

Electronic Journal of Graph Theory and Applications

Perfect matching transitivity of circulant graphs

Isaac A. Reiter, Ju Zhou

Kutztown University of Pennsylvania, Kutztown, PA

ireit426@live.kutztown.edu, zhou@kutztown.edu

Abstract

A graph G is perfect matching transitive, shortly PM-transitive, if for any two perfect matchings M_1 and M_2 of G, there is an automorphism $f : V(G) \mapsto V(G)$ such that $f_e(M_1) = M_2$, where $f_e(uv) = f(u)f(v)$. In this paper, the authors completely characterize the perfect matching transitivity of circulant graphs of order less than or equal to 10.

Keywords: automorphism, vertex-transitive, edge-transitive, perfect matching, perfect matching transitivity, PM-transitive, circulant graph. Mathematics Subject Classification: 05C60 DOI: 10.5614/ejgta.2022.10.2.14

1. Introduction

An automorphism of a graph is a form of symmetry in which the graph is mapped onto itself while preserving the edge-vertex connectivity. Formally, an automorphism of a graph G = (V(G), E(G)) is a permutation f of the vertex set V(G) such that the pair of vertices uv is an edge of G if and only if f(u)f(v) is also an edge of G. In other words, it is a graph isomorphism from G to itself. Every graph automorphism f induces a mapping $f_e : E(G) \mapsto E(G)$ such that $f_e(uv) = f(u)f(v)$. For any vertex set $X \subseteq V(G)$ and edge set $M \subseteq E(G)$, denote $f(X) = \{f(v) : v \in X\}$ and $f_e(M) = \{f_e(uv) : uv \in M\}$.

A graph G is vertex-transitive [11] if for any two given vertices v_1 and v_2 of G, there is an automorphism $f : V(G) \mapsto V(G)$ such that $f(v_1) = v_2$. In other words, a graph is vertextransitive if its automorphism group acts transitively upon its vertices. A graph is vertex-transitive if and only if its complement graph is vertex-transitive (since the group actions are identical). For example, the finite Cayley graphs, the Petersen graph, and $C_n \times K_2$ with $n \ge 3$ are vertex-transitive.

Received: 1 April 2022, Revised: 17 June 2022, Accepted: 26 September 2022.

A graph G is *edge-transitive* if for any two given edges e_1 and e_2 of G, there is an automorphism of G that maps e_1 to e_2 . In other words, a graph is edge-transitive if its automorphism group acts transitively upon its edges. The complete bipartite graph $K_{m,n}$, the Petersen graph, and the cubical graph $C_n \times K_2$ with n = 4 are edge-transitive.

A graph G is symmetric or arc-transitive if for any two pairs of adjacent vertices u_1v_1 and u_2v_2 of G, there is an automorphism $f: V(G) \mapsto V(G)$ such that $f(u_1) = u_2$ and $f(v_1) = v_2$. In other words, a graph is symmetric if its automorphism group acts transitively upon ordered pairs of adjacent vertices, that is, upon edges considered as having a direction. The cubical graph $C_n \times K_2$ with n = 4 and Petersen graph are symmetric graphs.

Every connected symmetric graph must be both vertex-transitive and edge-transitive, and the converse is true for graphs of odd degree [2]. However, for graphs of even degree, there exist connected graphs which are vertex-transitive and edge-transitive, but not symmetric [3]. Every symmetric graph without isolated vertices is vertex-transitive, and every vertex-transitive graph is regular. However, not all vertex-transitive graphs are symmetric (for example, the edges of the truncated tetrahedron), and not all regular graphs are vertex-transitive (for example, the Frucht graph and Tietze's graph).

A lot of work has been done about the relationship between vertex-transitive graphs and edgetransitive graphs. Some of the related results can be found in [3]-[17]. In general, edge-transitive graphs need not be vertex-transitive. The Gray graph is an example of a graph which is edgetransitive but not vertex-transitive. Conversely, vertex-transitive graphs need not be edge-transitive. The graph $C_n \times K_2$, where $n \ge 5$ is vertex-transitive but not edge-transitive.

A graph G is *perfect matching transitive*, shortly *PM-transitive*, if for any two perfect matchings M_1 and M_2 of G, there is an automorphism $f : V(G) \mapsto V(G)$ such that $f_e(M_1) = M_2$, where f_e is the mapping induced by f.

In [18], the author (Zhou) verified that some well known symmetric graphs such as C_{2n} , K_{2n} , $K_{n,n}$, and the Petersen graph are PM-transitive, constructed several families of PM-transitive graphs which are neither vertex-transitive nor edge-transitive, discussed some methods to generate new PM-transitive graphs, and proved that all the generated Petersen graphs except the Petersen graph are non-perfect matching transitive.

A circulant graph is a graph of n vertices v_1, v_2, \ldots, v_n in which the *i*th vertex is adjacent to the (i+j)th and (i-j)th vertices for each j in a list l, where the addition and subtraction are taken by modulo n. In Section 2, the authors prove a collection of general results about the PM-transitivity of connected circulant graphs of even order $n \ge 4$. In Section 3, the authors characterize the PM-transitivity of connected circulant graphs of order 6. In Section 4, the authors characterize the PM-transitivity of connected circulant graphs of order 8. In Section 5, the authors characterize the PM-transitivity of connected circulant graphs of order 10.

2. PM-transitivity of Connected Circulant Graphs of Order 2n

For any integer $n \ge 2$, the circulant graph $Ci_{2n}(1, 2, ..., n)$ gives the complete graph K_{2n} , the circulant graph $Ci_{2n}(1)$ gives the cyclic graph C_{2n} , and the circulant graph $Ci_{2n}(1, 3, 5, ..., m)$, where *m* represents the largest odd integer less than or equal to *n*, gives the complete bipartite graph $K_{n,n}$. The following Theorem 2.1 is proven in [18].

Theorem 2.1. For any integer $n \ge 2$, the circulant graphs $Ci_{2n}(1, 2, ..., n) \cong K_{2n}$, $Ci_{2n}(1) \cong C_{2n}$, and $Ci_{2n}(1, 3, 5, ..., m) \cong K_{n,n}$, where *m* represents the largest odd integer that is less than or equal to *n*, are *PM*-transitive.

Theorem 2.2. For any integer $n \ge 4$, the circulant graph $Ci_{2n}(1,2)$ is not PM-transitive.

Proof. Let $M_1 = \{v_1v_3, v_2v_{2n}, v_4v_5, v_6v_7, v_8v_9, \dots, v_{2n-2}v_{2n-1}\}$ and $M_2 = \{v_1v_2, v_3v_4, v_5v_6, \dots, v_{2n-1}v_{2n}\}$. Then M_1 and M_2 are two perfect matchings of G such that $G - M_1$ has 3-cycles $(v_2v_3v_4v_2$ being one such 3-cycle) while $G - M_2 \cong C_n \times K_2$ doesn't have 3-cycles. Therefore, G is not PM-transitive.

