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Abstract

Let G be a finite group and let r ∈ N. An r-coloring of G is any mapping χ : G → {1, . . . , r}.
A coloring χ is symmetric if there is g ∈ G such that χ(gx−1g) = χ(x) for every x ∈ G. We
show that if f(r) is the polynomial representing the number of symmetric r-colorings of G, then
the number of symmetric r-colorings of G× Z2 is f(r2).
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1. Introduction

Let G be a finite group and let r ∈ N. An r-coloring of G is any mapping χ : G→ {1, . . . , r}.
The group G naturally acts on its r-colorings. For every coloring χ and for every g ∈ G, the
coloring χg is defined by

χg(x) = χ(xg−1).

Colorings χ and ψ are equivalent if there is g ∈ G such that χg = ψ (that is, if χ and ψ belong
to the same orbit). Let cr(G) denote the number of equivalence classes of r-colorings of G (= the
number of orbits). Applying Burnside’s Lemma [1, I, §3] gives us that

cr(G) =
1

|G|
∑
g∈G

r
|G|
|⟨g⟩| ,
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where ⟨g⟩ is the subgroup generated by g. For G = Zn, the cyclic group of order n, this formula
simplifies to

cr(Zn) =
1

n

∑
d|n

φ(d)r
n
d ,

where φ is the Euler function [2].
For every g ∈ G, the symmetry on G with respect to g is the mapping

G ∋ x 7→ gx−1g ∈ G.

This is an old notion, which can be found in the book [5]. We say that a coloring χ of G is
symmetric if it is invariant under some symmetry, that is, if there is g ∈ G such that χ(gx−1g) =
χ(x) for all x ∈ G. A coloring equivalent to a symmetric one is also symmetric. Let Sr(G)
denote the number of symmetric r-colorings of G and sr(G) the number of equivalence classes of
symmetric r-colorings of G (= the number of symmetric orbits). For every finite Abelian group G
and for every r ∈ N,

Sr(G) =
∑
X≤G

∑
Y≤X

µ(Y,X)|G/Y |
|B(G/Y )|

r
|G/X|+|B(G/X)|

2 ,

sr(G) =
∑
X≤G

∑
Y≤X

µ(Y,X)

|B(G/Y )|
r

|G/X|+|B(G/X)|
2 ,

where X runs over subgroups of G, Y over subgroups of X , µ(Y,X) is the Möbius function on
the lattice of subgroups of G, and B(H) = {x ∈ H : 2x = 0} [3]. Similar but more complicated
formulas hold also in the non-Abelian case [6]. For G = Zn the formulas above simplify to

Sr(Zn) =

{∑
d|n d

∏
p|n

d
(1− p)r

d+1
2 , if n is odd,∑

d|n
2
d
∏

p| n
2d
(1− p)rd+1, if n is even,

sr(Zn) =

{
r

n+1
2 , if n is odd,

1
2
(r

n
2
+1 + r

m+1
2 ), if n is even,

where p is a variable of prime value and m is the greatest odd divisor of n [3]. For G = Dn, the
dihedral group of order 2n, the numbers Sr(Dn) and sr(Dn), were computed in [7]. (See also [4].)

In [8] it was shown that, for every finite Abelian groupG, if f(r) is the polynomial representing
Sr(G), that is Sr(G) = f(r), then Sr(G×Z2) = f(r2), and so, for every n ∈ N, Sr(G×

∏
n Z2) =

f
(
r2

n).
In this paper we extend this result to all finite groups.

Theorem 1.1. Let G be a finite group and let f(r) be the polynomial representing Sr(G). Then
Sr(G× Z2) = f(r2).

The proof of Theorem 1.1 is a combination of that from [8] and the optimal partitions method
for counting Sr(G) from [6].
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2. Preliminaries

In this section we recall the main result and related notions from [6].
For every coloring χ : G → {1, 2, . . . , r}, let [χ] and St(χ) denote the orbit and the stabilizer

of χ, that is,
[χ] = {χg : g ∈ G} and St(χ) = {g ∈ G : χg = χ}.

As in the general case of an action,

|[χ]| = |G|
|St(χ)|

and St(χg) = g−1St(χ)g.

In counting Sr(G) and sr(G) an important role is played also by the sets

Z(χ) = {g ∈ G : χ is symmetric with respect to g},

[χ]e = {ψ ∈ [χ] : ψ is symmetric with respect to e},

where e is the identity of G. The set Z(χ) is a union of left cosets of G by St(χ) and

|[χ]e| =
|Z(χ)|
|St(χ)|

.

Similarly to colorings, these notions naturally extend to partitions of G. In particular, for every
partition π of G, St(π) is the set of all g ∈ G such that every cell of π is invariant under right
translation by g−1, and Z(π) is the set of all g ∈ G such that every cell of π is invariant under
symmetry with respect to g. We say that a partition π of G is optimal if e ∈ Z(π) and for every
partition π′ of G with St(π′) = St(π) and Z(π′) = Z(π), one has π ≤ π′. The latter means that
every cell of π is contained in some cell of π′.

