Electronic Journal of Graph Theory and Applications

Symmetric colorings of $G \times \mathbb{Z}_{2}$

Jabulani Phakathi, Yevhen Zelenyuk, Yuliya Zelenyuk*
School of Mathematics, University of the Witwatersrand, Johannesburg, South Africa
jabulani.phakathi@wits.ac.za, yevhen.zelenyuk@wits.ac.za, yuliya.zelenyuk@wits.ac.za
*corresponding author

Abstract

Let G be a finite group and let $r \in \mathbb{N}$. An r-coloring of G is any mapping $\chi: G \rightarrow\{1, \ldots, r\}$. A coloring χ is symmetric if there is $g \in G$ such that $\chi\left(g x^{-1} g\right)=\chi(x)$ for every $x \in G$. We show that if $f(r)$ is the polynomial representing the number of symmetric r-colorings of G, then the number of symmetric r-colorings of $G \times \mathbb{Z}_{2}$ is $f\left(r^{2}\right)$.

Keywords: finite group, symmetric coloring, equivalent colorings, Möbius function, optimal partition Mathematics Subject Classification : 05A15, 20D60, 05C15, 05E18
DOI: 10.5614/ejgta.2023.11.2.3

1. Introduction

Let G be a finite group and let $r \in \mathbb{N}$. An r-coloring of G is any mapping $\chi: G \rightarrow\{1, \ldots, r\}$. The group G naturally acts on its r-colorings. For every coloring χ and for every $g \in G$, the coloring χg is defined by

$$
\chi g(x)=\chi\left(x g^{-1}\right) .
$$

Colorings χ and ψ are equivalent if there is $g \in G$ such that $\chi g=\psi$ (that is, if χ and ψ belong to the same orbit). Let $c_{r}(G)$ denote the number of equivalence classes of r-colorings of G (= the number of orbits). Applying Burnside’s Lemma [1, I, §3] gives us that

$$
c_{r}(G)=\frac{1}{|G|} \sum_{g \in G} r^{\frac{|G|}{\lfloor|g|}},
$$

Received: 15 April 2022, Revised: 28 May 2023, Accepted: 11 June 2023.
where $\langle g\rangle$ is the subgroup generated by g. For $G=\mathbb{Z}_{n}$, the cyclic group of order n, this formula simplifies to

$$
c_{r}\left(\mathbb{Z}_{n}\right)=\frac{1}{n} \sum_{d \mid n} \varphi(d) r^{\frac{n}{d}}
$$

where φ is the Euler function [2].
For every $g \in G$, the symmetry on G with respect to g is the mapping

$$
G \ni x \mapsto g x^{-1} g \in G .
$$

This is an old notion, which can be found in the book [5]. We say that a coloring χ of G is symmetric if it is invariant under some symmetry, that is, if there is $g \in G$ such that $\chi\left(g x^{-1} g\right)=$ $\chi(x)$ for all $x \in G$. A coloring equivalent to a symmetric one is also symmetric. Let $S_{r}(G)$ denote the number of symmetric r-colorings of G and $s_{r}(G)$ the number of equivalence classes of symmetric r-colorings of G (= the number of symmetric orbits). For every finite Abelian group G and for every $r \in \mathbb{N}$,

$$
\begin{aligned}
S_{r}(G) & =\sum_{X \leq G} \sum_{Y \leq X} \frac{\mu(Y, X)|G / Y|}{|B(G / Y)|} r \\
s_{r}(G) & =\sum_{X \leq G} \sum_{Y \leq X} \frac{\mu(Y / X|+|B(G / X)|}{2} \\
|B(G / Y)| & r \frac{|G / X|+|B(G / X)|}{2}
\end{aligned}
$$

where X runs over subgroups of G, Y over subgroups of $X, \mu(Y, X)$ is the Möbius function on the lattice of subgroups of G, and $B(H)=\{x \in H: 2 x=0\}$ [3]. Similar but more complicated formulas hold also in the non-Abelian case [6]. For $G=\mathbb{Z}_{n}$ the formulas above simplify to

