i+3}, with f(yi+4) = 3. By considering

again the same mapping g, we obtain PBg(y1
i+4) = L(xi−1). Hence, g is a minimal

dominating broadcast on CT [M/∅, 0] with cost σ(g) = Γb(CT )−6 (see Figure 17.(c)).

(b) f(y1
i ) = f(y1

i+1) = 3, f(y1
i+2) = 0 and f(y1

i+3) = 1.
In that case, PBf (y1

i ) = L(xi−1), PBf (y1
i+1) = {y1

i+2} and PBf (y1
i+3) = {y1

i+3}.
Consider the mapping g on CT [M/∅, 0], obtained from f by replacing, for every j =
1, . . . , ℓi−1, the f -values of yj

i−1 by 1 (see Figure 18.(a)). We have PBg(yj
i−1) = {xi−1}

or PBg(yj
i−1) = {yj

i−1} for every j = 1, . . . , ℓi−1. The mapping g is then a minimal
dominating broadcast with cost σ(g) = Γb(CT ) − 7 + ℓi−1 ≥ Γb(CT ) − 6.

(c) f(y1
i ) = 3, f(y1

i+1) = f(y1
i+3) = 0 and f(y1

i+2) = 1.
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Figure 18: Illustration for the proof of Lemma 3.10, Case 2 i ̸= 0, Cases (b)-(e).
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In that case, by Lemma 3.7(3), f(y1
i−1) = 3 which gives f(yj

i−2) = 0 for every j =
1, . . . , ℓi−2. Hence, PBf (y1

i−1) = {y1
i−2}, PBf (y1

i ) = {y1
i+1}, PBf (y1

i+2) = {y1
i+2}

and PBf (y1
i+4) = {y1

i+3}, with f(y1
i+4) = 3. Consider the mapping g on CT [M/∅, 0],

obtained from f by replacing, for every j = 1, . . . , ℓi−2, the f -values of yj
i−2 by 1

and the f -value of y1
i−1 by 0 (see Figure 18.(b)). We have PBg(yj

i+4) = L(xi−1) and
PBg(yj

i−2) = {yj
i−2} for every j = 1, . . . , ℓi−2. The mapping g is then a minimal

dominating broadcast with cost σ(g) = Γb(CT ) − 7 + ℓi−2 ≥ Γb(CT ) − 6.

(d) f(y1
i ) = 3, f(y1

i+1) = 0 and f(y1
i+2) = f(y1

i+3) = 1.
In that case, by Lemma 3.7(3), f(y1

i−1) = 3 and thus f(yj
i−2) = 0 for every j =

1, . . . , ℓi−2. Hence, PBf (y1
i−1) = L(xi−2), PBf (y1

i ) = {y1
i+1}, PBf (y1

i+2) = {y1
i+2},

PBf (y1
i+3) = {y1

i+3} and f(y1
i+4) ̸= 3. Consider the mapping g on CT [M/∅, 0],

obtained from f by replacing, for every j = 1, . . . , ℓi−2, the f -values of yj
i−2 by 1

and for every k = 1, . . . , ℓi−1 the f -value of yk
i−1 by 1 (see Figure 18.[(c) and (d)]).

We infer PBg(yj
i−2) = {yj

i−2}, j = 1, . . . , ℓi−2 and PBg(yk
i−1) = {yk

i−1} for every
k = 1, . . . , ℓi−1. The mapping g is then a minimal dominating broadcast with cost
σ(g) = Γb(CT ) − 8 + ℓi−1 + ℓi−2 ≥ Γb(CT ) − 6.

(e) f(y1
i ) = 0, f(y1

i+1) = f(y1
i+2) = f(y1

i+3) = 1.
In that case, f(y1

i−1) = f(y1
i−2) = 3, f(yj

i−3) = 0 for every j = 1, . . . , ℓi−3, and
f(y1

i+4) ̸= 3. Moreover, we have PBf (y1
i−2) = L(xi−3) and PBf (y1

i−1) = {y1
i }.