Theorem 2.3. For any integer $n \ge 4$, the circulant graph $Ci_{2n}(1, n)$ is not PM-transitive.

Proof. Let $M_1 = \{v_1v_{n+1}, v_2v_{n+2}, \dots, v_nv_{2n}\}$. If n = 4, then let $M_2 = \{v_8v_1, v_2v_3, v_4v_5, v_6v_7\}$. Otherwise, let $M_2 = \{v_{2n}v_1, v_2v_3, v_nv_{n+1}, v_{n+2}v_{n+3}, v_4v_{n+4}, v_5v_{n+5}, \dots, v_{n-1}v_{2n-1}\}$. Then M_1 and M_2 are two perfect matchings of G such that $G - M_1$ is a 2*n*-cycle and $G - M_2$ is a union of a 4-cycle $v_1v_2v_{n+2}v_{n+1}v_1$ and a (2n-4)-cycle $v_3v_4v_5\cdots v_nv_{2n}v_{2n-1}v_{2n-2}\cdots v_{n+3}v_3$. Therefore, $Ci_{2n}(1,n)$ is not PM-transitive.

In this paper's proofs, the authors shall frequently use the phrase "without loss of generality, let $f(v_1) = v_1$." The following lemma justifies why we can make this assumption. We will define a perfect matching M of a circulant graph G to be *vertex-perfect-matching transitive* if for any two given vertices v_i and v_j of G, there is an automorphism $f : V(G) \mapsto V(G)$ such that $f(v_i) = v_j$ and $f_e(M) = M$.

Lemma 2.1. Let G be a circulant graph of order 2n, $n \ge 2$. Let M_1 and M_2 be two perfect matchings of G such that either M_1 or M_2 is vertex-perfect-matching transitive. If f is an automorphism $f: V(G) \mapsto V(G)$ such that $f_e(M_1) = M_2$, then we may assume without loss of generality that $f(v_1) = v_1$.

Proof. Let $f: V(G) \mapsto V(G)$ be an automorphism of G such that $f_e(M_1) = M_2$.

If M_1 is vertex-perfect-matching transitive, let v_i be the vertex such that $f(v_i) = v_1$. Since M_1 is vertex-perfect-matching transitive, there exists an automorphism $g: V(G) \mapsto V(G)$ such that $g(v_1) = v_i$ and $g_e(M_1) = M_1$. Now, we define $h = f \circ g$, implying that h is an automorphism such that $h(v_1) = v_1$ and $h_e(M_1) = M_2$.

If M_2 is vertex-perfect-matching transitive, let v_i be the vertex such that $f(v_1) = v_i$. Since M_2 is vertex-perfect-matching transitive, there exists an automorphism $g: V(G) \mapsto V(G)$ such that $g(v_i) = v_1$ and $g_e(M_2) = M_2$. Now, we define $h = g \circ f$, implying that h is an automorphism such that $h(v_1) = v_1$ and $h_e(M_1) = M_2$.

In other words, any automorphism $f : V(G) \mapsto V(G)$ such that $f_e(M_1) = M_2$ induces an automorphism $h : V(G) \mapsto V(G)$ such that $h(v_1) = v_1$ and $h_e(M_1) = M_2$. Thus, we may assume without loss of generality that $f(v_1) = v_1$.

Lemma 2.2. Let G be a circulant graph of order $2n, n \ge 2$.

(1) If G contains the perfect matching $M_1 = \{v_1v_{n+1}, v_2v_{n+2}, v_3v_{n+3}, \dots, v_nv_{2n}\}$, then M_1 is vertex-perfect-matching transitive.

(2) If G contains the perfect matching $M_2 = \{v_1v_2, v_3v_4, v_5v_6, \dots, v_{2n-1}v_{2n}\}$, then M_2 is vertex-perfect-matching transitive.

Proof. First, consider G with M_1 . Let $v_i, v_j \in V(G)$, and define $\delta_1 = j - i$. Let $f : V(G) \mapsto V(G)$ such that $f(v_m) = v_{m+\delta_1}$ for all $1 \leq m \leq 2n$. Then f is a rotation of G, and f is an automorphism such that $f(v_i) = v_j$ and $f_e(M) = M$. Thus, M_1 is vertex-perfect-matching transitive, and (1) is proven.

Second, consider G with M_2 . Let $v_i, v_j \in V(G)$, and define $\delta_2 = j - i$. If δ_2 is even, then let $g: V(G) \mapsto V(G)$ such that $g(v_m) = v_{m+\delta_2}$ for all $1 \leq m \leq 2n$. Then g is a rotation of G. It is the case that g is an automorphism such that $g(v_i) = v_j$ and $g_e(M) = M$.

If δ_2 is odd, then let $h_1 : V(G) \mapsto V(G)$ such that $h_1(v_p) = v_{2n+1-p}$ for all $1 \le p \le 2n$. Then h_1 is a reflection of G, and h_1 is an automorphism. Also, h_1 maps odd-indexed vertices to evenindexed vertices and even-indexed vertices to odd-indexed vertices. Let $v_k = h_1(v_i)$ and define $\delta_3 = j - k$. Since h_1 switches the parity of all vertices, δ_3 is even. Let $h_2 : V(G) \mapsto V(G)$ such that $h_2(v_p) = v_{p+\delta_3}$ for all $1 \le p \le 2n$. Then h_2 is a rotation of G, and h_2 is an automorphism. Let $h : V(G) \mapsto V(G)$ such that $h = h_2 \circ h_1$. Then h is an automorphism such that $h(v_i) = v_j$. Furthermore, let $v_x v_{x+1} \in M$. Then h maps this edge to $v_{2n+1-x+\delta_3}v_{2n+1-x-1+\delta_3}$. Since δ_3 is even and x is odd, $2n + 1 - x - 1 + \delta_3$ is odd. Thus, $v_{2n+1-x+\delta_3}v_{2n+1-x-1+\delta_3} \in M$. Since h is bijective, it maps each edge in M to a unique edge in M. This implies that $h_e(M) = M$. Thus, M_2 is vertex-perfect-matching transitive, and (2) is proven.

The condition of Lemma 2.1 is that one of the perfect matchings is vertex-perfect-matching transitive. Thus, whenever Lemma 2.1 is invoked, one of the perfect matchings in Lemma 2.2 will be present.

Theorem 2.4. For any odd integer $n \ge 5$, the circulant graph $Ci_{2n}(1, 2, 3, ..., n - 1)$ is not *PM-transitive*.

