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Abstract
A graph G is perfect matching transitive, shortly PM-transitive, if for any two perfect match-

ings M1 and M2 of G, there is an automorphism f : V (G) 7→ V (G) such that fe(M1) = M2,
where fe(uv) = f(u)f(v). In this paper, the authors completely characterize the perfect matching
transitivity of circulant graphs of order less than or equal to 10.
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1. Introduction

An automorphism of a graph is a form of symmetry in which the graph is mapped onto it-
self while preserving the edge-vertex connectivity. Formally, an automorphism of a graph G =
(V (G), E(G)) is a permutation f of the vertex set V (G) such that the pair of vertices uv is an
edge of G if and only if f(u)f(v) is also an edge of G. In other words, it is a graph isomor-
phism from G to itself. Every graph automorphism f induces a mapping fe : E(G) 7→ E(G)
such that fe(uv) = f(u)f(v). For any vertex set X ⊆ V (G) and edge set M ⊆ E(G), denote
f(X) = {f(v) : v ∈ X} and fe(M) = {fe(uv) : uv ∈ M}.

A graph G is vertex-transitive [11] if for any two given vertices v1 and v2 of G, there is an
automorphism f : V (G) 7→ V (G) such that f(v1) = v2. In other words, a graph is vertex-
transitive if its automorphism group acts transitively upon its vertices. A graph is vertex-transitive
if and only if its complement graph is vertex-transitive (since the group actions are identical). For
example, the finite Cayley graphs, the Petersen graph, and Cn×K2 with n ≥ 3 are vertex-transitive.
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A graph G is edge-transitive if for any two given edges e1 and e2 of G, there is an automorphism
of G that maps e1 to e2. In other words, a graph is edge-transitive if its automorphism group acts
transitively upon its edges. The complete bipartite graph Km,n, the Petersen graph, and the cubical
graph Cn ×K2 with n = 4 are edge-transitive.

A graph G is symmetric or arc-transitive if for any two pairs of adjacent vertices u1v1 and
u2v2 of G, there is an automorphism f : V (G) 7→ V (G) such that f(u1) = u2 and f(v1) = v2. In
other words, a graph is symmetric if its automorphism group acts transitively upon ordered pairs of
adjacent vertices, that is, upon edges considered as having a direction. The cubical graph Cn ×K2

with n = 4 and Petersen graph are symmetric graphs.
Every connected symmetric graph must be both vertex-transitive and edge-transitive, and the

converse is true for graphs of odd degree [2]. However, for graphs of even degree, there exist
connected graphs which are vertex-transitive and edge-transitive, but not symmetric [3]. Every
symmetric graph without isolated vertices is vertex-transitive, and every vertex-transitive graph is
regular. However, not all vertex-transitive graphs are symmetric (for example, the edges of the
truncated tetrahedron), and not all regular graphs are vertex-transitive (for example, the Frucht
graph and Tietze’s graph).

A lot of work has been done about the relationship between vertex-transitive graphs and edge-
transitive graphs. Some of the related results can be found in [3]-[17]. In general, edge-transitive
graphs need not be vertex-transitive. The Gray graph is an example of a graph which is edge-
transitive but not vertex-transitive. Conversely, vertex-transitive graphs need not be edge-transitive.
The graph Cn ×K2, where n ≥ 5 is vertex-transitive but not edge-transitive.

A graph G is perfect matching transitive, shortly PM-transitive, if for any two perfect match-
ings M1 and M2 of G, there is an automorphism f : V (G) 7→ V (G) such that fe(M1) = M2,
where fe is the mapping induced by f .

In [18], the author (Zhou) verified that some well known symmetric graphs such as C2n,
K2n, Kn,n, and the Petersen graph are PM-transitive, constructed several families of PM-transitive
graphs which are neither vertex-transitive nor edge-transitive, discussed some methods to generate
new PM-transitive graphs, and proved that all the generated Petersen graphs except the Petersen
graph are non-perfect matching transitive.

A circulant graph is a graph of n vertices v1, v2, . . . , vn in which the ith vertex is adjacent to the
(i+ j)th and (i− j)th vertices for each j in a list l, where the addition and subtraction are taken by
modulo n. In Section 2, the authors prove a collection of general results about the PM-transitivity
of connected circulant graphs of even order n ≥ 4. In Section 3, the authors characterize the
PM-transitivity of connected circulant graphs of order 6. In Section 4, the authors characterize the
PM-transitivity of connected circulant graphs of order 8. In Section 5, the authors characterize the
PM-transitivity of connected circulant graphs of order 10.

2. PM-transitivity of Connected Circulant Graphs of Order 2n

For any integer n ≥ 2, the circulant graph Ci2n(1, 2, . . . , n) gives the complete graph K2n, the
circulant graph Ci2n(1) gives the cyclic graph C2n, and the circulant graph Ci2n(1, 3, 5, . . . ,m),
where m represents the largest odd integer less than or equal to n, gives the complete bipartite
graph Kn,n. The following Theorem 2.1 is proven in [18].
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Theorem 2.1. For any integer n ≥ 2, the circulant graphs Ci2n(1, 2, ..., n) ∼= K2n, Ci2n(1) ∼=
C2n, and Ci2n(1, 3, 5, . . . ,m) ∼= Kn,n, where m represents the largest odd integer that is less than
or equal to n, are PM-transitive.