Consider the mapping g on CT [M/∅, 0], obtained from f by replacing, the f -values of
yj

i−3, yk
i−2 and yl

i−1 by 1 for every j = 1, . . . , ℓi−3, k = 1, . . . , ℓi−2, l = 1, . . . , ℓi−1 (see
Figure 18.(e)). The mapping g is a minimal dominating broadcast with cost σ(g) =
Γb(CT ) − 9 + ℓi−3 + ℓi−2 + ℓi−1 ≥ Γb(CT ) − 6.

In each case, we proved the existence of a minimal dominating broadcast g on CT [M/∅, 0]
with cost σ(g) ≥ Γb(CT ) − 6. Therefore, Γb(CT ) − 6 ≤ Γb(CT [M/∅, 0]), as required. This
completes the proof.

Proof of Lemma 3.12. Let CT r be the reduced caterpillar of CT and let di be a stem of CT r with
mi = 2. Consider a Γb-broadcast f on CT r satisfying the properties of Theorem 3.3.

1. Pf (di) = θj
i for some j ∈ {1, . . . , 4}.

In that case, CT i
f = F j

i and in the sub-caterpillar F j
i = CT r[i − j + 1, i − j + 4] of type

CT 4
5 , we have by Theorem 3.3(4.b), the only f -broadcast vertices are t1

i−j+2 and t1
i−j+3, with

f(t1
i−j+2) = f(t1

i−j+3) = 3. Therefore,

σ(f) =
∑

v∈V (CT r[0,i−j])
f(v) + 6 +

∑
v∈V (CT r[i−j+5,n])

f(v).

Consider now a Γb-broadcast g on CT r[CT i
f/K1,6, i − j + 1]. Thanks to Theorem 3.3(3),

g(ts
i−j+1) = 1 for every s = 1, . . . , 6. Then,

σ(g) =
∑

v∈V (CT r[0,i−j])
g(v) + 6 +

∑
v∈V (CT r[i−j+2,n−3])

g(v).
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We have
∑

v∈V (CT r[0,i−j]) f(v) = ∑
v∈V (CT r[0,i−j]) g(v). Indeed, assume first∑

v∈V (CT r[0,i−j])
f(v) >

∑
v∈V (CT r[0,i−j])

g(v).

In CT r, the private f -borders of the f -broadcast vertices t1
i−j+2 and t1

i−j+3 lie in F j
i , and

apart from these f -private borders, F j
i does not contain any other f -private borders. Then

the mapping h defined by h(v) = f(v) if v ∈ V (CT r[0, i − j]) and h(v) = g(v) otherwise,
would be a minimal dominating broadcast on CT r[CT i

f/K1,6, i − j + 1] with cost σ(h) >
σ(g), a contradiction with the optimality of g. Now if∑

v∈V (CT r[0,i−j])
f(v) <

∑
v∈V (CT r[0,i−j])

g(v)

then, the mapping k defined by k(v) = g(v) if v ∈ V (CT r[0, i − j]), and k(v) = f(v)
otherwise, would be a minimal dominating broadcast on CT r with cost σ(k) > σ(f), again
a contradiction with the optimality of f .
By the same arguments as above, we can prove that∑

v∈V (CT r[i−j+5,n])
f(v) =

∑
v∈V (CT r[i−j+2,n−3])

g(v).

It follows, σ(f) = σ(g).

2. Pf (di) = θ5
i .

In that case, CT i
f = CT [i, i] and f(t1

i ) = f(t2
i ) = 1. Moreover, each of these f -broadcast

vertices is its own bordering private f -neighbor and apart these two f -private borders, CT [i, i]
does not contain any other f -private borders. Let g be a Γb-broadcast on CT r[CT i

f/K1,6, i]
as defined in Item 1, that is, g(ts

i ) = 1 for every s = 1, . . . , 6. Again, each of these six
g-broadcast vertices is its own bordering private g-neighbor and CT [i, i] does not contain
any other private g-neighbor. We have,

σ(f) =
∑

v∈V (CT r[0,i−1])
f(v) + 2 +

∑
v∈V (CT r[i+1,n])

f(v),

and
σ(g) =

∑
v∈V (CT r[0,i−1])

g(v) + 6 +
∑

v∈V (CT r[i+1,n])
g(v).

By the same arguments as in the proof of Item 1, we get∑
v∈V (CT r[0,i−1])

f(v) =
∑

v∈V (CT r[0,i−1])
g(v)

and ∑
v∈V (CT r[i+1,n])

f(v) =
∑

v∈V (CT r[i+1,n])
g(v).