Proof. If n is odd, let $M_1 = \{v_1v_2, v_3v_4, v_5v_6, \ldots, v_{2n-1}v_{2n}\}$ and $M_2 = \{v_{n+1}v_{n+2}, v_nv_{n+3}\} \cup (M_1 \setminus \{v_nv_{n+1}, v_{n+2}v_{n+3}\})$. M_1 and M_2 are two perfect matchings of G. Suppose f is an automorphism $f : V(G) \mapsto V(G)$ such that $f_e(M_1) = M_2$. By Lemma 2.1, we can assume, without loss of generality, that $f(v_1) = v_1$. Since $v_1v_2 \in M_2$, this implies that $f(v_2) = v_2$. Since $v_1v_{n+1} \notin E(G)$, $f(v_1)f(v_{n+1}) = v_1f(v_{n+1}) \notin E(G)$. Since v_{n+1} is the only vertex not adjacent to v_1 , $f(v_{n+1}) = v_{n+1}$. Similarly, $v_2v_{n+2} \notin E(G)$ implies that $f(v_2)f(v_{n+2}) = v_2f(v_{n+2}) \notin E(G)$. Since v_{n+2} is the only vertex not adjacent to v_2 , $f(v_{n+2}) = v_{n+2}$. Notice that $v_{n+1}v_{n+2} \notin M_1$ but $f(v_{n+1})f(v_{n+2}) = v_{n+1}v_{n+2} \in M_2$, contradicting $f_e(M_1) = M_2$. Thus, G is not PM-transitive.

3. PM-transitivity of Connected Circulant Graphs of Order 6

In this section, we characterize the PM-transitivity of connected circulant graphs of order 6. The circulant graphs of order 6 include $Ci_6(1)$, $Ci_6(2)$, $Ci_6(3)$, $Ci_6(1,2)$, $Ci_6(1,3)$, $Ci_6(2,3)$, and $Ci_6(1,2,3)$, where $Ci_6(2)$ and $Ci_6(3)$ are disconnected.

Theorem 3.1. If G is a connected PM-transitive circulant graph of order 6, then G is congruent to $Ci_6(1)$, $Ci_6(1,2)$, $Ci_6(1,3)$, or $Ci_6(1,2,3)$.

Proof. If $G \cong Ci_6(1) = C_6$, $G \cong Ci_6(1,3) = K_{3,3}$, or $G \cong Ci_6(1,2,3) = K_6$, then G is PM-transitive by Theorem 2.1. We just need to consider the following two cases.

Case 1. $G \cong Ci_6(1,2)$ is PM-transitive.

Define $\{v_1v_2, v_2v_3, v_3v_4, v_4v_5, v_5v_6, v_6v_1\}$ to be the *outer edges* and all other edges to be the *inner edges*. Let M be a perfect matching of G. Notice that the six inner edges form two C_3 subgraphs. If M contains three inner edges, then one of these subgraphs will have two edges in M. This results in one vertex being covered twice, a contradiction. Thus, M must contain at least one outer edge.

Without loss of generality, let $v_5v_6 \in M$. To cover the remaining vertices, either $v_1v_2, v_3v_4 \in M$ or $v_1v_3, v_2v_4 \in M$. Let $M_1 = \{v_1v_2, v_3v_4, v_5v_6\}$ and $M_2 = \{v_1v_3, v_2v_4, v_5v_6\}$.

Now, it simply remains to find an automorphism that maps M_1 to M_2 . Let $f: V(G) \to V(G)$ such that $f(v_1) = v_1$, $f(v_2) = v_3$, $f(v_3) = v_2$, $f(v_4) = v_4$, $f(v_5) = v_6$, and $f(v_6) = v_5$. Then f is an automorphism such that $f_e(M_1) = M_2$. Thus, G is PM-transitive.

Case 2. $G \cong Ci_6(2,3)$ is not PM-transitive.

Let $M_1 = \{v_1v_4, v_2v_5, v_3v_6\}$ and $M_2 = \{v_1v_5, v_2v_4, v_3v_6\}$. Then M_1 and M_2 are two perfect matchings of G such that $G - M_1$ is a union of two 3-cycles while $G - M_2$ is a 6-cycle. Therefore, G is not PM-transitive.

In summary, the connected PM-transitive circulant graphs of order 6 are congruent to $Ci_6(1)$, $Ci_6(1,2)$, $Ci_6(1,3)$, or $Ci_6(1,2,3)$. In other words, they are congruent to C_6 , $K_{2,2,2}$, $K_{3,3}$, or K_6 .

4. PM-transitivity of Connected Circulant Graphs of Order 8

In this section, we characterize the PM-transitivity of connected circulant graphs of order 8. The circulant graphs of order 8 include $Ci_8(1)$, $Ci_8(2)$, $Ci_8(3)$, $Ci_8(4)$, $Ci_8(1,2)$, $Ci_8(1,3)$, $Ci_8(1,4)$, $Ci_8(2,3)$, $Ci_8(2,4)$, $Ci_8(3,4)$, $Ci_8(1,2,3)$, $Ci_8(1,2,4)$, $Ci_8(1,3,4)$, $Ci_8(2,3,4)$, and $Ci_8(1,2,3,4)$, where $Ci_8(2)$, $Ci_8(4)$ and $Ci_8(2,4)$ are disconnected. Furthermore, Theorem 4.1 contains 4 statements of congruence that reduce the number of cases needed to prove Theorem 4.2.

Theorem 4.1. For the connected circulant graph or order 8, the following congruence statements hold.

(1) $Ci_8(1) \cong Ci_8(3)$ (2) $Ci_8(1,2) \cong Ci_8(2,3)$ (3) $Ci_8(1,4) \cong Ci_8(3,4)$ (4) $Ci_8(1,2,4) \cong Ci_8(2,3,4)$

Proof. To prove each congruence statement, it is sufficient to define an automorphism f from the vertices of the first graph to the vertices of the second graph.

Let f be defined such that $f(v_1) = v_1$, $f(v_2) = v_4$, $f(v_3) = v_7$, $f(v_4) = v_2$, $f(v_5) = v_5$, $f(v_6) = v_8$, $f(v_7) = v_3$, and $f(v_8) = v_6$. For each of the 4 congruence statements, f is an automorphism that maps the vertices of the graph on the left side to the vertices of the graph on the right side.

Theorem 4.2. If G is a connected PM-transitive circulant graph of order 8, then G is congruent to $Ci_8(1)$, $Ci_8(1,3)$, or $Ci_8(1,2,3,4)$.

Proof. If $G \cong Ci_8(1) \cong C_8$, $G \cong Ci_8(1,3) \cong K_{4,4}$ or $G \cong Ci_8(1,2,3,4) \cong K_8$, then G is PM-transitive by Theorem 2.1. If $G \cong Ci_8(1,2)$, then G is not PM-transitive by Theorem 2.2. If $G \cong Ci_8(1,4) \cong Ci_8(3,4)$, then G is not PM-transitive by Theorem 2.3. We just need to consider the following three cases.

Case 1. $C \cong Ci_8(1, 2, 3)$ is not PM-transitive.