$$
\begin{gathered}
S_{r}\left(\mathbb{Z}_{n}\right)= \begin{cases}\sum_{d \mid n} d \prod_{p \left\lvert\, \frac{n}{d}\right.}(1-p) r^{\frac{d+1}{2}}, & \text { if } n \text { is odd }, \\
\sum_{d \left\lvert\, \frac{n}{2}\right.} d \prod_{p \left\lvert\, \frac{n}{2 d}\right.}(1-p) r^{d+1}, & \text { if } n \text { is even, },\end{cases} \\
s_{r}\left(\mathbb{Z}_{n}\right)= \begin{cases}r^{\frac{n+1}{2}}, & \text { if } n \text { is odd, } \\
\frac{1}{2}\left(r^{\frac{n}{2}+1}+r^{\frac{m+1}{2}}\right), & \text { if } n \text { is even },\end{cases}
\end{gathered}
$$

where p is a variable of prime value and m is the greatest odd divisor of n [3]. For $G=D_{n}$, the dihedral group of order $2 n$, the numbers $S_{r}\left(D_{n}\right)$ and $s_{r}\left(D_{n}\right)$, were computed in [7]. (See also [4].)

In [8] it was shown that, for every finite Abelian group G, if $f(r)$ is the polynomial representing $S_{r}(G)$, that is $S_{r}(G)=f(r)$, then $S_{r}\left(G \times \mathbb{Z}_{2}\right)=f\left(r^{2}\right)$, and so, for every $n \in \mathbb{N}, S_{r}\left(G \times \prod_{n} \mathbb{Z}_{2}\right)=$ $f\left(r^{2^{n}}\right)$.

In this paper we extend this result to all finite groups.
Theorem 1.1. Let G be a finite group and let $f(r)$ be the polynomial representing $S_{r}(G)$. Then $S_{r}\left(G \times \mathbb{Z}_{2}\right)=f\left(r^{2}\right)$.

The proof of Theorem 1.1 is a combination of that from [8] and the optimal partitions method for counting $S_{r}(G)$ from [6].

2. Preliminaries

In this section we recall the main result and related notions from [6].
For every coloring $\chi: G \rightarrow\{1,2, \ldots, r\}$, let $[\chi]$ and $S t(\chi)$ denote the orbit and the stabilizer of χ, that is,

$$
[\chi]=\{\chi g: g \in G\} \text { and } S t(\chi)=\{g \in G: \chi g=\chi\}
$$

As in the general case of an action,

$$
|[\chi]|=\frac{|G|}{|S t(\chi)|} \text { and } S t(\chi g)=g^{-1} S t(\chi) g
$$

In counting $S_{r}(G)$ and $s_{r}(G)$ an important role is played also by the sets

$$
\begin{aligned}
& Z(\chi)=\{g \in G: \chi \text { is symmetric with respect to } g\}, \\
& {[\chi]_{e}=\{\psi \in[\chi]: \psi \text { is symmetric with respect to } e\}}
\end{aligned}
$$

where e is the identity of G. The set $Z(\chi)$ is a union of left cosets of G by $S t(\chi)$ and

$$
\left|[\chi]_{e}\right|=\frac{|Z(\chi)|}{|S t(\chi)|}
$$

Similarly to colorings, these notions naturally extend to partitions of G. In particular, for every partition π of $G, S t(\pi)$ is the set of all $g \in G$ such that every cell of π is invariant under right translation by g^{-1}, and $Z(\pi)$ is the set of all $g \in G$ such that every cell of π is invariant under symmetry with respect to g. We say that a partition π of G is optimal if $e \in Z(\pi)$ and for every partition π^{\prime} of G with $S t\left(\pi^{\prime}\right)=S t(\pi)$ and $Z\left(\pi^{\prime}\right)=Z(\pi)$, one has $\pi \leq \pi^{\prime}$. The latter means that every cell of π is contained in some cell of π^{\prime}.

