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Abstract

Let c : V (G) → {1, 2, . . . , k} be a proper k-coloring of a simple connected graph G. Let Π =
{C1, C2, . . . , Ck} be a partition of V (G), where Ci is the set of vertices of G receiving color i. The
color code, cΠ(v), of a vertex v with respect to Π is an ordered k-tuple (d(v, C2), d(v, C2), . . . ,
d(v, Ck)), where d(v, Ci) = min{d(v, x) : x ∈ Ci} for i = 1, 2, . . . , k. If distinct vertices have
distinct color codes then c is called a locating coloring of G. The minimum k for which c is a
locating coloring is the locating chromatic number of G, denoted by χL(G). Let G be a non trivial
connected graph and let m ≥ 2 be an integer. The m-shadow of G, denoted by Dm(G), is a graph
obtained by taking m copies of G, say G1, G2, . . . , Gm, and each vertex v in Gi, i = 1, 2, . . . ,m−1,
is joined to the neighbors of its corresponding vertex v′ in Gi+1. In the present paper, we deal with
the locating chromatic number for m-shadow of connected graphs. Sharp bounds on the locating
chromatic number of Dm(G) for any non trivial connected graph G and any integer m ≥ 2 are
obtained. Then the values of locating chromatic number for m-shadow of complete multipartite
graphs and paths are determined, some of which are considered to be optimal.
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1. Introduction

All graphs considered in this paper are only connected, finite and undirected containing no
loops nor multiple edges. Let G = (V (G), E(G)) be a graph with vertex set V (G) and edge set
E(G). We use Pn to denote a path of order n and Kn1,n2,...,nr to denote a complete r-partite graph
where ni ≤ nj for i < j. A complete graph on n vertices and a star on n + 1 vertices are denoted
by Kn and K1,n, respectively. For u, v ∈ V (G) and a non negative integer k, a u − v walk of
length k is a sequence of vertices (u = v0, v1, . . . , vk = v), where vivi+1 is an edge of G for every
i = 0, 1, . . . , k − 1. When no vertex is repeated in the sequence, it is called a u − v path. The
distance between u and v, denoted by dG(u, v) (or d(u, v) in short), is defined as the length of the
shortest u− v path.

Let c : V (G) → {1, 2, . . . , k} be a proper k-coloring of G and let Π = {C1, C2, . . . ,
Ck} be a partition of V (G), where Ci is the set of vertices in G receiving color i. The color
code cΠ(v) of v with respect to Π is an ordered k-tuple (d(v, C1), d(v, C2), . . . , (v, Ck)), where
d(v, Ci) = min{d(v, x) : x ∈ Ci} for i = 1, 2, . . . , k. If distinct vertices have distinct color
codes then c is called a locating k-coloring of G. The locating chromatic number of G, denoted
by χL(G), is the minimum k for which c is a locating coloring.

The concept of locating chromatic number of graphs was introduced in 2002 by Chartrand et
al. [15] as a combination of two concepts in graph theory namely graph coloring and partition
dimension of graphs. Computing the locating chromatic number for general graphs is an NP-
complete. It means that there is no efficient algorithm of calculating the locating chromatic number
for a general graph. However, a number of researches restricted on specific classes of graphs have
been carried out. For instance, the locating chromatic number for some families of graphs has been
found such as paths, cycles, complete multipartite, and bistars in [15], amalgamation of stars in
[3], firecracker graphs in [4], Barbell graphs in [5], Kneser graphs in [12], powers of paths and
cycles in [17], book graphs in [19], Origami graphs in [20], and Möobius ladder graphs in [21].
Characterizations of graphs having certain locating chromatic number were studied such as trees
with locating chromatic number 3 in [8], trees of order n with locating chromatic number n − t
for 2 ≤ t < n

2
in [22], unicyclic graphs of order n with locating chromatic number n− 3 or n− 2

in [2, 7], and graphs of order n with locating chromatic number n − 1 in [14]. In [10, 11, 13], it
was investigated the locating chromatic number for the join product, Cartesian product and corona
product of graphs. Recently, some upper bounds for the locating chromatic number of trees were
also developed by some authors (see [6, 9, 16, 18]).

In [1], Agustin et al. defined an m-shadow of a graph as follows. Let G be a non trivial
connected graph and let an integer m ≥ 2 be given. The m-shadow of G, denoted by Dm(G),
is a graph obtained by taking m copies of G, say G1, G2, . . . , Gm, and each vertex v in Gi, i =
1, 2, . . . ,m− 1, is joined to the neighbors of its corresponding vertex v′ in Gi+1.