Let $M_1 = \{v_1v_2, v_3v_4, v_5v_6, v_7v_8\}$ and $M_2 = \{v_1v_2, v_3v_4, v_5v_8, v_6v_7\}$. Then M_1 and M_2 are two perfect matchings of G. Suppose that f is an automorphism $f : V(G) \to V(G)$ such that $f_e(M_1) = M_2$. Without loss of generality, let $f(v_1) = v_1$. This forces $f(v_2) = v_2$.

Consider v_8 . Since v_8 is adjacent to v_1 and v_2 , $f(v_8)$ cannot be v_5 or v_6 . If $f(v_8) = v_3$, then this forces $f(v_5) = v_4$. Now $v_1v_5 \notin E(G)$ and $v_1v_4 \in E(G)$, contradicting the supposition that f is an automorphism. If $f(v_8) = v_4$, then this forces $f(v_5) = v_3$. Now $v_1v_5 \notin E(G)$ and $v_1v_3 \in E(G)$, a contradiction. If $f(v_8) = v_7$, then this forces $f(v_5) = v_8$. Now $v_1v_5 \notin E(G)$ and $v_1v_8 \in E(G)$, a contradiction. If $f(v_8) = v_8$, then this forces $f(v_5) = v_7$. Now $v_1v_5 \notin E(G)$ and $v_1v_7 \in E(G)$, a contradiction. If $f(v_8) = v_8$, then this forces $f(v_5) = v_7$. Now $v_1v_5 \notin E(G)$ and $v_1v_7 \in E(G)$, a contradiction. Therefore, G is not PM-transitive.

Case 2. $G \cong Ci_8(1, 2, 4)$ is not PM-transitive.

Let $M_1 = \{v_1v_3, v_2v_8, v_4v_6, v_5v_7\}$ and $M_2 = \{v_1v_5, v_2v_6, v_3v_7, v_4v_8\}$. Then M_1 and M_2 are two perfect matchings of G such that $G - M_1$ has four 3-cycles while $G - M_2 \cong Ci_8(1, 2)$ has eight 3-cycles. Therefore, G is not PM-transitive.

Case 3. $G \cong Ci_8(1,3,4)$ is not PM-transitive.

Let $M_1 = \{v_1v_2, v_3v_4, v_5v_6, v_7v_8\}$ and $M_2 = \{v_1v_5, v_2v_6, v_3v_7, v_4v_8\}$. Then M_1 and M_2 are two perfect matchings of G such that $G - M_1$ has 3-cycles while $G - M_2 \cong Ci_8(1,3) \cong K_{4,4}$ doesn't have 3-cycles. Therefore, G is not PM-transitive.

In summary, the connected PM-transitive circulant graphs of order 8 are congruent to $Ci_8(1)$, $Ci_8(1,3)$, or $Ci_8(1,2,3,4)$. In other words, the connected PM-transitive circulant graphs of order 8 are congruent to C_8 , $K_{4,4}$, or K_8 .

5. PM-transitivity of Connected Circulant Graphs of Order 10

In this section, we characterize the PM-transitivity of connected circulant graphs of order 10. The circulant graphs of order 10 include $Ci_{10}(1)$, $Ci_{10}(2)$, $Ci_{10}(3)$, $Ci_{10}(4)$, $Ci_{10}(5)$, $Ci_{10}(1,2)$, $Ci_{10}(1,3)$, $Ci_{10}(1,4)$, $Ci_{10}(1,5)$, $Ci_{10}(2,3)$, $Ci_{10}(2,4)$, $Ci_{10}(2,5)$, $Ci_{10}(3,4)$, $Ci_{10}(3,5)$, $Ci_{10}(4,5)$, $Ci_{10}(1,2,3)$, $Ci_{10}(1,2,4)$, $Ci_{10}(1,2,5)$, $Ci_{10}(1,3,4)$, $Ci_{10}(1,3,5)$, $Ci_{10}(1,4,5)$, $Ci_{10}(2,3,4)$, $Ci_{10}(2,3,5)$, $Ci_{10}(2,4,5)$, $Ci_{10}(3,4,5)$, $Ci_{10}(1,2,3,4)$, $Ci_{10}(1,2,3,5)$, $Ci_{10}(1,2,3,4)$, $Ci_{10}(1,2,3,5)$, $Ci_{10}(1,2,3,4,5)$, $Ci_{10}(1,2,3,4,5)$, $Ci_{10}(2)$, $Ci_{10}(4)$, $Ci_{10}(2,4)$, $Ci_{10}(5)$ are disconnected. Furthermore, Theorem 5.1 contains 10 statements of congruence that reduce the number of cases needed to prove Theorem 5.2.

Theorem 5.1. For the connected circulant graph of order 10, the following congruence statements hold.

 $(1) Ci_{10}(1,2) \cong Ci_{10}(3,4)$ $(2) Ci_{10}(1,4) \cong Ci_{10}(2,3)$ $(3) Ci_{10}(2,5) \cong Ci_{10}(4,5)$ $(4) Ci_{10}(1,5) \cong Ci_{10}(3,5)$ $(5) Ci_{10}(1,2,3) \cong Ci_{10}(1,3,4)$ $(6) Ci_{10}(1,2,4) \cong Ci_{10}(2,3,4)$ $(7) Ci_{10}(1,2,5) \cong Ci_{10}(3,4,5)$ $(8) Ci_{10}(1,4,5) \cong Ci_{10}(2,3,5)$ $(9) Ci_{10}(1,2,4,5) \cong Ci_{10}(2,3,4,5)$ $(10) Ci_{10}(1,2,3,5) \cong Ci_{10}(1,3,4,5).$

Proof. To prove each congruence statement, it is sufficient to define an automorphism f from the vertices of the first graph to the vertices of the second graph.

Let f be defined such that $f(v_1) = v_1$, $f(v_2) = v_4$, $f(v_3) = v_7$, $f(v_4) = v_{10}$, $f(v_5) = v_3$, $f(v_6) = v_6$, $f(v_7) = v_9$, $f(v_8) = v_2$, $f(v_9) = v_5$, and $f(v_{10}) = v_8$. For each of the 10 congruence statements, f is an automorphism that maps the vertices of the graph on the left side to the vertices of the graph on the right side.

Theorem 5.2. If G is a connected PM-transitive circulant graph of order 10, then G is congruent to $Ci_{10}(1)$, $Ci_{10}(1,4)$, $Ci_{10}(1,3,5)$, or $Ci_{10}(1,2,3,4,5)$.

Proof. If $G \cong Ci_{10}(1) \cong Ci_{10}(3) \cong C_{10}$, $G \cong Ci_{10}(1,3,5) \cong K_{5,5}$, or $G \cong Ci_{10}(1,2,3,4,5) \cong K_{10}$, then G is PM-transitive by Theorem 2.1. If $G \cong Ci_{10}(1,2)$, then G is not PM-transitive by Theorem 2.2. If $G \cong Ci_{10}(1,5) \cong Ci_{10}(3,5)$, then G is not PM-transitive by Theorem 2.3. If $G \cong Ci_{10}(1,2,3,4) \cong K_{2,2,2,2,2}$, then G is not PM-transitive by Theorem 2.4. We just need to distinguish the following ten cases.