Hence, σ(f) = σ(g) − 4.
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This completes the proof.

Proof of Lemma 3.13. Let g be a Γb-broadcast on CT r satisfying the properties of Theorem 3.3
and let d1 = zi for some index i ∈ {0, . . . , k}.

1. Assume that mi−3 = mi−2 = mi−1 = 1. Since the pattern 1111 does not occur in CT r, we
have mi−4 ≥ 3 and then g(tj

i−4) = 1 for every j = 1, . . . , mi−4. Moreover, Pf (d1) = θ5
i

cannot hold, because otherwise g(t1
i−3) = g(t1

i−2) = g(t1
i−1) = g(t1

i ) = g(t2
i ) = 1 and the

mapping h obtained from g by setting h(t1
i−3) = h(t1

i ) = h(t2
i ) = 0, h(t1

i−2) = h(t1
i−1) = 3

and h(u) = g(u), otherwise, the mapping h would be a minimal dominating broadcast on
CT r with cost σ(h) = σ(g) − 5 + 6 = Γb(CT r) + 1, a contradiction with the optimality of
g.
If Pg(d1) = θ1

i , then g(t1
i ) = g(t2

i ) = g(t1
i+3) = 0, g(t1

i−3) = g(t1
i−2) = g(t1

i−1) = 1 and
g(t1

i+1) = g(t1
i+2) = 3. We define a mapping f , obtained from g by modifying some g-

values of the leaves of the sub-caterpillar CT [i − 3, i + 3] as follows. We set f(t1
i−3) = 0,

f(t1
i−2) = f(t1

i−1) = 3, f(t1
i+1) = f(t1

i+2) = f(t1
i+3) = 1, and f(u) = g(u) otherwise. The

mapping f is a minimal dominating broadcast on CT r with cost σ(f) = σ(g).
If Pg(d1) = θ2

i , then g(t1
i−1) = g(t2

i ) = g(t1
i+2) = 0, g(t1

i−3) = g(t1
i−2) = 1 and g(t1

i ) =
g(t1

i+1) = 3. We define a mapping f , obtained from g by modifying some g-values of the
leaves of the sub-caterpillar CT [i − 3, i + 2] as follows. We set f(t1

i−3) = f(t1
i ) = 0,

f(t1
i+1) = f(t1

i+2) = 1, f(t1
i−2) = f(t1

i−1) = 3, and f(u) = g(u) otherwise. The mapping f
is a minimal dominating broadcast on CT r with cost σ(f) = σ(g).
If Pg(d1) = θ3

i , then g(t1
i−2) = g(t2

i ) = g(t2
i+1) = 0, g(t1

i−3) = 1 and g(t1
i−1) = g(t1

i ) = 3.
We define a mapping f , obtained from g by modifying some g-values of the leaves of the
sub-caterpillar CT [i − 3, i + 1] as follows. We set f(t1

i−3) = f(t1
i ) = 0, f(t1

i+1) = 1,
f(t1

i−2) = f(t1
i−1) = 3, and f(u) = g(u) otherwise. The mapping f is a minimal dominating

broadcast on CT r with cost σ(f) = σ(g). Hence, CT r admits a Γb-broadcast f such that
Pf (d1) = θ4

i .

2. Assume that mi−2 = mi−1 = 1 and mi+1 = 1. Since mi−3 ≥ 3, we have Pg(d1) ̸= θ4
i .

We also have Pg(d1) ̸= θ5
i , because otherwise g(t1

i−2) = g(t1
i−1) = g(t1

i ) = g(t2
i ) = 1,

g(t1
i+1) ∈ {0, 1} and the mapping h obtained from g by setting h(t1

i−2) = h(t2
i ) = h(t1

i+1) =
0, h(t1

i−1) = h(t1
i ) = 3, and h(u) = g(u) otherwise, the mapping h would be a minimal

dominating broadcast on CT r with cost σ(h) ≥ σ(g)−5+6 = Γb(CT r)+1, a contradiction
with the optimality of g.
If Pg(d1) = θ1