In this paper, we study the locating chromatic number for m-shadow of a connected graph.
We give sharp lower and upper bound of the parameter χL(G) for m-shadow of any non trivial
connected graph. The values of locating chromatic number for m-shadow of complete multipartite
graphs and paths are then determined, some of which are considered to be optimal.
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2. Lower and upper bound

We begin with the following result that will be used later.

Proposition 2.1. Let ui ∈ V (Gi) and vj ∈ V (Gj), i ̸= j, be two vertices of H ∼= Dm(G)
corresponding to vertices u and v in G, respectively. Then

dH(ui, vj) =

{
|i− j|, if there exists a u− v walk of length |i− j| in G,

max{dG(u, v), |i− j|+ 1}, otherwise.

Proof. For each u, v ∈ V (G), let (u = x0, x1, . . . , xk = v) be a u − v walk of length k in G. Let
H ∼= Dm(G). Consider two vertices ui, vj ∈ V (H), i ̸= j, with ui ∈ V (Gi) and vj ∈ V (Gj),
corresponding to u and v in G, respectively. Say, without loss of generality, i < j. Let k = |i− j|.
Then (ui = x0

i , x
1
i+1, . . . , x

k
j = vj) is a ui − vj path of length k in H . So dH(ui, vj) = |i− j|. Now

suppose k ̸= |i− j|. We have two cases.
Case 1. dG(u, v) > |i − j|. Then dG(u, v) = max{dG(u, v), |i − j| + 1}. So (ui =

x0
i , x

1
i+1, . . . , x

|i−j|
j , x

|i−j|+1
j , . . . , x

dG(u,v)
j = vj) is a ui − vj path of length dG(u, v) in H . Thus

dH(ui, vj) = dG(u, v).
Case 2. dG(u, v) < |i− j|. Then |i− j|+1 = max{dG(u, v), |i− j|+1}. Suppose that w is a

vertex adjacent to v in G. Then (ui = x0
i , x

1
i+1, . . . , x

dG(u,v)
i+dG(u,v) = vi+dG(u,v)) is a ui− vi+dG(u,v) path

of length dG(u, v) in H and (vi+dG(u,v), wi+dG(u,v)+1, vi+dG(u,v)+2, wi+dG(u,v)+3, . . . , vj−1, wj, vj) is
a vi+dG(u,v) − vj path of length j − i− dG(u, v) + 1 in H . Hence

dH(ui, vj) ≤ dG(u, v) + j − i− dG(u, v) + 1 = |i− j|+ 1. (1)

As k ̸= |i− j|,
dH(ui, vj) ≥ |i− j|+ 1. (2)

By (1) and (2), dH(ui, vj) = |i− j|+ 1.

The next theorem presents the bounds on the locating chromatic number for m-shadow of a
connected graph G.

Theorem 2.1. Let G be a non trivial connected graph and m ≥ 2. Then

χL(G) + 1 ≤ χL(Dm(G)) ≤ 2χL(G).

Proof. First, we will prove the lower bound. We here will use a contradiction strategy. Thus,
assume that χL(Dm(G)) = χL(G). Consider the first and the second copy of G in the graph
Dm(G), i.e., G1 and G2, respectively. If there is no mutual color used in G1 and G2, then the
number of colors used in G1 must be less than χL(G) and number of colors used in G2 must be
less than χL(G). By definition of locating coloring, at least two vertices in G1 or G2 belonging to
the same color class have the same color codes, a contradiction. Suppose that at least one mutual
color is used in G1 and G2. Then there must be two vertices in G1 ∪ G2 belonging to the same
color class having the same color codes, a contradiction. Thus χL(Dm(G)) ≥ χL(G) + 1.
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Next, we will prove the upper bound. Let us denote by the symbol vi, i = 1, 2, . . . ,m, a vertex
in Gi, Gi ⊂ Dm(G), corresponding to the vertex v in G. Define a coloring c on the vertices of
Dm(G) in the following way. Let c(vm) = c′(v)+χL(G), and c(vi) = c′(v) for i = 1, 2, . . . ,m−1,
where c′ is a locating χL(G)-coloring of G.