Let P be the set of all pairs $x=(S t(x), Z(x))$ such that $S t(x)=S t(\chi)$ and $Z(x)=Z(\chi)$ for some coloring χ of G symmetric with respect to e. Define the order \leq on P by

$$
x \leq y \Leftrightarrow S t(x) \subseteq S t(y) \text { and } Z(x) \subseteq Z(y) .
$$

For every $x \in P$, let π_{x} denote the finest partition of G with $S t(\pi)=S t(x)$ and $Z(\pi)=Z(x)$. Then $\left\{\pi_{x}: x \in P\right\}$ is the set of all optimal partitions of G and $\pi_{x} \leq \pi_{y} \Leftrightarrow x \leq y$, so $\left\{\pi_{x}: x \in P\right\}$ can be identified with P.

For every partition π, we write $|\pi|$ to denote the number of cells of π.
Theorem 2.1. Let P be the partially ordered set of optimal partitions of G. Then

$$
\begin{aligned}
& S_{r}(G)=|G| \sum_{x \in P} \sum_{y \leq x} \frac{\mu(y, x)}{|Z(y)|} r^{|x|} \\
& s_{r}(G)=\sum_{x \in P} \sum_{y \leq x} \frac{\mu(y, x) S t(y)}{|Z(y)|} r^{|x|} .
\end{aligned}
$$

3. Proof of Theorem 1.1

Lemma 3.1. Let $\chi: G \times \mathbb{Z}_{2} \rightarrow\{1,2, \ldots, r\}$. For each $j \in \mathbb{Z}_{2}$, define $\chi_{j}: G \rightarrow\{1,2, \ldots, r\}$ by $\chi_{j}(x)=\chi(x, j)$. Then χ is symmetric if and only if there is $g \in G$ such that each χ_{j} is symmetric with respect to g.

Proof. Suppose that χ is symmetric. Then there is $(g, i) \in G \times \mathbb{Z}_{2}$ such that $\chi\left((g, i)(x, j)^{-1}(g, i)\right)=$ $\chi(x, j)$ for every $(x, j) \in G \times \mathbb{Z}_{2}$. Since

$$
(g, i)(x, j)^{-1}(g, i)=(g, i)\left(x^{-1}, j\right)(g, i)=\left(g x^{-1} g, i j i\right)=\left(g x^{-1} g, j\right)
$$

we have that $\chi\left(g x^{-1} g, j\right)=\chi(x, j)$, so $\chi_{j}\left(g x^{-1} g\right)=\chi_{j}(x)$.
Conversely, suppose that there is $g \in G$ such that each χ_{j} is symmetric with respect to g. Then χ is symmetric with respect to (g, i) for any $i \in \mathbb{Z}_{2}$. Indeed,

$$
\chi\left((g, i)(x, j)^{-1}(g, i)\right)=\chi\left(g x^{-1} g, j\right)=\chi_{j}\left(g x^{-1} g\right)=\chi_{j}(x)=\chi(x, j)
$$

We shall say that a pair $\left(\chi_{0}, \chi_{1}\right)$ of colorings of G is symmetric if there is $g \in G$ such that each χ_{j} is symmetric with respect to g, that is, $\chi_{j}\left(g x^{-1} g\right)=\chi_{j}(x)$ for each j and for every $x \in G$.

Clearly, the correspondence $\chi \mapsto\left(\chi_{0}, \chi_{1}\right)$ defined in Lemma 3.1 is a bijection between the set of r-colorings of $G \times \mathbb{Z}_{2}$ and the set of pairs of r-colorings of G, and by Lemma 3.1, it maps the set of symmetric r-colorings of $G \times \mathbb{Z}_{2}$ onto the set of symmetric pairs of r-colorings of G. Thus, we obtain that

Corollary 3.1. $S_{r}\left(G \times \mathbb{Z}_{2}\right)$ is equal to the number of symmetric pairs of r-colorings of G.
Define the action of G on the pairs $\left(\chi_{0}, \chi_{1}\right)$ of r-colorings of G by

$$
\left(\chi_{0}, \chi_{1}\right) g=\left(\chi_{0} g, \chi_{1} g\right)
$$

For every pair $\left(\chi_{0}, \chi_{1}\right)$, let $\left[\left(\chi_{0}, \chi_{1}\right)\right]$ and $\operatorname{St}\left(\chi_{0}, \chi_{1}\right)$ denote the orbit and the stabilizer of $\left(\chi_{0}, \chi_{1}\right)$, that is,

$$
\left[\left(\chi_{0}, \chi_{1}\right)\right]=\left\{\left(\chi_{0}, \chi_{1}\right) g: g \in G\right\} \text { and } S t\left(\chi_{0}, \chi_{1}\right)=\left\{g \in G:\left(\chi_{0}, \chi_{1}\right) g=\left(\chi_{0}, \chi_{1}\right)\right\}
$$