Theorem 2.2. For any integer n ≥ 4, the circulant graph Ci2n(1, 2) is not PM-transitive.

Proof. Let M1 = {v1v3, v2v2n, v4v5, v6v7, v8v9, . . . , v2n−2v2n−1} and M2 = {v1v2, v3v4, v5v6, . . . ,
v2n−1v2n}. Then M1 and M2 are two perfect matchings of G such that G − M1 has 3-cycles
(v2v3v4v2 being one such 3-cycle) while G−M2

∼= Cn ×K2 doesn’t have 3-cycles. Therefore, G
is not PM-transitive.

Theorem 2.3. For any integer n ≥ 4, the circulant graph Ci2n(1, n) is not PM-transitive.

Proof. Let M1 = {v1vn+1, v2vn+2, . . . , vnv2n}. If n = 4, then let M2 = {v8v1, v2v3, v4v5, v6v7}.
Otherwise, let M2 = {v2nv1, v2v3, vnvn+1, vn+2vn+3, v4vn+4, v5vn+5, . . . , vn−1v2n−1}. Then M1

and M2 are two perfect matchings of G such that G−M1 is a 2n-cycle and G−M2 is a union of
a 4-cycle v1v2vn+2vn+1v1 and a (2n − 4)-cycle v3v4v5 · · · vnv2nv2n−1v2n−2 · · · vn+3v3. Therefore,
Ci2n(1, n) is not PM-transitive.

In this paper’s proofs, the authors shall frequently use the phrase “without loss of generality,
let f(v1) = v1.” The following lemma justifies why we can make this assumption. We will define a
perfect matching M of a circulant graph G to be vertex-perfect-matching transitive if for any two
given vertices vi and vj of G, there is an automorphism f : V (G) 7→ V (G) such that f(vi) = vj
and fe(M) = M .

Lemma 2.1. Let G be a circulant graph of order 2n, n ≥ 2. Let M1 and M2 be two perfect match-
ings of G such that either M1 or M2 is vertex-perfect-matching transitive. If f is an automorphism
f : V (G) 7→ V (G) such that fe(M1) = M2, then we may assume without loss of generality that
f(v1) = v1.

Proof. Let f : V (G) 7→ V (G) be an automorphism of G such that fe(M1) = M2.
If M1 is vertex-perfect-matching transitive, let vi be the vertex such that f(vi) = v1. Since M1

is vertex-perfect-matching transitive, there exists an automorphism g : V (G) 7→ V (G) such that
g(v1) = vi and ge(M1) = M1. Now, we define h = f ◦g, implying that h is an automorphism such
that h(v1) = v1 and he(M1) = M2.

If M2 is vertex-perfect-matching transitive, let vi be the vertex such that f(v1) = vi. Since M2

is vertex-perfect-matching transitive, there exists an automorphism g : V (G) 7→ V (G) such that
g(vi) = v1 and ge(M2) = M2. Now, we define h = g ◦f , implying that h is an automorphism such
that h(v1) = v1 and he(M1) = M2.

In other words, any automorphism f : V (G) 7→ V (G) such that fe(M1) = M2 induces an
automorphism h : V (G) 7→ V (G) such that h(v1) = v1 and he(M1) = M2. Thus, we may assume
without loss of generality that f(v1) = v1.

Lemma 2.2. Let G be a circulant graph of order 2n, n ≥ 2.
(1) If G contains the perfect matching M1 = {v1vn+1, v2vn+2, v3vn+3, . . . , vnv2n}, then M1 is

vertex-perfect-matching transitive.
(2) If G contains the perfect matching M2 = {v1v2, v3v4, v5v6, . . . , v2n−1v2n}, then M2 is

vertex-perfect-matching transitive.
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Proof. First, consider G with M1. Let vi, vj ∈ V (G), and define δ1 = j−i. Let f : V (G) 7→ V (G)
such that f(vm) = vm+δ1 for all 1 ≤ m ≤ 2n. Then f is a rotation of G, and f is an automorphism
such that f(vi) = vj and fe(M) = M . Thus, M1 is vertex-perfect-matching transitive, and (1) is
proven.

Second, consider G with M2. Let vi, vj ∈ V (G), and define δ2 = j − i. If δ2 is even, then let
g : V (G) 7→ V (G) such that g(vm) = vm+δ2 for all 1 ≤ m ≤ 2n. Then g is a rotation of G. It is
the case that g is an automorphism such that g(vi) = vj and ge(M) = M .