i , then g(t1
i ) = g(t2

i ) = g(t1
i+3) = 0, g(t1

i−2) = g(t1
i−1) = 1 and g(t1

i+1) =
g(t1

i+2) = 3. We define a mapping f , obtained from g by modifying some g-values of the
leaves of the sub-caterpillar CT [i − 2, i + 3] as follows. We set f(t1

i−2) = f(t1
i+1) = 0,

f(t1
i+2) = f(t1

i+3) = 1, f(t1
i−1) = f(t1

i ) = 3, and f(u) = g(u) otherwise. The mapping f is
a minimal dominating broadcast on CT r with cost σ(f) = σ(g).
If Pg(d1) = θ2

i , then g(t1
i−1) = g(t2

i ) = g(t1
i+2) = 0, g(t1

i−2) = 1 and g(t1
i ) = g(t1

i+1) = 3.
We define a mapping f , obtained from g by modifying some g-values of the leaves of the
sub-caterpillar CT [i − 2, i + 2] as follows. We set f(t1

i−2) = f(t1
i+1) = 0, f(t1

i+2) = 1,
f(t1

i−1) = f(t1
i ) = 3, and f(u) = g(u) otherwise. The mapping f is a minimal dominating
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broadcast on CT r with cost σ(f) = σ(g). Hence, CT r admits a Γb-broadcast f such that
Pf (d1) = θ3

i .

3. Assume that mi−1 = 1, mi+1 = mi+2 = 1 and mi−2 ̸= 1. Since mi−2 ≥ 3, we have
Pg(d1) /∈ {θ3

i , θ4
i }.

If Pg(d1) = θ1
i , and since the pattern 1111 does not occur in CT r, then mi+3 = 1, mi+4 ≥ 2,

g(t1
i ) = g(t2

i ) = g(t1
i+3) = 0, g(t1

i−1) = g(tj
i+4) = 1 for every j ∈ {1, . . . , mi+4}, and

g(t1
i+1) = g(t1

i+2) = 3. We define a mapping f , obtained from g by modifying some g-values
of the leaves of the sub-caterpillar CT [i−1, i+3] as follows. We set f(t1

i−1) = f(t1
i+2) = 0,

f(t1
i+3) = 1, f(t1

i ) = 3, and f(u) = g(u) otherwise. The mapping f is a minimal dominat-
ing broadcast on CT r with cost σ(f) = σ(g).
If Pg(d1) = θ5

i , then g(t1
i−1) = g(t1

i ) = g(t2
i ) = 1, but g(t1

i+1) ̸= 1 and g(t1
i+2) ̸= 1, be-

cause otherwise the mapping h obtained from g by setting h(t1
i−1) = h(t2

i ) = h(t1
i+2) = 0,

h(t1
i ) = h(t1

i+1) = 3, and h(u) = g(u) otherwise, the mapping h would be a minimal
dominating broadcast on CT r with cost σ(h) = σ(g) − 5 + 6 = Γb(CT r) + 1, a contradic-
tion with the optimality of g. Therefore, (g(t1

i+1), g(t1
i+2)) ∈ {(0, 3), (1, 0)}. Assume first

(g(t1
i+1), g(t1

i+2)) = (0, 3). Thanks to Theorem 3.3, we must have g(t1
i+3) = 3 and g(t1

i+4) =
0, and since the pattern 1111 does not occur in CT r, we also have mi+3 + mi+4 ≥ 3. We
now define a mapping f obtained from g by modifying some g-values of the leaves of the
sub-caterpillar CT [i − 1, i + 4] as follows. We set f(t1

i−1) = f(t2
i ) = f(t1

i+2) = 0, f(tj
i+3) =

f(tk
i+4) = 1 for every j ∈ {1, . . . , mi+3}, k ∈ {1, . . . , mi+4}, f(t1

i ) = f(t1
i+1) = 3, and

f(u) = g(u) otherwise. The mapping f is a minimal dominating broadcast on CT r with
cost σ(f) = σ(g) − 9 + 6 + mi+3 + mi+4 = σ(g) + mi+3 + mi+4 − 3. The optimality of g
implies mi+3 + mi+4 = 3, and thus σ(f) = σ(g).
For the case (g(t1