As in the general case of an action,

$$
\left|\left[\left(\chi_{0}, \chi_{1}\right)\right]\right|=\frac{|G|}{\left|S t\left(\chi_{0}, \chi_{1}\right)\right|}
$$

For every pair $\left(\chi_{0}, \chi_{1}\right)$, let $Z\left(\chi_{0}, \chi_{1}\right)$ denote the set of all $g \in G$ such that $\left(\chi_{0}, \chi_{1}\right)$ is symmetric with respect to g.

Lemma 3.2. $Z\left(\left(\chi_{0}, \chi_{1}\right) g\right)=Z\left(\chi_{0}, \chi_{1}\right) g$ for every $g \in G$.

Proof. To see that $Z\left(\chi_{0}, \chi_{1}\right) g \subseteq Z\left(\left(\chi_{0}, \chi_{1}\right) g\right)$, let $a \in Z\left(\chi_{0}, \chi_{1}\right)$. Then for each j and for every $x \in G$,

$$
\chi_{j} g\left(a g x^{-1} a g\right)=\chi_{j}\left(a g x^{-1} a\right)=\chi_{j}\left(x g^{-1}\right)=\chi_{j} g(x) .
$$

Consequently, $a g \in Z\left(\left(\chi_{0}, \chi_{1}\right) g\right)$.
Now, conversely,

$$
Z\left(\left(\chi_{0}, \chi_{1}\right) g\right)=Z\left(\left(\chi_{0}, \chi_{1}\right) g\right) g^{-1} g \subseteq Z\left(\left(\chi_{0}, \chi_{1}\right) g g^{-1}\right) g=Z\left(\chi_{0}, \chi_{1}\right) g
$$

It follows from Lemma 3.2, in particular, that if a pair $\left(\chi_{0}, \chi_{1}\right)$ is symmetric, then the whole orbit $\left[\left(\chi_{0}, \chi_{1}\right)\right]$ is symmetric.

The next lemma tells us that, for every symmetric pair $\left(\chi_{0}, \chi_{1}\right), Z\left(\chi_{0}, \chi_{1}\right)$ is a union of left cosets of G by $S t\left(\chi_{0}, \chi_{1}\right)$.

Lemma 3.3. $Z\left(\chi_{0}, \chi_{1}\right) \cdot S t\left(\chi_{0}, \chi_{1}\right)=Z\left(\chi_{0}, \chi_{1}\right)$.
Proof. Clearly, $Z\left(\chi_{0}, \chi_{1}\right) \subseteq Z\left(\chi_{0}, \chi_{1}\right) \cdot S t\left(\chi_{0}, \chi_{1}\right)$. To see the converse inclusion, let $g \in$ $Z\left(\chi_{0}, \chi_{1}\right)$ and $h \in S t\left(\chi_{0}, \chi_{1}\right)$. Then for each j and for every $x \in G$,

$$
\chi_{j}\left(g h x^{-1} g h\right)=\chi_{j} h^{-1}\left(g h x^{-1} g\right)=\chi_{j}\left(g h x^{-1} g\right)=\chi_{j}\left(x h^{-1}\right)=\chi_{j} h(x)=\chi_{j}(x)
$$

Consequently, $g h \in Z\left(\chi_{0}, \chi_{1}\right)$.
For every symmetric pair $\left(\chi_{0}, \chi_{1}\right)$, let $\left[\left(\chi_{0}, \chi_{1}\right)\right]_{e}$ denote the subset of $\left[\left(\chi_{0}, \chi_{1}\right)\right]$ consisting of all pairs symmetric with respect to e.