We show that c is a locating coloring of Dm(G). To do so, it suffices to show that every two
distinct vertices ui and vj of Dm(G) in each color class have distinct color codes. If 1 ≤ i = j ≤ m
then cΠ(ui) ̸= cΠ(vj) since c′ is a locating coloring of G. Let us consider 1 ≤ i < j ≤ m − 1.
First, let j− i ≥ 2. We have dDm(G)(ui, vm) ≥ m− i ≥ m− j+2 > m− j+1 ≥ dDm(G)(vj, vm).
Then ui and vj are distinguished by the color class CχL(G)+c(vj). Now let j− i = 1. By Proposition
2.1, m − j ≤ dDm(G)(vj, vm) ≤ m − j + 1. If dDm(G)(vj, vm) = m − j then dDm(G)(ui, vm) ≥
m− i = m− j + 1 > m− j = dDm(G)(vj, vm). So ui and vj are distinguished by the color class
CχL(G)+c(vj). If dDm(G)(vj, vm) = m− j + 1 then dDm(G)(vj, wm) = m− j, where wm is a vertex
in Gm adjacent to vm. We get dDm(G)(ui, wm) ≥ m− j+1 > m− j = dDm(G)(vj, wm). So ui and
vj are distinguished by the color class CχL(G)+c(wj). Thus all the vertices have distinct color codes
and the proof is concluded.

As we will see the results in (3), (4) and Lemma 4.1, the bounds in Theorem 2.1 are sharp.

3. The m-shadow of complete multipartite graphs

Let G ∼= Dm(Kn1,n2,...,nr) be the m-shadow of a complete r-partite graph consisting of mr
vertex subsets namely V 1

1 , V
2
1 , . . . , V

r
1 , V

1
2 , V

2
2 , . . . , V

r
2 , . . . , V

1
m, V

2
m, . . . , V

r
m such that |V j

i | = nj

for i = 1, 2, . . . ,m and j = 1, 2, . . . , r, which form a partition in G. The graph G has vertex set
V (G) =

⋃m
i=1

⋃r
j=1 V

j
i , where V j

i = {vji,k : j = 1, 2, . . . , r and k = 1, 2, . . . , nj} is the jth partite
in the ith copy of Kn1,n2,...,nr .

It was proved in [15] that χL(Kn1,n2,...,nr) =
∑r

z=1 nz. Since the 2-shadow of a complete
r-partite Kn1,n2,...,nr is a complete r-partite graph K2n1,2n2,...,2nr , we have

χL(D2(Kn1,n2,...,nr)) = 2
r∑

z=1

nz. (3)

Let us consider the graph Dm(Kn1,n2,...,nr), for m ≥ 3. In this case, we claim that it is not
possible to attain the lower bound in Theorem 2.1. We need to add at least one more color in
order to produce a locating coloring. The next lemma proves our claim. Please note that every
proper

∑r
z=1 nz-coloring of Dm(Kn1,n2,...,nr) has the property that for every 1 ≤ i ̸= i′ ≤ m and

1 ≤ j ≤ r, the sets of colors used to color the vertices on V j
i are the same as those used to color

the vertices on V j
i′ .

Lemma 3.1. Let m ≥ 3, r ≥ 2 and n1 ≤ n2 ≤ · · · ≤ nr. Then χL(Dm(Kn1,n2,...,nr)) ≥∑r
z=1 nz + 2.

Proof. It suffices to show that there is no locating (
∑r

z=1 nz + 1)-coloring of
Dm(Kn1,n2,...,nr). Assume that such a coloring c exists. The vertex (

∑r
z=1 nz + 1)-coloring c

of Dm(Kn1,n2,...,nr) can be obtained from the vertex
∑r

z=1 nz-coloring of Dm(Kn1,n2,...,nr) by re-
placing ’old’ color of at least one vertex with the ’new’ color

∑r
z=1 nz + 1. Say, the color c0 of
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vji,k ∈ V j
i for some c0, i, j, k, is replaced with the color

∑r
z=1 nz + 1. As c is proper, the sets of

colors used to color the vertices in V j′

i−1, V j′

i and V j′

i+1 for every j′, 1 ≤ j′ ̸= j ≤ r, are not replaced.
This implies that at least two vertices in V j′

i−1 ∪ V j′

i ∪ V j′

i+1 belonging to the same color class have
the same color codes, a contradiction. Thus χL(Dm(Kn1,n2,...,nr)) ≥

∑r
z=1 nz + 2.

Lemma 3.2. Let r ≥ 2 and 2 ≤ n1 ≤ n2 ≤ · · · ≤ nr. Then χL(D3(Kn1,n2,...,nr)) ≤
∑r

z=1 nz + 3.