If δ2 is odd, then let h1 : V (G) 7→ V (G) such that h1(vp) = v2n+1−p for all 1 ≤ p ≤ 2n. Then
h1 is a reflection of G, and h1 is an automorphism. Also, h1 maps odd-indexed vertices to even-
indexed vertices and even-indexed vertices to odd-indexed vertices. Let vk = h1(vi) and define
δ3 = j − k. Since h1 switches the parity of all vertices, δ3 is even. Let h2 : V (G) 7→ V (G) such
that h2(vp) = vp+δ3 for all 1 ≤ p ≤ 2n. Then h2 is a rotation of G, and h2 is an automorphism.
Let h : V (G) 7→ V (G) such that h = h2 ◦ h1. Then h is an automorphism such that h(vi) = vj .
Furthermore, let vxvx+1 ∈ M . Then h maps this edge to v2n+1−x+δ3v2n+1−x−1+δ3 . Since δ3 is even
and x is odd, 2n+1−x− 1+ δ3 is odd. Thus, v2n+1−x+δ3v2n+1−x−1+δ3 ∈ M . Since h is bijective,
it maps each edge in M to a unique edge in M . This implies that he(M) = M . Thus, M2 is
vertex-perfect-matching transitive, and (2) is proven.

The condition of Lemma 2.1 is that one of the perfect matchings is vertex-perfect-matching
transitive. Thus, whenever Lemma 2.1 is invoked, one of the perfect matchings in Lemma 2.2 will
be present.

Theorem 2.4. For any odd integer n ≥ 5, the circulant graph Ci2n(1, 2, 3, . . . , n − 1) is not
PM-transitive.

Proof. If n is odd, let M1 = {v1v2, v3v4, v5v6, . . . , v2n−1v2n} and M2 = {vn+1vn+2, vnvn+3} ∪
(M1\{vnvn+1, vn+2vn+3}). M1 and M2 are two perfect matchings of G. Suppose f is an auto-
morphism f : V (G) 7→ V (G) such that fe(M1) = M2. By Lemma 2.1, we can assume, with-
out loss of generality, that f(v1) = v1. Since v1v2 ∈ M2, this implies that f(v2) = v2. Since
v1vn+1 /∈ E(G), f(v1)f(vn+1) = v1f(vn+1) /∈ E(G). Since vn+1 is the only vertex not adjacent to
v1, f(vn+1) = vn+1. Similarly, v2vn+2 /∈ E(G) implies that f(v2)f(vn+2) = v2f(vn+2) /∈ E(G).
Since vn+2 is the only vertex not adjacent to v2, f(vn+2) = vn+2. Notice that vn+1vn+2 /∈ M1

but f(vn+1)f(vn+2) = vn+1vn+2 ∈ M2, contradicting fe(M1) = M2. Thus, G is not PM-
transitive.

3. PM-transitivity of Connected Circulant Graphs of Order 6

In this section, we characterize the PM-transitivity of connected circulant graphs of order 6.
The circulant graphs of order 6 include Ci6(1), Ci6(2), Ci6(3), Ci6(1, 2), Ci6(1, 3), Ci6(2, 3),
and Ci6(1, 2, 3), where Ci6(2) and Ci6(3) are disconnected.

Theorem 3.1. If G is a connected PM-transitive circulant graph of order 6, then G is congruent
to Ci6(1), Ci6(1, 2), Ci6(1, 3), or Ci6(1, 2, 3).
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Proof. If G ∼= Ci6(1) = C6, G ∼= Ci6(1, 3) = K3,3, or G ∼= Ci6(1, 2, 3) = K6, then G is
PM-transitive by Theorem 2.1. We just need to consider the following two cases.

Case 1. G ∼= Ci6(1, 2) is PM-transitive.
Define {v1v2, v2v3, v3v4, v4v5, v5v6, v6v1} to be the outer edges and all other edges to be the

inner edges. Let M be a perfect matching of G. Notice that the six inner edges form two C3

subgraphs. If M contains three inner edges, then one of these subgraphs will have two edges in
M . This results in one vertex being covered twice, a contradiction. Thus, M must contain at least
one outer edge.

Without loss of generality, let v5v6 ∈ M . To cover the remaining vertices, either v1v2, v3v4 ∈
M or v1v3, v2v4 ∈ M . Let M1 = {v1v2, v3v4, v5v6} and M2 = {v1v3, v2v4, v5v6}.

Now, it simply remains to find an automorphism that maps M1 to M2. Let f : V (G) → V (G)
such that f(v1) = v1, f(v2) = v3, f(v3) = v2, f(v4) = v4, f(v5) = v6, and f(v6) = v5. Then f is
an automorphism such that fe(M1) = M2. Thus, G is PM-transitive.

Case 2. G ∼= Ci6(2, 3) is not PM-transitive.
Let M1 = {v1v4, v2v5, v3v6} and M2 = {v1v5, v2v4, v3v6}.Then M1 and M2 are two perfect

matchings of G such that G−M1 is a union of two 3-cycles while G−M2 is a 6-cycle. Therefore,
G is not PM-transitive.

In summary, the connected PM-transitive circulant graphs of order 6 are congruent to Ci6(1),
Ci6(1, 2), Ci6(1, 3), or Ci6(1, 2, 3). In other words, they are congruent to C6, K2,2,2, K3,3, or
K6.