i+1), g(t1
i+2)) = (1, 0), we have, g(t1

i+3) = g(t1
i+4) = 3 and g(tj

i+5) = 0 for
every j ∈ {1, . . . , mi+5}. We again define a mapping f obtained from g by modifying some
g-values of the leaves of the sub-caterpillar CT [i − 1, i + 5] as follows. We set f(t1

i−1) =
f(t2

i ) = f(t1
i+2) = 0, f(tj

i+3) = f(tk
i+4) = f(tℓ

i+5) = 1 for every j ∈ {1, . . . , mi+3},
k ∈ {1, . . . , mi+4}, ℓ ∈ {1, . . . , mi+5}, f(t1

i ) = f(t1
i+1) = 3, and f(u) = g(u) otherwise.

As previously, we have, mi+3 +mi+4 = 3 and the mapping f is a minimal dominating broad-
cast on CT r with cost σ(f) = σ(g)−10+6+mi+3+mi+4+mi+5 ≥ σ(g)−4+3+mi+5. The
optimality of g implies mi+5 = 1, and thus σ(f) = σ(g). Hence, CT r admits a Γb-broadcast
f such that Pf (d1) = θ2

i .

4. Assume that mi+1 = mi+2 = mi+3 = 1 and mi−1 ̸= 1. Since the pattern 1111 does not
occur in CT r, we have mi+4 ≥ 2 et since mi−1 ≥ 3, we also have Pg(d1) /∈ {θ2

i , θ3
i , θ4

i }.
If Pg(d1) = θ5

i , then g(t1
i ) = g(t2

i ) = 1 and equalities g(t1
i+1) = g(t1

i+2) = g(t1
i+3) = 1

cannot hold, because otherwise the mapping h obtained from g by setting h(t1
i ) = h(t2

i ) =
h(t1

i+3) = 0, h(t1
i+1) = h(t1

i+2) = 3, and h(u) = g(u) otherwise, would be a minimal
dominating broadcast on CT r with cost σ(h) = σ(g)−5+6 = Γb(CT r)+1, a contradiction
with the optimality of g. The case g(t1

i+1) = 0 and g(t1
i+2) = 3 leads to g(t1

i+3) = 3 and
g(t1

i+4) = 0, and then we can define a mapping f obtained from g by modifying some g-
values of the leaves of the sub-caterpillar CT [i, i + 4] as follows. We set f(t1

i ) = f(t2
i ) =
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f(t1
i+3) = 0, f(tj

i+4) = 1 for every j ∈ {1, . . . , mi+4}, f(t1
i+1) = 3, and f(u) = g(u)

otherwise. The mapping f is a minimal dominating broadcast on CT r with cost σ(f) =
σ(g) − 5 + 3 + mi+4 = σ(g) + mi+4 − 2. The optimality of g implies mi+4 = 2, and thus
σ(f) = σ(g).
The case g(t1

i+1) = 1 and g(t1
i+2) = 0 leads to g(t1

i+3) = g(t1
i+4) = 3 and g(t1

i+5) = 0, and
then we can define a mapping f obtained from g by modifying the g-values of the leaves of
the sub-caterpillar CT [i, i + 5] as follows. We set f(t1

i ) = f(t2
i ) = f(t1

i+3) = 0, f(tj
i+4) =

f(tk
i+5) = 1 for every j ∈ {1, . . . , mi+4} and k ∈ {1, . . . , mi+5}, f(t1

i+1) = f(t1
i+2) = 3,

and f(u) = g(u) otherwise. The mapping f is a minimal dominating broadcast on CT r with
cost σ(f) = σ(g) − 9 + 6 + mi+4 + mi+5 = σ(g) + mi+4 + mi+5 − 3. The optimality of g
implies mi+4 = 2 and mi+5 = 1, and thus σ(f) = σ(g).
The case g(t1

i+1) = g(t1
i+2) = 1 and g(t1

i+3) = 0 leads to g(t1
i+4) = g(t1

i+5) = 3 and
g(t1

i+6) = 0, and then we can again define a mapping f obtained from g by modifying some
g-values of the leaves of the sub-caterpillar CT [i, i+6] as follows. We set f(t1

i ) = f(t2
i ) = 0,

f(tj
i+4) = f(tk

i+5) = f(tℓ
i+6) = 1 for every j ∈ {1, . . . , mi+4}, k ∈ {1, . . . , mi+5} and

ℓ ∈ {1, . . . , mi+6}, f(t1
i+1) = f(t1

i+2) = 3, and f(u) = g(u) otherwise. The mapping
f is a minimal dominating broadcast on CT r with cost σ(f) = σ(g) − 10 + 6 + mi+4 +
mi+5 + mi+6 = σ(g) + mi+4 + mi+5 + mi+6 − 4. The optimality of g implies mi+4 = 2 and
mi+5 = mi+6 = 1, and thus σ(f) = σ(g). Hence CT r admits a Γb-broadcast f such that
Pf (d1) = θ1

i .