Case 1. $G \cong Ci_{10}(1,3)$ is not PM-transitive.

Let $M_1 = \{v_1v_2, v_3v_4, v_5v_6, v_7v_8, v_9v_{10}\}$ and $M_2 = \{v_1v_2, v_3v_{10}, v_4v_7, v_5v_8, v_6v_9\}$. Then M_1 and M_2 are two perfect matchings of G.

Let G_1 be the graph formed by identifying the vertices in each edge of M_1 . In other words, G_1 is the graph formed by identifying v_1 with v_2 , v_3 with v_4 , v_5 with v_6 , v_7 with v_8 , and v_9 with v_{10} . Similarly, let G_2 be the graph formed by identifying the vertices in each edge of M_2 . Notice that G_1 is K_5 and that G_2 is K_5 minus an edge. Therefore, G is not PM-transitive.

Case 2. $G \cong Ci_{10}(1, 4)$ is PM-transitive.

Consider the following four perfect matchings: $M_1 = \{v_1v_2, v_3v_4, v_5v_6, v_7v_8, v_9v_{10}\}, M_2 = \{v_1v_2, v_5v_6, v_8v_9, v_3v_7, v_4v_{10}\}, M_3 = \{v_1v_2, v_5v_6, v_7v_8, v_3v_9, v_4v_{10}\}, \text{ and } M_4 = \{v_1v_2, v_3v_7, v_4v_8, v_5v_9, v_6v_{10}\}.$ We shall show that every perfect matching M of G is automorphic to one of these perfect matchings. To show this, we shall define $\{v_{10}v_1, v_1v_2, v_2v_3, v_3v_4, v_4v_5, v_5v_6, v_6v_7, v_7v_8, v_8v_9, v_9v_{10}\}$ to be the *outer edges* and all other edges to be the *inner edges*.

If M contains no inner edges, then $M = M_1$ or $M = \{v_{10}v_1, v_2v_3, v_4v_5, v_6v_7, v_8v_9\}$. It is easy to see that M is automorphic to M_1 .

In the following, we assume that M contains at least one inner edge. Without loss of generality, let $v_4v_{10} \in M$. Notice that v_1, v_2 , and v_3 cannot be covered by only using outer edges in M. Thus, M has at least two inner edges.

If M has exactly two inner edges, then not all of v_1, v_2, v_3 can be covered by inner edges. Without loss of generality, let $v_1v_2 \in M$. To cover v_3 , either $v_3v_7 \in M$ or $v_3v_9 \in M$. If the former is true, then $v_8v_9, v_5v_6 \in M$. Now, M is automorphic to M_2 . If the latter is true, then $v_7v_8, v_5v_6 \in M$. Now, M is automorphic to M_3 . Suppose that M has exactly three inner edges. If neither v_1v_2 nor v_2v_3 are in M, then three more inner edges are needed to cover $\{v_1, v_2, v_3\}$, a contradiction. Thus, without loss of generality let $v_1v_2 \in M$. To cover v_5 , either $v_5v_6 \in M$ or $v_5v_9 \in M$. If the former is true, then $\{v_3, v_7, v_8, v_9\}$ cannot be covered by two inner edges in M. If the latter is true, then $v_3v_7 \in M$ in order to cover v_3 . Now, v_6 and v_8 cannot be covered by an outer edge in M, a contradiction. Thus, M cannot have three inner edges.

If M has exactly four inner edges, then consider the following. Suppose that the single outer edge in M is v_1v_2 . Now, there is no inner edge that can cover v_8 . Thus, by symmetry $v_1v_2 \notin M$ and $v_2v_3 \notin M$. If the single outer edge in M is v_8v_9 , then $v_3v_7 \in M$ to cover v_3 . To cover $v_2, v_2v_6 \in M$. To cover $v_1, v_1v_5 \in M$. Now, M is automorphic to M_4 . By symmetry, if the single outer edge in M is v_5v_6 then M is automorphic to M_4 . If the single outer edge is v_7v_8 , then $v_3v_9 \in M$ to cover v_3 . To cover $v_2, v_2v_6 \in M$. To cover $v_1, v_1v_5 \in M$. Now, M is automorphic to M_4 . By symmetry, if the single outer edge in M is v_6v_7 then M is automorphic to M_4 .

Suppose M has five inner edges. To cover v_3 , either $v_3v_7 \in M$ or $v_3v_9 \in M$. If the former is true, then $v_5v_9 \in M$ to cover v_9 . To cover $v_8, v_2v_8 \in M$. No edge covers both v_1 and v_6 , a contradiction. If the latter is true, then $v_2v_8 \in M$ to cover v_8 . To cover $v_7, v_1v_7 \in M$. Now, v_5 and v_6 cannot be covered by an inner edge, a contradiction. Thus, M cannot have five inner edges.

Table 1. f, g , and h are automorphisms			
uv	f(u)f(v)	g(u)g(v)	h(u)h(v)
v_1v_2	$v_1 v_2$	$v_1 v_2$	$v_1 v_2$
$v_2 v_3$	$v_2 v_8$	$v_2 v_3$	$v_2 v_8$
$v_3 v_4$	$v_8 v_9$	$v_{3}v_{9}$	$v_8 v_4$
$v_4 v_5$	$v_{9}v_{5}$	$v_{9}v_{5}$	$v_4 v_{10}$
$v_5 v_6$	v_5v_6	$v_5 v_6$	$v_{10}v_{6}$
$v_6 v_7$	$v_6 v_7$	$v_{6}v_{7}$	$v_{6}v_{7}$
$v_7 v_8$	$v_7 v_3$	$v_7 v_8$	$v_7 v_3$
$v_8 v_9$	$v_{3}v_{4}$	$v_8 v_4$	$v_{3}v_{9}$
$v_9 v_{10}$	$v_4 v_{10}$	$v_4 v_{10}$	$v_{9}v_{5}$
$v_{10}v_1$	$v_{10}v_1$	$v_{10}v_1$	$v_{5}v_{1}$
$v_1 v_5$	$v_1 v_5$	$v_1 v_5$	$v_1 v_{10}$
$v_5 v_9$	$v_5 v_4$	$v_5 v_4$	$v_{10}v_{9}$
$v_9 v_3$	$v_4 v_8$	$v_4 v_3$	$v_{9}v_{8}$
v_3v_7	$v_8 v_7$	$v_{3}v_{7}$	$v_8 v_7$
$v_7 v_1$	$v_7 v_1$	$v_7 v_1$	$v_7 v_1$
v_2v_6	$v_2 v_6$	$v_2 v_6$	$v_2 v_6$
$v_6 v_{10}$	$v_6 v_{10}$	$v_6 v_{10}$	$v_{6}v_{5}$
$v_{10}v_4$	$v_{10}v_{9}$	$v_{10}v_{9}$	$v_5 v_4$
$v_4 v_8$	$v_{9}v_{3}$	$v_{9}v_{8}$	$v_4 v_3$
$v_8 v_2$	$v_{3}v_{2}$	$v_8 v_2$	$v_{3}v_{2}$