Let P be the set of all pairs x = (St(x), Z(x)) such that St(x) = St(χ) and Z(x) = Z(χ) for
some coloring χ of G symmetric with respect to e. Define the order ≤ on P by

x ≤ y ⇔ St(x) ⊆ St(y) and Z(x) ⊆ Z(y).

For every x ∈ P , let πx denote the finest partition of G with St(π) = St(x) and Z(π) = Z(x).
Then {πx : x ∈ P} is the set of all optimal partitions of G and πx ≤ πy ⇔ x ≤ y, so {πx : x ∈ P}
can be identified with P .

For every partition π, we write |π| to denote the number of cells of π.

Theorem 2.1. Let P be the partially ordered set of optimal partitions of G. Then

Sr(G) = |G|
∑
x∈P

∑
y≤x

µ(y, x)

|Z(y)|
r|x|,

sr(G) =
∑
x∈P

∑
y≤x

µ(y, x)St(y)

|Z(y)|
r|x|.
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3. Proof of Theorem 1.1

Lemma 3.1. Let χ : G× Z2 → {1, 2, . . . , r}. For each j ∈ Z2, define χj : G → {1, 2, . . . , r} by
χj(x) = χ(x, j). Then χ is symmetric if and only if there is g ∈ G such that each χj is symmetric
with respect to g.

Proof. Suppose that χ is symmetric. Then there is (g, i) ∈ G×Z2 such that χ((g, i)(x, j)−1(g, i)) =
χ(x, j) for every (x, j) ∈ G× Z2. Since

(g, i)(x, j)−1(g, i) = (g, i)(x−1, j)(g, i) = (gx−1g, iji) = (gx−1g, j),

we have that χ(gx−1g, j) = χ(x, j), so χj(gx
−1g) = χj(x).

Conversely, suppose that there is g ∈ G such that each χj is symmetric with respect to g. Then
χ is symmetric with respect to (g, i) for any i ∈ Z2. Indeed,

χ((g, i)(x, j)−1(g, i)) = χ(gx−1g, j) = χj(gx
−1g) = χj(x) = χ(x, j).

We shall say that a pair (χ0, χ1) of colorings of G is symmetric if there is g ∈ G such that each
χj is symmetric with respect to g, that is, χj(gx

−1g) = χj(x) for each j and for every x ∈ G.
Clearly, the correspondence χ 7→ (χ0, χ1) defined in Lemma 3.1 is a bijection between the set

of r-colorings of G × Z2 and the set of pairs of r-colorings of G, and by Lemma 3.1, it maps the
set of symmetric r-colorings of G× Z2 onto the set of symmetric pairs of r-colorings of G. Thus,
we obtain that

Corollary 3.1. Sr(G× Z2) is equal to the number of symmetric pairs of r-colorings of G.

Define the action of G on the pairs (χ0, χ1) of r-colorings of G by

(χ0, χ1)g = (χ0g, χ1g).

For every pair (χ0, χ1), let [(χ0, χ1)] and St(χ0, χ1) denote the orbit and the stabilizer of (χ0, χ1),
that is,

[(χ0, χ1)] = {(χ0, χ1)g : g ∈ G} and St(χ0, χ1) = {g ∈ G : (χ0, χ1)g = (χ0, χ1)}.

As in the general case of an action,

|[(χ0, χ1)]| =
|G|

|St(χ0, χ1)|
.

For every pair (χ0, χ1), let Z(χ0, χ1) denote the set of all g ∈ G such that (χ0, χ1) is symmetric
with respect to g.

Lemma 3.2. Z((χ0, χ1)g) = Z(χ0, χ1)g for every g ∈ G.
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Proof. To see that Z(χ0, χ1)g ⊆ Z((χ0, χ1)g), let a ∈ Z(χ0, χ1). Then for each j and for every
x ∈ G,

χjg(agx
−1ag) = χj(agx

−1a) = χj(xg
−1) = χjg(x).

Consequently, ag ∈ Z((χ0, χ1)g).
Now, conversely,

Z((χ0, χ1)g) = Z((χ0, χ1)g)g
−1g ⊆ Z((χ0, χ1)gg

−1)g = Z(χ0, χ1)g.

It follows from Lemma 3.2, in particular, that if a pair (χ0, χ1) is symmetric, then the whole
orbit [(χ0, χ1)] is symmetric.

The next lemma tells us that, for every symmetric pair (χ0, χ1), Z(χ0, χ1) is a union of left
cosets of G by St(χ0, χ1).

Lemma 3.3. Z(χ0, χ1) · St(χ0, χ1) = Z(χ0, χ1).