4. PM-transitivity of Connected Circulant Graphs of Order 8

In this section, we characterize the PM-transitivity of connected circulant graphs of order 8.
The circulant graphs of order 8 include Ci8(1), Ci8(2), Ci8(3), Ci8(4), Ci8(1, 2), Ci8(1, 3),
Ci8(1, 4), Ci8(2, 3), Ci8(2, 4), Ci8(3, 4), Ci8(1, 2, 3), Ci8(1, 2, 4), Ci8(1, 3, 4), Ci8(2, 3, 4), and
Ci8(1, 2, 3, 4), where Ci8(2), Ci8(4) and Ci8(2, 4) are disconnected. Furthermore, Theorem 4.1
contains 4 statements of congruence that reduce the number of cases needed to prove Theorem 4.2.

Theorem 4.1. For the connected circulant graph or order 8, the following congruence statements
hold.

(1) Ci8(1) ∼= Ci8(3)
(2) Ci8(1, 2) ∼= Ci8(2, 3)
(3) Ci8(1, 4) ∼= Ci8(3, 4)
(4) Ci8(1, 2, 4) ∼= Ci8(2, 3, 4)

Proof. To prove each congruence statement, it is sufficient to define an automorphism f from the
vertices of the first graph to the vertices of the second graph.

Let f be defined such that f(v1) = v1, f(v2) = v4, f(v3) = v7, f(v4) = v2, f(v5) = v5,
f(v6) = v8, f(v7) = v3, and f(v8) = v6. For each of the 4 congruence statements, f is an
automorphism that maps the vertices of the graph on the left side to the vertices of the graph on
the right side.

Theorem 4.2. If G is a connected PM-transitive circulant graph of order 8, then G is congruent
to Ci8(1), Ci8(1, 3), or Ci8(1, 2, 3, 4).
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Proof. If G ∼= Ci8(1) ∼= C8, G ∼= Ci8(1, 3) ∼= K4,4 or G ∼= Ci8(1, 2, 3, 4) ∼= K8, then G is
PM-transitive by Theorem 2.1. If G ∼= Ci8(1, 2), then G is not PM-transitive by Theorem 2.2. If
G ∼= Ci8(1, 4) ∼= Ci8(3, 4), then G is not PM-transitive by Theorem 2.3. We just need to consider
the following three cases.

Case 1. C ∼= Ci8(1, 2, 3) is not PM-transitive.
Let M1 = {v1v2, v3v4, v5v6, v7v8} and M2 = {v1v2, v3v4, v5v8, v6v7}. Then M1 and M2 are

two perfect matchings of G. Suppose that f is an automorphism f : V (G) → V (G) such that
fe(M1) = M2. Without loss of generality, let f(v1) = v1. This forces f(v2) = v2.

Consider v8. Since v8 is adjacent to v1 and v2, f(v8) cannot be v5 or v6. If f(v8) = v3, then this
forces f(v5) = v4. Now v1v5 /∈ E(G) and v1v4 ∈ E(G), contradicting the supposition that f is an
automorphism. If f(v8) = v4, then this forces f(v5) = v3. Now v1v5 /∈ E(G) and v1v3 ∈ E(G), a
contradiction. If f(v8) = v7, then this forces f(v5) = v8. Now v1v5 /∈ E(G) and v1v8 ∈ E(G), a
contradiction. If f(v8) = v8, then this forces f(v5) = v7. Now v1v5 /∈ E(G) and v1v7 ∈ E(G), a
contradiction. Therefore, G is not PM-transitive.

Case 2. G ∼= Ci8(1, 2, 4) is not PM-transitive.
Let M1 = {v1v3, v2v8, v4v6, v5v7} and M2 = {v1v5, v2v6, v3v7, v4v8}. Then M1 and M2 are

two perfect matchings of G such that G − M1 has four 3-cycles while G − M2
∼= Ci8(1, 2) has

eight 3-cycles. Therefore, G is not PM-transitive.
Case 3. G ∼= Ci8(1, 3, 4) is not PM-transitive.
Let M1 = {v1v2, v3v4, v5v6, v7v8} and M2 = {v1v5, v2v6, v3v7, v4v8}. Then M1 and M2 are

two perfect matchings of G such that G − M1 has 3-cycles while G − M2
∼= Ci8(1, 3) ∼= K4,4

doesn’t have 3-cycles. Therefore, G is not PM-transitive.
In summary, the connected PM-transitive circulant graphs of order 8 are congruent to Ci8(1),

Ci8(1, 3), or Ci8(1, 2, 3, 4). In other words, the connected PM-transitive circulant graphs of order
8 are congruent to C8, K4,4, or K8.