Proof. Define a vertex (
∑r

z=1 nz + 3)-coloring c of D3(Kn1,n2,...,nr) in the following way. Let
c(v11,n1

) = c(v23,n2
) =

∑r
z=1 nz + 1, c(v21,n2

) =
∑r

z=1 nz + 2 and c(v13,n1
) =

∑r
z=1 nz + 3. Next,

let c(vji,k) =
∑j−1

z=1 nz + k for i = 1, 2, 3, j = 1, 2, . . . , r and k = 1, 2, . . . , nj , where (i, k) ̸=
(1, n1), (3, n1), (1, n2) or (3, n2). It is easy to see that c is a locating coloring.

Lemma 3.3. Let r ≥ 2 and 2 ≤ n1 ≤ n2 ≤ · · · ≤ nr. Then χL(D4(Kn1,n2,...,nr)) ≤
∑r

z=1 nz + 3.

Proof. Define a vertex (
∑r

z=1 nz + 3)-coloring c of D4(Kn1,n2,...,nr) as follows. Let c(v11,n1
) =∑r

z=1 nz + 1, c(v12,n1
) = c(v24,n2

) =
∑r

z=1 nz + 2 and c(v23,n2
) =

∑r
z=1 nz + 3. Next, let

c(vji,k) =
∑j−1

z=1 nz + k for i = 1, 2, . . . , 4, j = 1, 2, . . . , r and k = 1, 2, . . . , nj , where (i, k) ̸=
(1, n1), (2, n1), (3, n2) or (4, n2). It is not hard to show that c is a locating coloring.

Lemma 3.4. Let m ≥ 3, r ≥ 2 and 1 = n1 ≤ n2 ≤ · · · ≤ nr. Then χL(Dm(Kn1,n2,...,nr)) =∑r
z=1 nz + 2.

Proof. Due to Lemma 3.1, it is sufficient to show the existence of a locating (
∑r

z=1 nz+2)-coloring
of Dm(Kn1,n2,...,nr). Let us define a coloring c : V (Dm(Kn1,n2,...,nr)) → {1, 2, . . . ,

∑r
z=1 nz + 2}

in the following way.

c(v1i,1) = 1 for i = 1, 2, . . . ,m− 2,

c(v1i,1) =
r∑

z=1

nz −m+ 2 + i for i = m− 1,m,

c(vji,k) =

j−1∑
z=1

nz + k for i = 1, 2, . . . ,m, j = 2, 3, . . . , r and k = 1, 2, . . . , nj.

Let u and v be any two vertices of Dm(Kn1,n2,...,nr) such that u and v belong to the same color
class. Consider the following cases.

• If u = vji,k and v = vji′,k for 1 ≤ i ̸= i′ ≤ m − 1, 2 ≤ j ≤ r and 1 ≤ k ≤ nj then
cΠ(u) ̸= cΠ(v) since d(u,C∑r

z=1 nz+2) ̸= d(v, C∑r
z=1 nz+2).

• If u = vji,k and v = vjm,k for 1 ≤ i ≤ m− 1, 2 ≤ j ≤ r and 1 ≤ k ≤ nj then cΠ(u) ̸= cΠ(v)
since d(u,C1) ̸= d(v, C1).

• If u = v1i,1 and v = v1i′,1 for 1 ≤ i ̸= i′ ≤ m−2 then cΠ(u) ̸= cΠ(v) since d(u,C∑r
z=1 nz+2) ̸=

d(v, C∑r
z=1 nz+2).
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The color codes of vertices are all distinct and so c is a locating coloring of Dm(Kn1,n2,...,nr). Hence
χL(Dm(Kn1,n2,...,nr)) =

∑r
z=1 nz + 2.

Lemma 3.5. Let m ≥ 5 and 2 ≤ n1 ≤ n2. Then χL(Dm(Kn1,n2)) ≤ n1 + n2 + 3.

Proof. Define a coloring c : V (Dm(Kn1,n2)) → {1, 2, . . . , n1 + n2 + 3} in the following way.

c(v1i,k) = k for i = 1, 2, . . . ,m and k = 1, 2, . . . , n1, where (i, k) ̸= (1, n1) or (m,n1),

c(v2i,k) = n1 + k for i = 1, 2, . . . ,m and k = 1, 2, . . . , n2, where (i, k) ̸= (3, n2) or (m,n2),

c(v11,n1
) = n1 + n2 + 1,

c(v23,n2
) = n1 + n2 + 2,

c(v1m,n1
) = n1 + n2 + 3 if m is odd,

c(v1m,n1
) = n1 if m is even,

c(v2m,n2
) = n2 if m is odd,

c(v2m,n2
) = n1 + n2 + 3 if m is even.