5. This result is immediate from Lemma 3.9.

This completes the proof.

Proof of Lemma 3.14. Let g be a Γb-broadcast on CT r satisfying the properties of Theorem 3.3
and let d1 = zi0 for some index i ∈ {0, . . . , k}.

1. If Pg(d1) = θ3
i0 , then g(t1

i0−2) = g(t1
i0+1) = 0 and g(t1

i0−1) = g(t1
i0) = 3. Since i0 ∈ {2, 3},

we can define, in the case i0 = 2, a mapping f by setting f(t1
i0−1) = 0, f(t1

i0) = f(t2
i0) =

f(t1
i0+1) = 1, f(t1

i0−2) = 3, and f(u) = g(u) otherwise, and in the case i0 = 3, f(t1
i0−1) =

f(t1
i0) = f(t2

i0) = f(t1
i0+1) = 1, f(t1

i0−3) = 3, and f(u) = g(u) otherwise. In both cases,
f is a minimal dominating broadcast on CT r with cost σ(f) = σ(g) and Pf (d1) ̸= θ3

i0 .
If Pg(d1) = θ4

i0 , then g(t1
i0−3) = g(t1

i0) = 0 and g(t1
i0−2) = g(t1

i0−1) = 3. We define a
mapping f by setting f(t1

i0−2) = 0, f(t1
i0−1) = f(t1

i0) = f(t2
i0) = 1, f(t1

i0−3) = 3, and
f(u) = g(u) otherwise. The mapping f is a minimal dominating broadcast on CT r, with
cost σ(f) = σ(g), and Pf (d1) ̸= θ4

i0 .

2. From Item 1, we can assume without loss of generality that Pg(d1) ∈ {θ1
i0 , θ2

i0 , θ5
i0}.

(a) Let i0 = 1 and d1 ∈ F 2
1 = CT [0, 3]. We have then m0 = m2 = m3 = 1 and m1 = 2.

If Pg(d1) = θ1
1, then m0 = m2 = m3 = m4 = 1, m1 = 2, g(t1

1) = g(t1
2) = g(t1

4) = 0,
g(t1

0) = 1 and g(t1
2) = g(t1

3) = 3. We define a mapping f by setting f(t1
0) = f(t1

3) = 0,
f(t1

4) = 1, f(t1
1) = 3, and f(u) = g(u) otherwise. The mapping f is a minimal

dominating broadcast on CT r, with cost σ(f) = σ(g)−4+4 = σ(g), and Pf (d1) = θ2
1.
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If Pg(d1) = θ5
1, then g(t1

1) = g(t2
1) = 1 and equalities g(t1

2) = g(t1
3) = 1 cannot hold,

because otherwise the mapping h obtained from g by setting h(t1
0) = h(t2

1) = h(t1
3) =

0, h(t1
1) = h(t1

2) = 3, and h(u) = g(u), otherwise the mapping h would be a minimal
dominating broadcast on CT r with cost σ(h) = σ(g) − 5 + 6 = Γb(CT r) + 1, a
contradiction with the optimality of g. Hence, we get (g(t1

2), g(t1
3)) ∈ {(1, 0), (0, 3)}.