Table 1. f, q, and h are automorphisms

Now we prove that M_1 is automorphic to M_2 , M_3 , and M_4 , respectively. For M_1 and M_2 , we define $f: V(G) \to V(G)$ such that $f(v_i) = v_i$ if i = 1, 2, 5, 6, 7, 10, $f(v_3) = v_8$, $f(v_4) = v_9$,

 $f(v_8) = v_3$, and $f(v_9) = v_4$. To prove that f is an automorphism, Table 1 shows that f preserves all 20 edges (the edges in the second column form E(G)). Also, f maps M_1 to M_2 , that is, $f_e(M_1) = M_2$.

For M_1 and M_3 , we define $g: V(G) \to V(G)$ such that $g(v_i) = v_i$ if i = 1, 2, 3, 5, 6, 7, 8, 10, $g(v_4) = v_9$, and $g(v_9) = v_4$. To prove that g is an automorphism, Table 1 shows that g preserves all 20 edges (the edges in the third column form E(G)). Also, g maps M_1 to M_3 , that is, $g_e(M_1) = M_3$.

For M_1 and M_4 , we define $h: V(G) \to V(G)$ such that $h(v_i) = v_i$ if i = 1, 2, 4, 6, 7, 9, $h(v_3) = v_8$, $h(v_5) = v_{10}$, $h(v_8) = v_3$, and $h(v_{10}) = v_5$. To prove that h is an automorphism, Table 1 shows that h preserves all 20 edges (the edges in the third column form E(G)). Also, h maps M_1 to M_4 , that is, $h_e(M_1) = M_4$.

Therefore, G is PM-transitive.

Case 3. $G \cong Ci_{10}(2,5)$ is not PM-transitive.

Let $M_1 = \{v_1v_6, v_2v_7, v_3v_8, v_4v_9, v_5v_{10}\}$ and $M_2 = \{v_1v_3, v_5v_7, v_4v_9, v_2v_{10}, v_6v_8\}$. Then M_1 and M_2 are two perfect matchings of G such that $G - M_1$ is a union of two 5-cycles while $G - M_2$ is a union of a 4-cycle and a 6-cycle. Therefore, G is not PM-transitive.

Case 4. $G \cong Ci_{10}(1, 2, 3)$ is not PM-transitive.

Let $M_1 = \{v_1v_2, v_3v_4, v_5v_6, v_7v_8, v_9v_{10}\}$ and $M_2 = \{v_1v_4, v_7v_{10}, v_3v_6, v_9v_2, v_5v_8\}$. Then M_1 and M_2 are two perfect matchings of G. Suppose that f is an automorphism $f : V(G) \to V(G)$ such that $f_e(M_1) = M_2$. Without loss of generality, let $f(v_1) = v_1$. This forces $f(v_2) = v_4$.

Consider v_{10} . If $f(v_{10}) = v_2$, then this forces $f(v_9) = v_9$. Now $v_2v_9 \in E(G)$ and $v_4v_9 \notin E(G)$, contradicting the supposition that f is an automorphism. If $f(v_{10}) = v_3$, then this forces $f(v_9) = v_6$. Now $v_1v_9 \in E(G)$ and $v_1v_6 \notin E(G)$, a contradiction. If $f(v_{10}) = v_5$, then $v_1v_{10} \in E(G)$ and $v_1v_5 \notin E(G)$, a contradiction. If $f(v_{10}) = v_6$, then $v_1v_{10} \in E(G)$ and $v_1v_6 \notin E(G)$, a contradiction. If $f(v_{10}) = v_7$, then $v_1v_{10} \in E(G)$ and $v_1v_7 \notin E(G)$, a contradiction. If $f(v_{10}) = v_8$, then $v_2v_{10} \in E(G)$ and $v_4v_8 \notin E(G)$, a contradiction. If $f(v_{10}) = v_9$, then $v_2v_{10} \in E(G)$ and $v_4v_9 \notin E(G)$, a contradiction. If $f(v_{10}) = v_{10}$, then $v_2v_{10} \in E(G)$ and $v_4v_{10} \notin E(G)$, a contradiction. Therefore, G is not PM-transitive.

Case 5. $G \cong Ci_{10}(1, 2, 4)$ is not PM-transitive.

Let $M_1 = \{v_1v_5, v_2v_8, v_3v_9, v_4v_{10}, v_6v_7\}$ and $M_2 = \{v_1v_2, v_3v_4, v_5v_6, v_7v_8, v_9v_{10}\}$. Then M_1 and M_2 are two perfect matchings of G. Suppose that f is an automorphism $f : V(G) \to V(G)$ such that $f_e(M_1) = M_2$. Without loss of generality, let $f(v_1) = v_1$. This forces $f(v_5) = v_2$.

Consider v_7 . Since $v_1v_7, v_5v_7 \in E(G)$, it is the case that $f(v_1)f(v_7) = v_1f(v_7) \in E(G)$ and $f(v_5)f(v_7) = v_2f(v_7) \in E(G)$. Since v_3 and v_{10} are the only vertices adjacent to both v_1 and v_2 , the image of v_7 is either v_3 or v_{10} .

If $f(v_7) = v_3$, then this forces $f(v_6) = v_4$. Now, any proposed preimage of v_{10} will contradict the fact that f is an automorphism. Specifically, if $f(v_2) = v_{10}$, then $v_2v_5 \notin E(G)$ contradicts $v_{10}v_2 \in E(G)$. If $f(v_3) = v_{10}$, then $v_3v_6 \notin E(G)$ contradicts $v_{10}v_4 \in E(G)$. If $f(v_4) = v_{10}$, then $v_4v_1 \notin E(G)$ contradicts $v_{10}v_1 \in E(G)$. If $f(v_8) = v_{10}$, then $v_8v_5 \notin E(G)$ contradicts $v_{10}v_2 \in E(G)$. If $f(v_9) = v_{10}$, then $v_9v_6 \notin E(G)$ contradicts $v_{10}v_4 \in E(G)$. If $f(v_{10}) = v_{10}$, then $v_{10}v_5 \notin E(G)$ contradicts $v_{10}v_2 \in E(G)$.