5. PM-transitivity of Connected Circulant Graphs of Order 10

In this section, we characterize the PM-transitivity of connected circulant graphs of order 10.
The circulant graphs of order 10 include Ci10(1), Ci10(2), Ci10(3), Ci10(4), Ci10(5), Ci10(1, 2),
Ci10(1, 3), Ci10(1, 4), Ci10(1, 5), Ci10(2, 3), Ci10(2, 4), Ci10(2, 5), Ci10(3, 4), Ci10(3, 5),
Ci10(4, 5), Ci10(1, 2, 3), Ci10(1, 2, 4), Ci10(1, 2, 5), Ci10(1, 3, 4), Ci10(1, 3, 5), Ci10(1, 4, 5),
Ci10(2, 3, 4), Ci10(2, 3, 5), Ci10(2, 4, 5), Ci10(3, 4, 5), Ci10(1, 2, 3, 4), Ci10(1, 2, 3, 5),
Ci10(1, 2, 4, 5), Ci10(1, 3, 4, 5), Ci10(2, 3, 4, 5), and Ci10(1, 2, 3, 4, 5), where Ci10(2), Ci10(4),
Ci10(2, 4), Ci10(5) are disconnected. Furthermore, Theorem 5.1 contains 10 statements of con-
gruence that reduce the number of cases needed to prove Theorem 5.2.

Theorem 5.1. For the connected circulant graph of order 10, the following congruence statements
hold.

(1) Ci10(1, 2) ∼= Ci10(3, 4)
(2) Ci10(1, 4) ∼= Ci10(2, 3)
(3) Ci10(2, 5) ∼= Ci10(4, 5)
(4) Ci10(1, 5) ∼= Ci10(3, 5)
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(5) Ci10(1, 2, 3) ∼= Ci10(1, 3, 4)
(6) Ci10(1, 2, 4) ∼= Ci10(2, 3, 4)
(7) Ci10(1, 2, 5) ∼= Ci10(3, 4, 5)
(8) Ci10(1, 4, 5) ∼= Ci10(2, 3, 5)
(9) Ci10(1, 2, 4, 5) ∼= Ci10(2, 3, 4, 5)
(10) Ci10(1, 2, 3, 5) ∼= Ci10(1, 3, 4, 5).

Proof. To prove each congruence statement, it is sufficient to define an automorphism f from the
vertices of the first graph to the vertices of the second graph.

Let f be defined such that f(v1) = v1, f(v2) = v4, f(v3) = v7, f(v4) = v10, f(v5) = v3,
f(v6) = v6, f(v7) = v9, f(v8) = v2, f(v9) = v5, and f(v10) = v8. For each of the 10 congruence
statements, f is an automorphism that maps the vertices of the graph on the left side to the vertices
of the graph on the right side.

Theorem 5.2. If G is a connected PM-transitive circulant graph of order 10, then G is congruent
to Ci10(1), Ci10(1, 4), Ci10(1, 3, 5), or Ci10(1, 2, 3, 4, 5).

Proof. If G ∼= Ci10(1) ∼= Ci10(3) ∼= C10, G ∼= Ci10(1, 3, 5) ∼= K5,5, or G ∼= Ci10(1, 2, 3, 4, 5) ∼=
K10, then G is PM-transitive by Theorem 2.1. If G ∼= Ci10(1, 2), then G is not PM-transitive by
Theorem 2.2. If G ∼= Ci10(1, 5) ∼= Ci10(3, 5), then G is not PM-transitive by Theorem 2.3. If
G ∼= Ci10(1, 2, 3, 4) ∼= K2,2,2,2,2, then G is not PM-transitive by Theorem 2.4. We just need to
distinguish the following ten cases.

Case 1. G ∼= Ci10(1, 3) is not PM-transitive.
Let M1 = {v1v2, v3v4, v5v6, v7v8, v9v10} and M2 = {v1v2, v3v10, v4v7, v5v8, v6v9}. Then M1

and M2 are two perfect matchings of G.
Let G1 be the graph formed by identifying the vertices in each edge of M1. In other words, G1

is the graph formed by identifying v1 with v2, v3 with v4, v5 with v6, v7 with v8, and v9 with v10.
Similarly, let G2 be the graph formed by identifying the vertices in each edge of M2. Notice that
G1 is K5 and that G2 is K5 minus an edge. Therefore, G is not PM-transitive.

Case 2. G ∼= Ci10(1, 4) is PM-transitive.
Consider the following four perfect matchings: M1 = {v1v2, v3v4, v5v6, v7v8, v9v10}, M2 =

{v1v2, v5v6, v8v9, v3v7, v4v10}, M3 = {v1v2, v5v6, v7v8, v3v9, v4v10}, and M4 = {v1v2, v3v7, v4v8,
v5v9, v6v10}. We shall show that every perfect matching M of G is automorphic to one of these per-
fect matchings. To show this, we shall define {v10v1, v1v2, v2v3, v3v4, v4v5, v5v6, v6v7, v7v8, v8v9,
v9v10} to be the outer edges and all other edges to be the inner edges.

If M contains no inner edges, then M = M1 or M = {v10v1, v2v3, v4v5, v6v7, v8v9}. It is easy
to see that M is automorphic to M1.

In the following, we assume that M contains at least one inner edge. Without loss of generality,
let v4v10 ∈ M . Notice that v1, v2, and v3 cannot be covered by only using outer edges in M . Thus,
M has at least two inner edges.