Lemma 3.4. $\left[\left(\chi_{0}, \chi_{1}\right)\right]_{e}=\left\{\left(\chi_{0}, \chi_{1}\right) a^{-1}: a \in Z\left(\chi_{0}, \chi_{1}\right)\right\}$.
Proof. To see that $\left\{\left(\chi_{0}, \chi_{1}\right) a^{-1}: a \in Z\left(\chi_{0}, \chi_{1}\right)\right\} \subseteq\left[\left(\chi_{0}, \chi_{1}\right)\right]_{e}$, let $a \in Z\left(\chi_{0}, \chi_{1}\right)$. Then for each j and for every $x \in G$,

$$
\chi_{j} a^{-1}\left(x^{-1}\right)=\chi_{j}\left(x^{-1} a\right)=\chi_{j}\left(a a^{-1} x a\right)=\chi_{j}(x a)=\chi_{j} a^{-1}(x) .
$$

To see the converse inclusion, let $g \in G$ and suppose that $\left(\chi_{0}, \chi_{1}\right) g$ is symmetric with respect to e. Then for each j and for every $x \in G$,

$$
\chi_{j}\left(g^{-1} x^{-1} g^{-1}\right)=\chi_{j} g\left(g^{-1} x^{-1}\right)=\chi_{j} g(x g)=\chi_{j}\left(x g g^{-1}\right)=\chi_{j}(x)
$$

Consequently, $g^{-1} \in Z\left(\chi_{0}, \chi_{1}\right)$.
From Lemma 3.4 and Lemma 3.3 we obtain that
Corollary 3.2. For every symmetric pair $\left(\chi_{0}, \chi_{1}\right)$,

$$
\left|\left[\left(\chi_{0}, \chi_{1}\right)\right]_{e}\right|=\frac{\left|Z\left(\chi_{0}, \chi_{1}\right)\right|}{\left|S t\left(\chi_{0}, \chi_{1}\right)\right|}
$$

Now we can count $S_{r}\left(G \times \mathbb{Z}_{2}\right)$.
Theorem 3.1. Let P be the partially ordered set of optimal partitions of G. Then

$$
S_{r}\left(G \times \mathbb{Z}_{2}\right)=|G| \sum_{x \in P} \sum_{y \leq x} \frac{\mu(y, x)}{|Z(y)|} r^{2|x|}
$$

Proof. By Corollary 3.1, we count the number of symmetric pairs of r-colorings of G. Let C denote the set of all pairs $\left(\chi_{0}, \chi_{1}\right)$ symmetric with respect to e, and for every $x \in P$, let

$$
C(x)=\left\{\left(\chi_{0}, \chi_{1}\right) \in C: S t\left(\chi_{0}, \chi_{1}\right)=S t(x) \text { and } Z\left(\chi_{0}, \chi_{1}\right)=Z(x)\right\}
$$

Clearly, $\{C(x): x \in P\}$ is a partition of C. For every $x \in P$ and $\left(\chi_{0}, \chi_{1}\right) \in C(x),\left[\left(\chi_{0}, \chi_{1}\right)\right]_{e}=$ $\left\{\left(\chi_{0}, \chi_{1}\right) a^{-1}: a \in Z(x)\right\}$, St $\left(\left(\chi_{0}, \chi_{1}\right) a^{-1}\right)=a S t(x) a^{-1}$, and $Z\left(\left(\chi_{0}, \chi_{1}\right) a^{-1}\right)=Z(x) a^{-1}$, so in general, $\left[\left(\chi_{0}, \chi_{1}\right)\right]_{e} \nsubseteq C(x)$. To correct this situation, define the equivalence \equiv on P by

$$
x \equiv y \Leftrightarrow S t(y)=a S t(x) a^{-1} \text { and } Z(y)=Z(x) a^{-1} \text { for some } a \in Z(x) .
$$

For every $x \in P$, let \bar{x} denote the \equiv-class containing x and let $C(\bar{x})=\bigcup_{y \in \bar{x}} C(y)$. Then whenever $y \in \bar{x}$ and $\left(\chi_{0}, \chi_{1}\right) \in C(y)$,

$$
\left[\left(\chi_{0}, \chi_{1}\right)\right]_{e} \subseteq C(\bar{x}),\left|\left[\left(\chi_{0}, \chi_{1}\right)\right]_{e}\right|=\frac{|Z(x)|}{|S t(x)|} \text { and }\left|\left[\left(\chi_{0}, \chi_{1}\right)\right]\right|=\frac{|G|}{|S t(x)|}
$$