Let u and v be any two vertices of Dm(Kn1,n2) such that u and v belong to the same color class.
Consider the following cases.

• If u = vji,k and v = vji′,k for 1 ≤ i ̸= i′ ≤ m, 1 ≤ j ≤ 2 and 1 ≤ k ≤ nj , |i − i′| ≥ 2, then
cΠ(u) ̸= cΠ(v) since d(u,Cn1+n2+3) ̸= d(v, Cn1+n2+3).

• If u = v11,k and v = v12,k for 1 ≤ k ≤ n1 − 1 then cΠ(u) ̸= cΠ(v) since d(u,Cn1+n2+2) ̸=
d(v, Cn1+n2+2).

• If u = v1i,k and v = v1i+1,k for odd i, 2 ≤ i ≤ m − 2, and 1 ≤ k ≤ n1 then cΠ(u) ̸= cΠ(v)
since d(u,Cn1+n2+1) ̸= d(v, Cn1+n2+1).

• If u = v1i,k and v = v1i+1,k for even i, 2 ≤ i ≤ m − 2, and 1 ≤ k ≤ n1 then cΠ(u) ̸= cΠ(v)
since d(u,Cn1+n2+3) ̸= d(v, Cn1+n2+3).

• If u = v1m−1,k and v = v1m,k for 1 ≤ k ≤ n1 − 1 then cΠ(u) ̸= cΠ(v) since d(u,Cn1+n2+2) ̸=
d(v, Cn1+n2+2) if m is odd and d(u,Cn1+n2+1) ̸= d(v, Cn1+n2+1) if m is even.

• If u = v1m−1,n1
and v = v1m,n1

for even m then cΠ(u) ̸= cΠ(v) since d(u,Cn1+n2+1) ̸=
d(v, Cn1+n2+1).

• If u = v21,k and v = v22,k for 1 ≤ k ≤ n2 then cΠ(u) ̸= cΠ(v) since d(u,Cn1+n2+3) ̸=
d(v, Cn1+n2+3).

• If u = v22,k and v = v23,k for 1 ≤ k ≤ n2 − 1 then cΠ(u) ̸= cΠ(v) since d(u,Cn1+n2+1) ̸=
d(v, Cn1+n2+1).

• If u = v23,k and v = v24,k for 1 ≤ k ≤ n2 − 1 then cΠ(u) ̸= cΠ(v) since d(u,Cn1+n2+3) ̸=
d(v, Cn1+n2+3).
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• If u = v2i,k and v = v2i+1,k for odd i, 4 ≤ i ≤ m − 2, and 1 ≤ k ≤ n2 then cΠ(u) ̸= cΠ(v)
since d(u,Cn1+n2+3) ̸= d(v, Cn1+n2+3).

• If u = v2i,k and v = v2i+1,k for even i, 4 ≤ i ≤ m − 2, and 1 ≤ k ≤ n2 then cΠ(u) ̸= cΠ(v)
since d(u,Cn1+n2+1) ̸= d(v, Cn1+n2+1).

• If u = v2m−1,k and v = v2m,k for 1 ≤ k ≤ n2 − 1 then cΠ(u) ̸= cΠ(v) since d(u,Cn1+n2+1) ̸=
d(v, Cn1+n2+1) if m is odd and d(u,Cn1+n2+2) ̸= d(v, Cn1+n2+2) if m is even.

• If u = v2m−1,n2
and v = v2m,n2

for odd m then cΠ(u) ̸= cΠ(v) since d(u,Cn1+n2+1) ̸=
d(v, Cn1+n2+1).

Thus distinct vertices have distinct color codes. Hence c is a locating coloring of Dm(Kn1,n2).

Lemma 3.6. Let m ≥ 5, r ≥ 3 and 2 ≤ n1 ≤ n2 ≤ · · · ≤ nr. Then χL(Dm(Kn1,n2,...,nr)) =∑r
z=1 nz + 2.