If M has exactly two inner edges, then not all of v1, v2, v3 can be covered by inner edges.
Without loss of generality, let v1v2 ∈ M . To cover v3, either v3v7 ∈ M or v3v9 ∈ M . If the
former is true, then v8v9, v5v6 ∈ M . Now, M is automorphic to M2. If the latter is true, then
v7v8, v5v6 ∈ M . Now, M is automorphic to M3.
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Suppose that M has exactly three inner edges. If neither v1v2 nor v2v3 are in M , then three
more inner edges are needed to cover {v1, v2, v3}, a contradiction. Thus, without loss of generality
let v1v2 ∈ M . To cover v5, either v5v6 ∈ M or v5v9 ∈ M . If the former is true, then {v3, v7, v8, v9}
cannot be covered by two inner edges in M . If the latter is true, then v3v7 ∈ M in order to cover
v3. Now, v6 and v8 cannot be covered by an outer edge in M , a contradiction. Thus, M cannot
have three inner edges.

If M has exactly four inner edges, then consider the following. Suppose that the single outer
edge in M is v1v2. Now, there is no inner edge that can cover v8. Thus, by symmetry v1v2 /∈ M
and v2v3 /∈ M . If the single outer edge in M is v8v9, then v3v7 ∈ M to cover v3. To cover
v2, v2v6 ∈ M . To cover v1, v1v5 ∈ M . Now, M is automorphic to M4. By symmetry, if the
single outer edge in M is v5v6 then M is automorphic to M4. If the single outer edge is v7v8, then
v3v9 ∈ M to cover v3. To cover v2, v2v6 ∈ M . To cover v1, v1v5 ∈ M . Now, M is automorphic to
M4. By symmetry, if the single outer edge in M is v6v7 then M is automorphic to M4.

Suppose M has five inner edges. To cover v3, either v3v7 ∈ M or v3v9 ∈ M . If the former
is true, then v5v9 ∈ M to cover v9. To cover v8, v2v8 ∈ M . No edge covers both v1 and v6, a
contradiction. If the latter is true, then v2v8 ∈ M to cover v8. To cover v7, v1v7 ∈ M . Now, v5 and
v6 cannot be covered by an inner edge, a contradiction. Thus, M cannot have five inner edges.

Table 1. f , g, and h are automorphisms
uv f(u)f(v) g(u)g(v) h(u)h(v)

v1v2 v1v2 v1v2 v1v2
v2v3 v2v8 v2v3 v2v8
v3v4 v8v9 v3v9 v8v4
v4v5 v9v5 v9v5 v4v10
v5v6 v5v6 v5v6 v10v6
v6v7 v6v7 v6v7 v6v7
v7v8 v7v3 v7v8 v7v3
v8v9 v3v4 v8v4 v3v9
v9v10 v4v10 v4v10 v9v5
v10v1 v10v1 v10v1 v5v1
v1v5 v1v5 v1v5 v1v10
v5v9 v5v4 v5v4 v10v9
v9v3 v4v8 v4v3 v9v8
v3v7 v8v7 v3v7 v8v7
v7v1 v7v1 v7v1 v7v1
v2v6 v2v6 v2v6 v2v6
v6v10 v6v10 v6v10 v6v5
v10v4 v10v9 v10v9 v5v4
v4v8 v9v3 v9v8 v4v3
v8v2 v3v2 v8v2 v3v2

Now we prove that M1 is automorphic to M2, M3, and M4, respectively. For M1 and M2, we
define f : V (G) → V (G) such that f(vi) = vi if i = 1, 2, 5, 6, 7, 10, f(v3) = v8, f(v4) = v9,
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f(v8) = v3, and f(v9) = v4. To prove that f is an automorphism, Table 1 shows that f preserves
all 20 edges (the edges in the second column form E(G)). Also, f maps M1 to M2, that is,
fe(M1) = M2.

For M1 and M3, we define g : V (G) → V (G) such that g(vi) = vi if i = 1, 2, 3, 5, 6, 7, 8, 10,
g(v4) = v9, and g(v9) = v4. To prove that g is an automorphism, Table 1 shows that g preserves all
20 edges (the edges in the third column form E(G)). Also, g maps M1 to M3, that is, ge(M1) = M3.

For M1 and M4, we define h : V (G) → V (G) such that h(vi) = vi if i = 1, 2, 4, 6, 7, 9,
h(v3) = v8, h(v5) = v10, h(v8) = v3, and h(v10) = v5. To prove that h is an automorphism, Table
1 shows that h preserves all 20 edges (the edges in the third column form E(G)). Also, h maps
M1 to M4, that is, he(M1) = M4.

Therefore, G is PM-transitive.
Case 3. G ∼= Ci10(2, 5) is not PM-transitive.
Let M1 = {v1v6, v2v7, v3v8, v4v9, v5v10} and M2 = {v1v3, v5v7, v4v9, v2v10, v6v8}. Then M1

and M2 are two perfect matchings of G such that G−M1 is a union of two 5-cycles while G−M2

is a union of a 4-cycle and a 6-cycle. Therefore, G is not PM-transitive.
Case 4. G ∼= Ci10(1, 2, 3) is not PM-transitive.
Let M1 = {v1v2, v3v4, v5v6, v7v8, v9v10} and M2 = {v1v4, v7v10, v3v6, v9v2, v5v8}. Then M1

and M2 are two perfect matchings of G. Suppose that f is an automorphism f : V (G) → V (G)
such that fe(M1) = M2. Without loss of generality, let f(v1) = v1. This forces f(v2) = v4.