The case g(t1
2) = 1 and g(t1

3) = 0 implies m4 + m5 = 3 and m6 = 1, g(t1
4) = g(t1

5) =
3 and g(t1

6) = 0. We define a mapping f by setting f(t1
0) = f(t2

1) = 0, f(tj
4) =

f(tk
5) = f(t1

6) = 1 for every j = 1, . . . , m4, k = 1, . . . , m5, f(t1
1) = f(t1

2) = 3, and
f(u) = g(u) otherwise. The mapping f is a minimal dominating broadcast on CT r,
with cost σ(f) = σ(g) − 10 + 7 + m4 + m5 = σ(g). The case g(t1

2) = 0 and g(t1
3) = 3

implies again m4 + m5 = 3, g(t1
4) = 3 and g(t1

5) = 0. We define a mapping f by
setting f(t1

0) = f(t2
1) = f(t1

3) = 0, f(tj
4) = f(tk

5) = 1 for every j = 1, . . . , m4,
k = 1, . . . , m5, f(t1

1) = f(t1
2) = 3, and f(u) = g(u) otherwise. The mapping f is a

minimal dominating broadcast on CT r with cost σ(f) = σ(g)−9+6+m4+m5 = σ(g).
Hence, in both cases, we get Pf (d1) = θ2

1.

(b) Let i0 = 3 and d1 ∈ F 2
3 = CT [2, 5]. We have then m0 = m1 = m2 = m4 = m5 = 1

and m3 = 2. If Pg(d1) = θ1
3, then m6 = 1, g(t1

1) = g(t1
3) = g(t1

6) = 0, g(t1
2) = 1

and g(t1
0) = g(t1

4) = g(t1
5) = 3. We define a mapping f by setting f(t1

2) = f(t1
5) = 0,

f(t1
6) = 1, f(t1

3) = 3, and f(u) = g(u) otherwise. The mapping f is a minimal
dominating broadcast on CT r, with cost σ(f) = σ(g)−4+4 = σ(g), and Pf (d1) = θ2

3.
If Pg(d1) = θ5

3, then g(t1
1) = 0, g(t1

2) = g(t1
3) = g(t2

3) = 1 and g(t1
0) = 3. Moreover,

equalities g(t1
4) = g(t1

5) = 1 cannot hold, because otherwise the mapping h obtained
from g by setting h(t1

1) = h(t1
2) = h(t2

3) = h(t1
5) = 0, h(t1

0) = h(t1
3) = h(t1

4) = 3 and
h(u) = g(u), otherwise, the mapping h would be a minimal dominating broadcast on
CT r with cost σ(h) = σ(g) − 8 + 9 = Γb(CT r) + 1, a contradiction with optimality
of g. Therefore, (g(t1

4), g(t1
5)) ∈ {(1, 0), (0, 3)}. The case g(t1

4) = 1 and g(t1
5) = 0

implies m6 + m7 = 3, m8 = 1, g(t1
6) = g(t1

7) = 3 and g(t1
8) = 0. We define a mapping

f by setting f(t1
2) = f(t2

3) = 0, f(tj
6) = f(tk

7) = f(t1
8) = 1 for every j = 1, . . . , m6,

k = 1, . . . , m7, f(t1
0) = f(t1

3) = f(t1
4) = 3, and f(u) = g(u) otherwise. The mapping

f is a minimal dominating broadcast on CT r, with cost σ(f) = σ(g) − 10 + 7 + m6 +
m7 = σ(g). The case g(t1

4) = 0 and g(t1
5) = 3 implies m6 + m7 = 3, g(t1

6) = 3
and g(t1

7) = 0. We define a mapping f by setting f(t1
2) = f(t2

3) = f(t1
5) = 0,

f(tj
6) = f(tk

7) = 1 for every j = 1, . . . , m6, k = 1, . . . , m7, f(t2
3) = f(t1

4) = 3, and
f(u) = g(u) otherwise. The mapping f is a minimal dominating broadcast on CT r,
with cost σ(f) = σ(g) − 9 + 6 + m6 + m7 = σ(g). Hence, in both cases, we get
Pf (d1) = θ2

3.

3. As previously, we can assume that Pg(d1) ∈ {θ1
i0 , θ2

i0 , θ5
i0}.