Proof. According to Lemma 3.1, it suffices to construct an optimal locating (
∑r

z=1 nz+2)-coloring
of Dm(Kn1,n2,...,nr). Let us define a coloring c : V (Dm(Kn1,n2,...,nr)) → {1, 2, . . . ,

∑r
z=1 nz + 2}

in the following way. Let c(v1m,n1
) =

∑r
z=1 nz + 2 and for i = 2, 3, . . . ,m − 1, let c(v1i,n1

) =∑r
z=1 nz + 1. Next, let c(vji,k) =

∑j−1
z=1 nz + k for i = 1, 2, . . . ,m, j = 1, 2, . . . , r and k =

1, 2, . . . , nj , where (i, k) ̸= (2, n1), (3, n1), . . . , (m,n1).
We show that the color codes for each vertex are distinct. Let us consider any two distinct

vertices u, v ∈ V (Dm(Kn1,n2,...,nr)) such that u and v belong to the same color class. Consider the
following cases.

• If u = v1i,k and v = v1i′,k for 1 ≤ i ̸= i′ ≤ m − 2 and 1 ≤ k ≤ n1 − 1 then cΠ(u) ̸= cΠ(v)
since d(u,C∑r

z=1 nz+2) ̸= d(v, C∑r
z=1 nz+2).

• If u = v1i,k and v = v1i′,k for 1 ≤ i ≤ m − 2, m − 1 ≤ i′ ≤ m, 1 ≤ k ≤ n1 − 1 then
cΠ(u) ̸= cΠ(v) since d(u,Cn1) ̸= d(v, Cn1).

• If u = v1m−1,k and v = v1m,k for 1 ≤ k ≤ n1 − 1 then cΠ(u) ̸= cΠ(v) since d(u,Cn1) ̸=
d(v, Cn1).

• If u = v1i,n1
and v = v1i′,n1

for 2 ≤ i ̸= i′ ≤ m−2 then cΠ(u) ̸= cΠ(v) since d(u,C∑r
z=1 nz+2) ̸=

d(v, C∑r
z=1 nz+2).

• If u = v1i,n1
and v = v1m−1,n1

for 1 ≤ i ≤ m − 2 then cΠ(u) ̸= cΠ(v) since d(u,Cn1) ̸=
d(v, Cn1).

• If u = vji,k and v = vji′,k for 1 ≤ i ̸= i′ ≤ m − 1, 2 ≤ j ≤ r and 1 ≤ k ≤ nj then
cΠ(u) ̸= cΠ(v) since d(u,C∑r

z=1 nz+2) ̸= d(v, C∑r
z=1 nz+2).

• If u = vji,k and v = vjm,k for 1 ≤ i ≤ m− 1, 2 ≤ j ≤ r and 1 ≤ k ≤ nj then cΠ(u) ̸= cΠ(v)
since d(u,Cn1) ̸= d(v, Cn1).
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The color codes of vertices are all distinct. So χL(Dm(Kn1,n2,...,nr)) =
∑r

z=1 nz + 2.

Summarizing the results from (3) and Lemmas 3.1, 3.2, 3.3, 3.4, 3.5 and 3.6 we have the fol-
lowing theorem which gives the locating chromatic number for m-shadow of complete multipartite
graphs.

Theorem 3.1. Let m ≥ 2, r ≥ 2 and 1 ≤ n1 ≤ n2 ≤ · · · ≤ nr. Then

χL(Dm(Kn1,n2,...,nr)) =


2
∑r

z=1 nz, if m = 2, r ≥ 2 and 1 ≤ n1 ≤ n2 ≤ · · · ≤ nr,∑r
z=1 nz + 2, if m ≥ 3, r ≥ 2 and 1 = n1 ≤ n2 ≤ · · · ≤ nr or

m ≥ 5, r ≥ 3 and 2 ≤ n1 ≤ n2 ≤ · · · ≤ nr.

Moreover,
∑r

z=1 nz + 2 ≤ χL(Dm(Kn1,n2,...,nr)) ≤
∑r

z=1 nz + 3 if 3 ≤ m ≤ 4, r ≥ 2 and
2 ≤ n1 ≤ n2 ≤ · · · ≤ nr or m ≥ 5, r = 2 and 2 ≤ n1 ≤ n2.

The next two corollaries presenting the locating chromatic number for m-shadow of stars and
complete graphs follow from Theorem 3.1.

Corollary 3.1. Let m ≥ 3 and n ≥ 1. Then χL(Dm(K1,n)) = n+ 3.

Corollary 3.2. Let m ≥ 3 and n ≥ 2. Then χL(Dm(Kn)) = n+ 2.