Consider v10. If f(v10) = v2, then this forces f(v9) = v9. Now v2v9 ∈ E(G) and v4v9 /∈ E(G),
contradicting the supposition that f is an automorphism. If f(v10) = v3, then this forces f(v9) =
v6. Now v1v9 ∈ E(G) and v1v6 /∈ E(G), a contradiction. If f(v10) = v5, then v1v10 ∈ E(G)
and v1v5 /∈ E(G), a contradiction. If f(v10) = v6, then v1v10 ∈ E(G) and v1v6 /∈ E(G), a
contradiction. If f(v10) = v7, then v1v10 ∈ E(G) and v1v7 /∈ E(G), a contradiction. If f(v10) =
v8, then v2v10 ∈ E(G) and v4v8 /∈ E(G), a contradiction. If f(v10) = v9, then v2v10 ∈ E(G)
and v4v9 /∈ E(G), a contradiction. If f(v10) = v10, then v2v10 ∈ E(G) and v4v10 /∈ E(G), a
contradiction. Therefore, G is not PM-transitive.

Case 5. G ∼= Ci10(1, 2, 4) is not PM-transitive.
Let M1 = {v1v5, v2v8, v3v9, v4v10, v6v7} and M2 = {v1v2, v3v4, v5v6, v7v8, v9v10}. Then M1

and M2 are two perfect matchings of G. Suppose that f is an automorphism f : V (G) → V (G)
such that fe(M1) = M2. Without loss of generality, let f(v1) = v1. This forces f(v5) = v2.

Consider v7. Since v1v7, v5v7 ∈ E(G), it is the case that f(v1)f(v7) = v1f(v7) ∈ E(G) and
f(v5)f(v7) = v2f(v7) ∈ E(G). Since v3 and v10 are the only vertices adjacent to both v1 and v2,
the image of v7 is either v3 or v10.

If f(v7) = v3, then this forces f(v6) = v4. Now, any proposed preimage of v10 will contradict
the fact that f is an automorphism. Specifically, if f(v2) = v10, then v2v5 /∈ E(G) contradicts
v10v2 ∈ E(G). If f(v3) = v10, then v3v6 /∈ E(G) contradicts v10v4 ∈ E(G). If f(v4) = v10,
then v4v1 /∈ E(G) contradicts v10v1 ∈ E(G). If f(v8) = v10, then v8v5 /∈ E(G) contradicts
v10v2 ∈ E(G). If f(v9) = v10, then v9v6 /∈ E(G) contradicts v10v4 ∈ E(G). If f(v10) = v10, then
v10v5 /∈ E(G) contradicts v10v2 ∈ E(G).

If f(v7) = v10, then this forces f(v6) = v9. Now, any proposed preimage of v3 will contradict
the fact that f is an automorphism. Specifically, if f(v2) = v3, then v5v2 /∈ E(G) contradicts
v2v3 ∈ E(G). If f(v3) = v3, then v7v3 ∈ E(G) contradicts v10v3 /∈ E(G). If f(v4) = v3, then
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v1v4 /∈ E(G) contradicts v1v3 ∈ E(G). If f(v8) = v3, then v1v8 /∈ E(G) contradicts v1v3 ∈ E(G).
If f(v9) = v3, then v7v9 ∈ E(G) contradicts v10v3 /∈ E(G). If f(v10) = v3, then v5v10 /∈ E(G)
contradicts v2v3 ∈ E(G). Therefore, G is not PM-transitive.

Case 6. G ∼= Ci10(1, 2, 5) is not PM-transitive.
Let M1 = {v1v6, v2v7, v3v8, v4v9, v5v10} and M2 = {v1v2, v3v4, v5v6, v7v8, v9v10}. Then M1

and M2 are two perfect matchings of G. Suppose that f is an automorphism f : V (G) → V (G)
such that fe(M1) = M2. Without loss of generality, let f(v1) = v1. This forces f(v6) = v2.

Now, any proposed preimage of v10 will contradict the fact that f is an automorphism. Specif-
ically, if f(v2) = v10, then v2v6 /∈ E(G) contradicts v10v2 ∈ E(G). If f(v3) = v10, then v3v6 /∈
E(G) contradicts v10v2 ∈ E(G). If f(v4) = v10, then v4v1 /∈ E(G) contradicts v10v1 ∈ E(G).
If f(v5) = v10, then v5v1 /∈ E(G) contradicts v10v1 ∈ E(G). If f(v7) = v10, then v7v1 /∈ E(G)
contradicts v10v1 ∈ E(G). If f(v8) = v10, then v8v1 /∈ E(G) contradicts v10v1 ∈ E(G). If
f(v9) = v10, then v9v6 /∈ E(G) contradicts v10v2 ∈ E(G). If f(v10) = v10, then v10v6 /∈ E(G)
contradicts v10v2 ∈ E(G). Therefore, G is not PM-transitive.