Proof. Clearly, Z(χ0, χ1) ⊆ Z(χ0, χ1) · St(χ0, χ1). To see the converse inclusion, let g ∈
Z(χ0, χ1) and h ∈ St(χ0, χ1). Then for each j and for every x ∈ G,

χj(ghx
−1gh) = χjh

−1(ghx−1g) = χj(ghx
−1g) = χj(xh

−1) = χjh(x) = χj(x).

Consequently, gh ∈ Z(χ0, χ1).

For every symmetric pair (χ0, χ1), let [(χ0, χ1)]e denote the subset of [(χ0, χ1)] consisting of
all pairs symmetric with respect to e.

Lemma 3.4. [(χ0, χ1)]e = {(χ0, χ1)a
−1 : a ∈ Z(χ0, χ1)}.

Proof. To see that {(χ0, χ1)a
−1 : a ∈ Z(χ0, χ1)} ⊆ [(χ0, χ1)]e, let a ∈ Z(χ0, χ1). Then for each

j and for every x ∈ G,

χja
−1(x−1) = χj(x

−1a) = χj(aa
−1xa) = χj(xa) = χja

−1(x).

To see the converse inclusion, let g ∈ G and suppose that (χ0, χ1)g is symmetric with respect
to e. Then for each j and for every x ∈ G,

χj(g
−1x−1g−1) = χjg(g

−1x−1) = χjg(xg) = χj(xgg
−1) = χj(x).

Consequently, g−1 ∈ Z(χ0, χ1).

From Lemma 3.4 and Lemma 3.3 we obtain that

Corollary 3.2. For every symmetric pair (χ0, χ1),

|[(χ0, χ1)]e| =
|Z(χ0, χ1)|
|St(χ0, χ1)|

.
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Now we can count Sr(G× Z2).

Theorem 3.1. Let P be the partially ordered set of optimal partitions of G. Then

Sr(G× Z2) = |G|
∑
x∈P

∑
y≤x

µ(y, x)

|Z(y)|
r2|x|.

Proof. By Corollary 3.1, we count the number of symmetric pairs of r-colorings of G. Let C
denote the set of all pairs (χ0, χ1) symmetric with respect to e, and for every x ∈ P , let

C(x) = {(χ0, χ1) ∈ C : St(χ0, χ1) = St(x) and Z(χ0, χ1) = Z(x)}.

Clearly, {C(x) : x ∈ P} is a partition of C. For every x ∈ P and (χ0, χ1) ∈ C(x), [(χ0, χ1)]e =
{(χ0, χ1)a

−1 : a ∈ Z(x)}, St((χ0, χ1)a
−1) = aSt(x)a−1, and Z((χ0, χ1)a

−1) = Z(x)a−1, so in
general, [(χ0, χ1)]e ⊈ C(x). To correct this situation, define the equivalence ≡ on P by

x ≡ y ⇔ St(y) = aSt(x)a−1 and Z(y) = Z(x)a−1 for some a ∈ Z(x).

For every x ∈ P , let x̄ denote the ≡-class containing x and let C(x̄) =
⋃

y∈x̄C(y). Then whenever
y ∈ x̄ and (χ0, χ1) ∈ C(y),

[(χ0, χ1)]e ⊆ C(x̄), |[(χ0, χ1)]e| =
|Z(x)|
|St(x)|

and |[(χ0, χ1)]| =
|G|

|St(x)|
.

It follows that

|C(x̄)/ ∼ | = |St(x)||C(x̄)|
|Z(x)|

=
∑
y∈x̄

|St(y)||C(y)|
|Z(y)|

and the number of pairs equivalent to pairs from C(x̄) is

|C(x̄)/ ∼ | · |G|
|St(x)|

= |G|
∑
y∈x̄

|C(y)|
|Z(y)|

.

Consequently, the number of all symmetric pairs of r-colorings of G is

|G|
∑
y∈P

|C(y)|
|Z(y)|

.

Now to compute |C(y)|, note that ∑
y≤x

|C(x)| = r2|y|.

Then applying Möbius inversion (see [1, IV, §2]) gives us that

|C(y)| =
∑
y≤x

µ(y, x)r2|x|.

Finally, we obtain that the number of symmetric pairs of r-colorings of G is

|G|
∑
y∈P

∑
y≤x

µ(y, x)

|Z(y)|
r2|x| = |G|

∑
x∈P

∑
y≤x

µ(y, x)

|Z(y)|
r2|x|.
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Theorem 1.1 is immediate from Theorem 3.1 and Theorem 2.1.

Remark 3.1. The proof of Theorem 3.1 shows also that the number s2r(G) of equivalence classes
of symmetric pairs of r-colorings of G is∑

x∈P

∑
y≤x

µ(y, x)St(y)

|Z(y)|
r2|x|.

Consequently, if g(r) is the polynomial representing sr(G), then s2r(G) = g(r2). However, in
contrast to Corollary 3.1, sr(G×Z2) is not equal to s2r(G). For example, sr(Z3×Z2) =

1
2
r4+ 1

2
r2,

sr(Z3) = r2, and s2r(Z3) = r4.
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