If $f(v_7) = v_{10}$, then this forces $f(v_6) = v_9$. Now, any proposed preimage of v_3 will contradict the fact that f is an automorphism. Specifically, if $f(v_2) = v_3$, then $v_5v_2 \notin E(G)$ contradicts $v_2v_3 \in E(G)$. If $f(v_3) = v_3$, then $v_7v_3 \in E(G)$ contradicts $v_{10}v_3 \notin E(G)$. If $f(v_4) = v_3$, then $v_1v_4 \notin E(G)$ contradicts $v_1v_3 \in E(G)$. If $f(v_8) = v_3$, then $v_1v_8 \notin E(G)$ contradicts $v_1v_3 \in E(G)$. If $f(v_9) = v_3$, then $v_7v_9 \in E(G)$ contradicts $v_{10}v_3 \notin E(G)$. If $f(v_{10}) = v_3$, then $v_5v_{10} \notin E(G)$ contradicts $v_2v_3 \in E(G)$. Therefore, G is not PM-transitive.

Case 6. $G \cong Ci_{10}(1, 2, 5)$ is not PM-transitive.

Let $M_1 = \{v_1v_6, v_2v_7, v_3v_8, v_4v_9, v_5v_{10}\}$ and $M_2 = \{v_1v_2, v_3v_4, v_5v_6, v_7v_8, v_9v_{10}\}$. Then M_1 and M_2 are two perfect matchings of G. Suppose that f is an automorphism $f : V(G) \to V(G)$ such that $f_e(M_1) = M_2$. Without loss of generality, let $f(v_1) = v_1$. This forces $f(v_6) = v_2$.

Now, any proposed preimage of v_{10} will contradict the fact that f is an automorphism. Specifically, if $f(v_2) = v_{10}$, then $v_2v_6 \notin E(G)$ contradicts $v_{10}v_2 \in E(G)$. If $f(v_3) = v_{10}$, then $v_3v_6 \notin E(G)$ contradicts $v_{10}v_2 \in E(G)$. If $f(v_4) = v_{10}$, then $v_4v_1 \notin E(G)$ contradicts $v_{10}v_1 \in E(G)$. If $f(v_5) = v_{10}$, then $v_5v_1 \notin E(G)$ contradicts $v_{10}v_1 \in E(G)$. If $f(v_7) = v_{10}$, then $v_7v_1 \notin E(G)$ contradicts $v_{10}v_1 \in E(G)$. If $f(v_9) = v_{10}$, then $v_9v_6 \notin E(G)$ contradicts $v_{10}v_2 \in E(G)$. If $f(v_{10}) = v_{10}$, then $v_{10}v_6 \notin E(G)$ contradicts $v_{10}v_2 \in E(G)$. If $f(v_{10}) = v_{10}$, then $v_{10}v_6 \notin E(G)$ contradicts $v_{10}v_2 \in E(G)$. Therefore, G is not PM-transitive.

Case 7. $G \cong Ci_{10}(1, 4, 5)$ is not PM-transitive.

Let $M_1 = \{v_1v_6, v_2v_7, v_3v_8, v_4v_9, v_5v_{10}\}$ and $M_2 = \{v_1v_2, v_3v_4, v_5v_6, v_7v_8, v_9v_{10}\}$. Then M_1 and M_2 are two perfect matchings of G. Suppose that f is an automorphism $f : V(G) \to V(G)$ such that $f_e(M_1) = M_2$. Without loss of generality, let $f(v_1) = v_1$. This forces $f(v_6) = v_2$.

Now, any proposed preimage of v_{10} will contradict the fact that f is an automorphism. Specifically, if $f(v_2) = v_{10}$, then $v_2v_6 \in E(G)$ contradicts $v_{10}v_2 \notin E(G)$. If $f(v_3) = v_{10}$, then $v_3v_1 \notin E(G)$ contradicts $v_{10}v_1 \in E(G)$. If $f(v_4) = v_{10}$, then $v_4v_1 \notin E(G)$ contradicts $v_{10}v_1 \in E(G)$. If $f(v_5) = v_{10}$, then $v_5v_6 \in E(G)$ contradicts $v_{10}v_2 \notin E(G)$. If $f(v_7) = v_{10}$, then $v_7v_6 \in E(G)$ contradicts $v_{10}v_2 \notin E(G)$. If $f(v_9) = v_{10}$, then $v_9v_1 \notin E(G)$ contradicts $v_{10}v_1 \in E(G)$. If $f(v_9) = v_{10}$, then $v_9v_1 \notin E(G)$ contradicts $v_{10}v_1 \in E(G)$. If $f(v_1) = v_{10}$, then $v_1v_6 \in E(G)$ contradicts $v_{10}v_2 \notin E(G)$. If $f(v_1) = v_{10}$, then $v_1v_1 \in E(G)$. If $f(v_1) = v_{10}$, then $v_1v_1 \in E(G)$. If $f(v_1) = v_{10}$, then $v_1v_1 \in E(G)$. If $f(v_1) = v_{10}$, then $v_1v_1 \in E(G)$. Therefore, G is not PM-transitive.

Case 8. $G \cong Ci_{10}(2, 4, 5)$ is not PM-transitive.

Let $M_1 = \{v_1v_3, v_2v_7, v_4v_8, v_5v_9, v_6v_{10}\}$ and $M_2 = \{v_1v_6, v_2v_7, v_3v_8, v_4v_9, v_5v_{10}\}$. Then M_1 and M_2 are two perfect matchings of G. Suppose that f is an automorphism $f : V(G) \to V(G)$ such that $f_e(M_1) = M_2$. Without loss of generality, let $f(v_1) = v_1$. This forces $f(v_3) = v_6$.

Consider v_7 . Since $v_1v_7, v_3v_7 \in E(G)$, it is the case that $f(v_1)f(v_7) = v_1f(v_7) \in E(G)$ and $f(v_3)f(v_7) = v_6f(v_7) \in E(G)$. Since there are no vertices adjacent to both v_1 and v_6 , this is a contradiction. Therefore, G is not PM-transitive.

Case 9. $G \cong Ci_{10}(1, 2, 3, 5)$ is not PM-transitive.

Let $M_1 = \{v_1v_3, v_2v_4, v_5v_6, v_7v_8, v_9v_{10}\}$ and $M_2 = \{v_1v_2, v_3v_4, v_5v_6, v_7v_8, v_9v_{10}\}$. Then M_1 and M_2 are two perfect matchings of G. Suppose that f is an automorphism $f : V(G) \to V(G)$ such that $f_e(M_1) = M_2$. Without loss of generality, let $f(v_1) = v_1$. This forces $f(v_3) = v_2$.

Consider v_7 . Since $v_1v_7, v_3v_7 \notin E(G)$, it is the case that $f(v_1)f(v_7) = v_1f(v_7) \notin E(G)$ and $f(v_3)f(v_7) = v_2f(v_7) \notin E(G)$. Since every vertex is adjacent to at least one of v_1 and v_2 , this is a contradiction. Therefore, G is not PM-transitive.

Case 10. $G \cong Ci_{10}(1, 2, 4, 5)$ is not PM-transitive.