Case 7. G ∼= Ci10(1, 4, 5) is not PM-transitive.
Let M1 = {v1v6, v2v7, v3v8, v4v9, v5v10} and M2 = {v1v2, v3v4, v5v6, v7v8, v9v10}. Then M1

and M2 are two perfect matchings of G. Suppose that f is an automorphism f : V (G) → V (G)
such that fe(M1) = M2. Without loss of generality, let f(v1) = v1. This forces f(v6) = v2.

Now, any proposed preimage of v10 will contradict the fact that f is an automorphism. Specif-
ically, if f(v2) = v10, then v2v6 ∈ E(G) contradicts v10v2 /∈ E(G). If f(v3) = v10, then v3v1 /∈
E(G) contradicts v10v1 ∈ E(G). If f(v4) = v10, then v4v1 /∈ E(G) contradicts v10v1 ∈ E(G).
If f(v5) = v10, then v5v6 ∈ E(G) contradicts v10v2 /∈ E(G). If f(v7) = v10, then v7v6 ∈ E(G)
contradicts v10v2 /∈ E(G). If f(v8) = v10, then v8v1 /∈ E(G) contradicts v10v1 ∈ E(G). If
f(v9) = v10, then v9v1 /∈ E(G) contradicts v10v1 ∈ E(G). If f(v10) = v10, then v10v6 ∈ E(G)
contradicts v10v2 /∈ E(G). Therefore, G is not PM-transitive.

Case 8. G ∼= Ci10(2, 4, 5) is not PM-transitive.
Let M1 = {v1v3, v2v7, v4v8, v5v9, v6v10} and M2 = {v1v6, v2v7, v3v8, v4v9, v5v10}. Then M1

and M2 are two perfect matchings of G. Suppose that f is an automorphism f : V (G) → V (G)
such that fe(M1) = M2. Without loss of generality, let f(v1) = v1. This forces f(v3) = v6.

Consider v7. Since v1v7, v3v7 ∈ E(G), it is the case that f(v1)f(v7) = v1f(v7) ∈ E(G) and
f(v3)f(v7) = v6f(v7) ∈ E(G). Since there are no vertices adjacent to both v1 and v6, this is a
contradiction. Therefore, G is not PM-transitive.

Case 9. G ∼= Ci10(1, 2, 3, 5) is not PM-transitive.
Let M1 = {v1v3, v2v4, v5v6, v7v8, v9v10} and M2 = {v1v2, v3v4, v5v6, v7v8, v9v10}. Then M1

and M2 are two perfect matchings of G. Suppose that f is an automorphism f : V (G) → V (G)
such that fe(M1) = M2. Without loss of generality, let f(v1) = v1. This forces f(v3) = v2.

Consider v7. Since v1v7, v3v7 /∈ E(G), it is the case that f(v1)f(v7) = v1f(v7) /∈ E(G) and
f(v3)f(v7) = v2f(v7) /∈ E(G). Since every vertex is adjacent to at least one of v1 and v2, this is a
contradiction. Therefore, G is not PM-transitive.

Case 10. G ∼= Ci10(1, 2, 4, 5) is not PM-transitive.
Let M1 = {v1v5, v2v8, v3v9, v4v10, v6v7} and M2 = {v1v2, v3v4, v5v6, v7v8, v9v10}. Then M1

and M2 are two perfect matchings of G. Suppose that f is an automorphism f : V (G) → V (G)
such that fe(M1) = M2. Without loss of generality, let f(v1) = v1. This forces f(v5) = v2.
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Consider v7. Since v1v7, v5v7 ∈ E(G), it is the case that f(v1)f(v7) = v1f(v7) ∈ E(G) and
f(v5)f(v7) = v2f(v7) ∈ E(G). Since v3, v6, v7, and v10 are the only vertices adjacent to both
v1 and v2, the image of v7 is either v3, v6, v7, or v10. If f(v7) = v3, then this forces f(v6) = v4.
Now, v1v6 ∈ E(G) contradicts v1v4 /∈ E(G). If f(v7) = v6, then this forces f(v6) = v5. Now,
v5v6 ∈ E(G) contradicts v2v5 /∈ E(G). If f(v7) = v7, then this forces f(v6) = v8. Now,
v1v6 ∈ E(G) contradicts v1v8 /∈ E(G). If f(v7) = v10, then this forces f(v6) = v9. Now,
v5v6 ∈ E(G) contradicts v2v9 /∈ E(G). Therefore, G is not PM-transitive.

In summary, the connected PM-transitive circulant graphs of order 10 are congruent to Ci10(1),
Ci10(1, 4) ∼= Ci10(2, 3), Ci10(1, 3, 5), or Ci10(1, 2, 3, 4, 5). That is to say, the connected PM-
transitive circulant graphs of order 10 are congruent to C10, Ci10(1, 4) ∼= Ci10(2, 3), K5,5, or
K10.
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