(a) Let i0 = 0 and d1 ∈ F 1
0 = CT [0, 3]. We have then m1 = m2 = m3 = 1, m0 = 2,

and Pg(d1) ̸= θ2
0. If Pg(d1) = θ5

0, then g(t1
2) = g(t1

3) = 1 cannot hold, because
otherwise g(t1

0) = g(t2
0) = g(t1

1) = 1, and the mapping h obtained from g by setting
h(t1

0) = h(t2
0) = h(t1

3) = 0, h(t1
1) = h(t1

2) = 3 and h(u) = g(u), otherwise, would be a

263



www.ejgta.org

Upper broadcast domination number of caterpillars with no trunks | S. Bouchouika et al.

minimal dominating broadcast on CT r with cost σ(h) = σ(g) − 5 + 6 = Γb(CT r) + 1,
a contradiction with optimality of g. Therefore, (g(t1

2), g(t1
3)) ∈ {(1, 0), (0, 3), (3, 3)}.

The case g(t1
2) = 1 and g(t1

3) = 0 implies m4 = 2, m5 = m6 = 1, g(t1
6) = 0,

g(t1
1) = 1, and g(t1

4) = g(t1
5) = 3. We define a mapping f by setting f(t1

0) = f(t2
0) = 0,

f(t1
4) = f(t2

4) = f(t1
5) = f(t1

6) = 1, f(t1
1) = f(t1

2) = 3, and f(u) = g(u) otherwise.
The mapping f is a minimal dominating broadcast on CT r, with cost σ(f) = σ(g) −
10+10 = σ(g). The case g(t1

2) = 0 and g(t1
3) = 3 implies m4 = 2, m5 = 1, g(t1

5) = 0,
g(t1

1) = 1, and g(t1
4) = 3. We define a mapping f by setting f(t1

0) = f(t2
0) = f(t1

3) =
0, f(t1

4) = f(t2
4) = f(t1

5) = 1, f(t1
1) = f(t1

2) = 3, and f(u) = g(u) otherwise. The
mapping f is a minimal dominating broadcast on CT r, with cost σ(f) = σ(g)−9+9 =
σ(g). The case g(t1

2) = g(t1
3) = 3 implies m4 = 2 and g(t1

1) = g(t1
4) = 0. We define a

mapping f by setting f(t1
0) = f(t2

0) = f(t1
3) = 0, f(t1

4) = f(t2
4) = 1, f(t1

1) = 3, and
f(u) = g(u) otherwise. The mapping f is a minimal dominating broadcast on CT r,
with cost σ(f) = σ(g) − 8 + 8 = σ(g). Hence, in all three cases, we get Pf (d1) = θ1

0.

(b) Let i0 = 2 and d1 ∈ F 1
2 = CT [2, 5]. We have then m0 = m1 = m3 = m4 = m5 = 1,

m2 = 2, and Pg(d1) ̸= θ2
2. Indeed, if Pg(d1) = θ2

2, then g(t1
1) = g(t1

4) = 0, g(t1
0) = 1,

g(t1
5) ∈ {0, 1}1 and g(t1

2) = g(t1
3) = 3, and the mapping h obtained from g by setting

h(t1
2) = h(t2

2) = h(t1
5 = 0, h(t1

0) = h(t1
4) = 3 and h(u) = g(u), otherwise, would be a

minimal dominating broadcast on CT r with cost σ(h) ≥ σ(g)−5+6 = Γb(CT r)+1, a
contradiction with optimality of g. Assume now Pg(d1) = θ5

2. We then have g(t1
1) = 0,

g(t1
2) = g(t2

2) = 1 and g(t1
0) = 3 and, either g(t1

3) = 1 or g(t1
3) = 0. For the case

g(t1
3) = 1 , we define a mapping f by setting f(t1

0) = f(t2
2) = f(t1

3) = 0, f(t1
1) =

f(t1
2) = 3 and, f(u) = g(u) otherwise. The mapping f is a minimal dominating

broadcast on CT r, with cost σ(f) = σ(g) − 6 + 6 = σ(g). For the case g(t1
3) = 0,

we get m6 = 2, g(t1
4) = g(t1

5) = 3, and thus, we define again a mapping f by setting
f(t1

2) = f(t2
2) = f(t1

5) = 0, f(t1
6) = f(t2

6) = 1, f(t1
3) = 3, and f(u) = g(u) otherwise.

The mapping f is a minimal dominating broadcast on CT r, with cost σ(f) = σ(g) −
5 + 5 = σ(g). Hence, in both cases, we get Pf (d1) = θ1

2.

4. This result is immediate from Lemma 3.9.

This completes the proof.
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