4. The m-shadow of paths

Let G ∼= Dm(Pn) be the m-shadow of a path with vertex set V (G) =
⋃m

i=1 V (P i
n), where

V (P i
n) = {vji : j = 1, 2, . . . , n} is the vertex subset in the ith copy of Pn, i = 1, 2, . . . ,m.

In [13], Behtoei and Omoomi proved that χL(Pm × Pn) = 4 for n ≥ m ≥ 2. In fact, we have
Dm(P2) ∼= Pm × P2 for m ≥ 2. So

χL(Dm(P2)) = 4. (4)

For m ≥ 3 and n = 3 we obtain Dm(P3) ∼= Dm(K1,2), and for m = 2 and n = 3 we get
D2(P3) ∼= D2(K1,2). So from Corollary 3.1 and (3),

χL(Dm(P3)) = 5 (5)

and
χL(D2(P3)) = 6, (6)

respectively.
In [15], it was proved that χL(Pn) = 3 for n ≥ 3.

Lemma 4.1. Let m ≥ 3. Then χL(Dm(P4)) = 4.
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Proof. By Theorem 2.1, χL(Dm(P4)) ≥ 4. Define a vertex 4-coloring c of Dm(P4) in the follow-
ing way.

c(vji ) = 1 for i = 1, 2, . . . ,m− 2 and j = 1, 4,

c(vji ) = 2 for i = 1, 2, . . . ,m and j = 3 or i = m− 1 and j = 1,

c(vji ) = 3 for i = m and j = 1, 4,

c(vji ) = 4 for i = 1, 2, . . . ,m and j = 2 or i = m− 1 and j = 4.

Then we obtain the color codes of vertices below.

cΠ(v
1
i ) = (0, 2,m− i, 1) for i = 1, 2, . . . ,m− 2,

cΠ(v
1
m−1) = (2, 0, 2, 1),

cΠ(v
1
m) = (2, 2, 0, 1),

cΠ(v
2
i ) = (1, 1,m− i, 0) for i = 1, 2, . . . ,m− 1,

cΠ(v
2
m) = (2, 1, 1, 0),

cΠ(v
3
i ) = (1, 0,m− i, 1) for i = 1, 2, . . . ,m− 1,

cΠ(v
3
m) = (2, 0, 1, 1),

cΠ(v
4
i ) = (0, 1,m− i, 2) for i = 1, 2, . . . ,m− 2,

cΠ(v
4
m−1) = (2, 1, 2, 0),

cΠ(v
4
m) = (2, 1, 0, 2).

Clearly the color codes are distinct for all vertices. So χL(Dm(P4)) = 4 and the proof is completed.

Lemma 4.2. Let n ≥ 4. Then χL(D2(Pn)) = 5.

Proof. We have χL(D2(Pn)) ≥ 4 according to Theorem 2.1. Assume now, χL(D2(Pn)) = 4.
Let c′ be a locating 4-coloring of D2(Pn). We may assume, without loss of generality, that
{c′(v11), c′(v12)} = {1, 2} and {c′(v21), c′(v22)} = {3, 4}. Then {c′(vj1), c′(v

j
2) : j ̸= 1 is odd and

c′(vj1) ̸= c′(vj2)} = {1, 2} and {c′(vj1), c′(v
j
2) : j ̸= 2 is even and c′(vj1) ̸= c′(vj2)} = {3, 4}. It is

easy to see that the color codes of vertices are not unique. So χL(D2(Pn)) ≥ 5.
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Let c be a vertex 5-coloring of D2(Pn) defined such that

c(vj1) = 1 if n is odd, for j = 1, 3, . . . , n or
n is even, for j = 2, 4, . . . , n,

c(vji ) = 2 if n is odd, for i = 1 and j = 4, 6, . . . , n− 1 or
n is odd, for i = 2 and j = 2 or
n is even, for i = 1 and j = 3, 5, . . . , n− 1 or
n is even, for i = 2 and j = 1,

c(vji ) = 3 if n is odd, for i = 1 and j = 2 or
n is odd, for i = 2 and j = 5, 7, . . . , n or
n is even, for i = 1 and j = 1 or
n is even, for i = 2 and j = 4, 6, . . . , n,

c(vj2) = 4 if n is odd, for j = 1, 4, 6, . . . , n− 1 or
n is even, for j = 3, 5, . . . , n− 1,

c(vj2) = 5 if n is odd, for j = 3 or
n is even, for j = 2.