It follows that

$$
|C(\bar{x}) / \sim|=\frac{|S t(x)||C(\bar{x})|}{|Z(x)|}=\sum_{y \in \bar{x}} \frac{|S t(y)||C(y)|}{|Z(y)|}
$$

and the number of pairs equivalent to pairs from $C(\bar{x})$ is

$$
|C(\bar{x}) / \sim| \cdot \frac{|G|}{|S t(x)|}=|G| \sum_{y \in \bar{x}} \frac{|C(y)|}{|Z(y)|} .
$$

Consequently, the number of all symmetric pairs of r-colorings of G is

$$
|G| \sum_{y \in P} \frac{|C(y)|}{|Z(y)|}
$$

Now to compute $|C(y)|$, note that

$$
\sum_{y \leq x}|C(x)|=r^{2|y|}
$$

Then applying Möbius inversion (see [1, IV, §2]) gives us that

$$
|C(y)|=\sum_{y \leq x} \mu(y, x) r^{2|x|}
$$

Finally, we obtain that the number of symmetric pairs of r-colorings of G is

$$
|G| \sum_{y \in P} \sum_{y \leq x} \frac{\mu(y, x)}{|Z(y)|} r^{2|x|}=|G| \sum_{x \in P} \sum_{y \leq x} \frac{\mu(y, x)}{|Z(y)|} r^{2|x|} .
$$

$$
\text { Symmetric colorings of } G \times \mathbb{Z}_{2} \quad \mid \quad \text { Jabulani Phakathi et al. }
$$

Theorem 1.1 is immediate from Theorem 3.1 and Theorem 2.1.
Remark 3.1. The proof of Theorem 3.1 shows also that the number $s_{r}^{2}(G)$ of equivalence classes of symmetric pairs of r-colorings of G is

$$
\sum_{x \in P} \sum_{y \leq x} \frac{\mu(y, x) S t(y)}{|Z(y)|} r^{2|x|}
$$

Consequently, if $g(r)$ is the polynomial representing $s_{r}(G)$, then $s_{r}^{2}(G)=g\left(r^{2}\right)$. However, in contrast to Corollary 3.1, $s_{r}\left(G \times \mathbb{Z}_{2}\right)$ is not equal to $s_{r}^{2}(G)$. For example, $s_{r}\left(\mathbb{Z}_{3} \times \mathbb{Z}_{2}\right)=\frac{1}{2} r^{4}+\frac{1}{2} r^{2}$, $s_{r}\left(\mathbb{Z}_{3}\right)=r^{2}$, and $s_{r}^{2}\left(\mathbb{Z}_{3}\right)=r^{4}$.

References

[1] M. Aigner, Combinatorial Theory, Springer-Verlag, Berlin-Heidelberg-New York, 1979.
[2] E. Bender and J. Goldman, On the applications of Möbius inversion in combinatorial analysis, Amer. Math. Monthly 82 (1975), 789-803.
[3] Y. Gryshko (Yu. Zelenyuk), Symmetric colorings of regular polygons, Ars. Combinatoria 78 (2006), 277-281.
[4] C. Jayawardene, E.T. Baskoro, L. Samarasekara, and S. Sy, Size multipartite Ramsey numbers for stripes versus small cycles, Electron. J. Graph Theory Appl. 4 (2016), 157-170.
[5] O. Loos, Symmetric Spaces, Benjamin: New York, NY, USA, 1969.
[6] Yu. Zelenyuk, Symmetric colorings of finite groups, Proceedings of Groups St Andrews 2009, Bath, LMS Lecture Note Series 388 (2011), 580-590.
[7] J. Phakathi, W. Toko, Ye. Zelenyuk, and Yu. Zelenyuk Symmetric colorings of the dihedral group, Communications in Algebra 46 (2018), 1554-1559.
[8] J. Phakathi, S. Singh, Ye. Zelenyuk, and Yu. Zelenyuk, Counting symmetric colorings of $G \times \mathbb{Z}_{2}$, Journal of Algebra and Its Applications 18 (10) (2019), 1-7.