Let $M_1 = \{v_1v_5, v_2v_8, v_3v_9, v_4v_{10}, v_6v_7\}$ and $M_2 = \{v_1v_2, v_3v_4, v_5v_6, v_7v_8, v_9v_{10}\}$. Then M_1 and M_2 are two perfect matchings of G. Suppose that f is an automorphism $f : V(G) \to V(G)$ such that $f_e(M_1) = M_2$. Without loss of generality, let $f(v_1) = v_1$. This forces $f(v_5) = v_2$.

Consider v_7 . Since $v_1v_7, v_5v_7 \in E(G)$, it is the case that $f(v_1)f(v_7) = v_1f(v_7) \in E(G)$ and $f(v_5)f(v_7) = v_2f(v_7) \in E(G)$. Since v_3, v_6, v_7 , and v_{10} are the only vertices adjacent to both v_1 and v_2 , the image of v_7 is either v_3, v_6, v_7 , or v_{10} . If $f(v_7) = v_3$, then this forces $f(v_6) = v_4$. Now, $v_1v_6 \in E(G)$ contradicts $v_1v_4 \notin E(G)$. If $f(v_7) = v_6$, then this forces $f(v_6) = v_5$. Now, $v_5v_6 \in E(G)$ contradicts $v_2v_5 \notin E(G)$. If $f(v_7) = v_7$, then this forces $f(v_6) = v_8$. Now, $v_1v_6 \in E(G)$ contradicts $v_1v_8 \notin E(G)$. If $f(v_7) = v_{10}$, then this forces $f(v_6) = v_9$. Now, $v_5v_6 \in E(G)$ contradicts $v_2v_9 \notin E(G)$. Therefore, G is not PM-transitive.

In summary, the connected PM-transitive circulant graphs of order 10 are congruent to $Ci_{10}(1)$, $Ci_{10}(1,4) \cong Ci_{10}(2,3)$, $Ci_{10}(1,3,5)$, or $Ci_{10}(1,2,3,4,5)$. That is to say, the connected PM-transitive circulant graphs of order 10 are congruent to C_{10} , $Ci_{10}(1,4) \cong Ci_{10}(2,3)$, $K_{5,5}$, or K_{10} .

Acknowledgement

The authors are grateful for the support of the FPDC Grant in conducting this research.

References

- [1] B.R. Alspach, The classification of Hamiltonian generalized Petersen of Combinatorial Theory, graphs, Journal Series B 34 (1983),293-312. https://www.sciencedirect.com/science/article/pii/0095895683900424
- [2] L. Babai, Automorphism groups, isomorphism, reconstruction, *Handbook of Combinatorics* (1996).
- [3] Z. Bouwer, Vertex and edge-transitive, but not 1-transitive graphs, *Canadian Mathematical Bulletin* 13 (1970), 231-237.
 <u>https://www.cambridge.org/core/journals/canadian-mathematical-bulletin/article/vertex-and</u>
 <u>-edge-transitive-but-not-1transitive-graphs/A8D20CEBB3C8D150712B72040A422757</u>
- [4] N. Biggs, Algebraic Graph Theory (2nd ed.), Cambridge: Cambridge University Press., (1993), 118.
 https://www.cambridge.org/core/books/algebraic-graph-theory/6C70471342F19680068C35 EF174075DC
- [5] M. Conder, Trivalent symmetric graphs on up to 768 vertices, Journal of Combinatorial Mathematics and Combinatorial Computing 20 (2000), 41-63. <u>https://www.researchgate.net/publication/2617744_Trivalent_Symmetric_Graphs_On_Up_To_768_Vertices</u>
- [6] R. Diestel and I. Leader, A conjecture concerning a limit of non-Cayley graphs, *Journal of Algebraic Combinatorics* 14(1) (2001), 17-25. https://link.springer.com/article/10.1023/A%3A1011257718029
- [7] A. Eskin, D. Fisher, and K. Whyte, Quasi-isometries and rigidity of solvable groups, 2005. https://arxiv.org/abs/math/0511647

- [8] R.M. Foster, Geometrical circuits of electrical networks, *Transactions of the American Institute of Electrical Engineers* 51 (1932), 309-317. https://ieeexplore.ieee.org/document/5056068
- [9] R.M. Foster, I.Z. Bouwer, W.W. Chernoff, B. Monson, and Z. Star, The Foster Census: R.M. Foster's Census of Connected Symmetric Trivalent Graphs, 1988. https://search.library.wisc.edu/catalog/999595788402121
- [10] R. Frucht, J.E. Graver, and M.E. Watkins, The groups of the generalized Petersen graphs, *Proc. Cambridge Philos. Soc.* **70** (1971), 211-218. <u>https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/abs/groups-of-the-generalized-petersen-graphs/33EC7C273E88</u> <u>97088CEE71060A3659CD</u>
- [11] C. Godsil and G. Royle, Algebraic Graph Theory, *Graduate Texts in Mathematics*, New York: Springer-Verlag (2001), 207. https://link.springer.com/book/10.1007/978-1-4613-0163-9
- [12] J.L. Gross and J. Yellen, Handbook of Graph Theory, CRC Press. (2004), 491. https://www.routledge.com/Handbook-of-Graph-Theory/Gross-Yellen-Zhang/p/book/ 9781439880180
- [13] D.F. Holt, A graph which is edge-transitive but not arc-transitive, *Journal of Graph Theory* 5(2) (1981), 201-204.
 https://onlinelibrary.wiley.com/doi/10.1002/jgt.3190050210
- [14] D.A. Holton and J. Sheehan, Generalized Petersen and permutation graphs, §9.13 in *The Petersen Graph*, Cambridge, England: Cambridge University Press (1993), 315-317.
 <u>https://www.abebooks.com/9780521435949/Petersen-Graph-Australian-Mathematical-Society-0521435943/plp</u>
- [15] J. Lauri and R. Scapellato, Topics in graph automorphisms and reconstruction, London Mathematical Society Lecture Note Series, Cambridge University Press (2003), 20-21. https://www.cambridge.org/core/books/topics-in-graph-automorphisms-and-reconstruction/ 3699EDC473353370EFA6FD93FA26A160
- [16] P. Potočnik, P. Spiga, and G. Verret, Cubic vertex-transitive graphs on up to 1280 vertices, *Journal of Symbolic Computation* 50 (2013), 465-477. https://www.sciencedirect.com/science/article/pii/S0747717112001563
- [17] Z. Ryjáček, On a closure concept in claw-free graphs, *Journal of Combinatorial Theory, Series B* 70(2) (1997), 217-224.
 https://www.sciencedirect.com/science/article/pii/S0095895696917323
- [18] J. Zhou, Characterization of perfect matching transitive graphs, *Electronic Journal of Graph Theory and Applications* 6(2) (2018), 362-369.
 https://www.ejgta.org/index.php/ejgta/article/view/583