We show that the color codes for all vertices of Dm(Pn) are distinct. Let us divide the cases
depending on the parity of n. First let n ≥ 5 be odd. We have the color codes as follows. cΠ(v11) =
(0, 1, 1, 2, 2), cΠ(v12) = (2, 1, 1, 0, 2), cΠ(v21) = (1, 2, 0, 1, 1), cΠ(v22) = (1, 0, 2, 1, 1), cΠ(v31) =
(0, 1, 1, 1, 2) and cΠ(v

3
2) = (2, 1, 1, 1, 0). For odd j ≥ 5 we obtain cΠ(v

j
1) = (0, 1, 2, 1, j − 3)

and cΠ(v
j
2) = (2, 1, 0, 1, j − 3). For even j ≥ 4 we obtain cΠ(v

j
1) = (1, 0, 1, 2, j − 3) and

cΠ(v
j
2) = (1, 2, 1, 0, j − 3).

Now let n ≥ 4 be even. Then we get the color codes as follows. cΠ(v
1
1) = (1, 2, 0, 2, 1),

cΠ(v
1
2) = (1, 0, 2, 2, 1), cΠ(v21) = (0, 1, 1, 1, 2) and cΠ(v

2
2) = (2, 1, 1, 1, 0). For odd j ≥ 3 we have

cΠ(v
j
1) = (1, 0, 1, 2, j − 2) and cΠ(v

j
2) = (1, 2, 1, 0, j − 2). For even j ≥ 4 we have cΠ(v

j
1) =

(0, 1, 2, 1, j − 2) and cΠ(v
j
2) = (2, 1, 0, 1, j − 2).

Since the color codes are distinct for all cases, c is a locating coloring of Dm(Pn). Hence
χL(Dm(Pn)) = 5.

Lemma 4.3. Let m ≥ 3 and n ≥ 5. Then χL(Dm(Pn)) ≤ 5.

Proof. Define a coloring c : V (Dm(Pn)) → {1, 2, . . . , 5} as follows.

c(v1i ) = 1 for i = 1, 2, . . . ,m,

c(vji ) = 2 for i = 1, 2, . . . ,m and odd j ̸= 1,

c(vji ) = 3 for i = 1, 2, . . . ,m− 2 and even j,

c(vjm−1) = 4 for even j,

c(vjm) = 5 for even j.
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Under the coloring c, we obtain the color codes of vertices as follows.

cΠ(v
1
m) = (0, 2, 3, 1, 1),

cΠ(v
1
m−i) = (0, 2, 1, i, i) for odd i,

cΠ(v
1
m−i) = (0, 2, 1, i− 1, i+ 1) for even i,

cΠ(v
j
m) = (j − 1, 0, 3, 1, 1) for odd j ̸= 1,

cΠ(v
j
m−i) = (j − 1, 0, 1, i, i) for odd i and odd j ̸= 1,

cΠ(v
j
m−i) = (j − 1, 0, 1, i− 1, i+ 1) for even i and odd j ̸= 1,

cΠ(v
j
m−i) = (j − 1, 1, 0, i− 1, i+ 1) for odd i ̸= 1 and even j,

cΠ(v
j
m−i) = (j − 1, 1, 0, i, i) for even i and even j,

cΠ(v
j
m−1) = (j − 1, 1, 2, 0, 2) for even j,

cΠ(v
j
m) = (j − 1, 1, 2, 2, 0) for even j.

It is easy to see that distinct vertices have distinct color codes. Thus χL(Dm(Pn)) ≤ 5.

Immediately from Theorem 2.1, (4), (5), (6), and Lemmas 4.1, 4.2 and 4.3, we obtain the
following theorem giving the locating chromatic number for m-shadow of paths.

Theorem 4.1. Let m ≥ 2 and n ≥ 2. Then

χL(Dm(Pn)) =


4, if m ≥ 2 and n = 2 or m ≥ 3 and n = 4,

5, if m = 2 and n ≥ 4 or m ≥ 3 and n = 3,

6, if m = 2 and n = 3.

Moreover, 4 ≤ χL(Dm(Pn)) ≤ 5 if m ≥ 3 and n ≥ 5.

5. Remark and Conclusion

Here, we state the new result corresponding to the tight lower bound and upper bound of
locating chromatic number on m-shadow of a graph G, that is χL(G) + 1 ≤ χL(Dm(G)) ≤
2χL(G). Moreover, we also obtain the exact value of χL(Dm(G)), when G is a path or a complete
multipartite graph on some particular orders. In future, we need to classify the families of graphs
in which the lower or upper bound holds.
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