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Abstract

The paper deals with the problem of labeling the vertices and edges of a plane graph in such a way
that the labels of the vertices and edges surrounding that face add up to a weight of that face.
A labeling of a plane graph is called d-antimagic if for every positive integer s, the s-sided face
weights form an arithmetic progression with a difference d. Such a labeling is called super if the
smallest possible labels appear on the vertices.
In the paper we examine the existence of such labelings for several families of plane graphs.
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1. Introduction

Let G = (V,E, F ) be a finite connected plane graph without loops and multiple edges, where
V , E and F are its vertex set, edge set and face set, respectively. Let |V (G)| = p, |E(G)| = q and
|F (G)| = r be the number of the vertices, the edges and the faces, respectively.

A labeling of type (1, 1, 1) assigns labels from the set {1, 2, . . . , p+q+r} to the vertices, edges
and faces of a plane graph G in such a way that each vertex, edge and face receives exactly one
label and each number is used exactly once as a label.
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A labeling of type (1, 1, 0) is a bijection from the set {1, 2, . . . , p+ q} to the vertices and edges
of a graph G.

The weight of a face under a labeling is the sum of labels (if present) carried by that face and
the edges and vertices on its boundary.

A labeling of a plane graph G is called d-antimagic if for every positive integer s the set of
s-sided face weights is Ws = {as, as + d, as + 2d, . . . , as + (rs − 1)d} for some integers as and
d ≥ 0, where rs is the number of s-sided faces. We allow different sets Ws for different s.

If d = 0 then Ko-Wei Lih in [16] called such labeling magic. Ko-Wei Lih [16] described magic
(0-antimagic) labelings of type (1, 1, 0) for the wheels, the friendship graphs and the prisms. The
magic labelings of type (1, 1, 1) for the grid graphs and the honeycomb are given in [2] and [3],
respectively.

The concept of the d-antimagic labeling of the plane graphs was defined in [10], where it was
also proved that the prism Dn has d-antimagic labelings of type (1, 1, 1) for d ∈ {2, 3, 4, 6} and
n ≡ 3 (mod 4). The d-antimagic labelings of type (1, 1, 1) for the hexagonal planar maps, the
generalized Petersen graph P (n, 2) and the grids can be found in [5], [7] and [8], respectively.
Lin et al. in [17] showed that prism Dn, n ≥ 3, admits d-antimagic labelings of type (1, 1, 1)
for d ∈ {2, 4, 5, 6}. The d-antimagic labelings of type (1, 1, 1) for Dn and for several d ≥ 7 are
described in [19].

A d-antimagic labeling is called super if the smallest possible labels appear on the vertices.
The super d-antimagic labelings of type (1, 1, 1) for antiprisms and for d ∈ {0, 1, 2, 3, 4, 5, 6} are
described in [4], and for disjoint union of prisms and for d ∈ {0, 1, 2, 3, 4, 5} are given in [1]. The
existence of super d-antimagic labelings of type (1, 1, 1) for disconnected plane graphs and for
plane graphs containing a special Hamilton path is examined in [6] and [12], respectively.

In this paper we examine the existence of super d-antimagic labelings of type (1, 1, 0) for
several families of plane graphs. To label the vertices and edges of plane graphs we will use
an edge-antimagic vertex labeling and an edge-antimagic total labeling.

Simanjuntak, Bertault and Miller in [18] define an (a, d)-edge-antimagic vertex labeling of
a (p, q)-graph G = (V,E) as an injective mapping β : V (G) → {1, 2, . . . , p} such that the
set of edge-weights {β(u) + β(v) : uv ∈ E(G)} is {a, a + d, a + 2d, . . . , a + (q − 1)d} for two
non-negative integers a and d. A bijection α : V (G)∪E(G)→ {1, 2, . . . , p+q} is called an (a, d)-
edge-antimagic total labeling of G if the edge-weights {α(u) +α(uv) +α(v) : uv ∈ E(G)} form
an arithmetic sequence starting at a and having a common difference d, where a > 0 and d ≥ 0
are two fixed integers. An (a, d)-edge-antimagic total labeling is a natural extension of a notion of
magic valuation defined by Kotzig and Rosa in [15].

An (a, d)-edge-antimagic total labeling is called super if the smallest possible labels appear on
the vertices. A super (a, d)-edge-antimagic total labeling is a natural extension of a notion of super
edge-magic labeling defined by Enomoto et al. in [13].

More comprehensive information on magic valuations and (a, d)-edge-antimagic total label-
ings can be found in [11], [14] and [20], respectively.
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2. Edge-antimagic labelings of paths

Let Pn be the path on n vertices. It is known (see [9]), that Pn is super (a, d)-edge-antimagic
total if and only if d ≤ 3. We denote the vertices of Pn by v1, v2, . . . , vn and describe these
labelings αnd : V (Pn) ∪ E(Pn)→ {1, 2, . . . , 2n− 1} in the following way.

a) The super (2n+ dn
2
e+ 1, 0)-edge-antimagic total labeling αn0 of Pn:

αn0 (vi) =

{
i+1
2

for i ≡ 1 (mod 2) and 1 ≤ i ≤ n,

dn
2
e+ i

2
for i ≡ 0 (mod 2) and 2 ≤ i ≤ n,

αn0 (vivi+1) = 2n− i for i = 1, 2, . . . , n− 1.

The common weight for all edges of Pn is

wαn
0
(vivi+1) = 2n+

⌈n
2

⌉
+ 1 = Cn

α,0, i = 1, 2, . . . , n− 1.

b) The super (2n+ 2, 1)-edge-antimagic total labeling αn1 of Pn:

αn1 (vi) = i for i = 1, 2, . . . , n,

αn1 (vivi+1) = 2n− i for i = 1, 2, . . . , n− 1.

The set of edge-weights of Pn consists of the consecutive integers

{wαn
1
(vivi+1) = 2n+ 1 + i = Cn

α,1 + i : i = 1, 2, . . . , n− 1}.

c) The super (n+ dn
2
e+ 3, 2)-edge-antimagic total labeling αn2 of Pn:

αn2 (vi) =

{
i+1
2

for i ≡ 1 (mod 2),

dn
2
e+ i

2
for i ≡ 0 (mod 2),

αn2 (vivi+1) = n+ i for i = 1, 2, . . . , n− 1.

The edge-weights of Pn constitute the arithmetic progression of difference 2:

{wαn
2
(vivi+1) = n+

⌈n
2

⌉
+ 1 + 2i = Cn

α,2 + 2i : i = 1, 2, . . . , n− 1}.

d) The super (n+ 4, 3)-edge-antimagic total labeling αn3 of Pn:

αn3 (vi) = i for i = 1, 2, . . . , n,

αn3 (vivi+1) = n+ i for i = 1, 2, . . . , n− 1.

The edge-weights of Pn constitute the arithmetic progression of difference 3:

{wαn
3
(vivi+1) = n+ 1 + 3i = Cn

α,3 + 3i : i = 1, 2, . . . , n− 1}.
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Now, we define the super (a, d)-edge-antimagic total labelings of Pn also for negative differences
d in the following way

αn−k(vi) = αnk(vn+1−i) for i = 1, 2, . . . , n,

αn−k(vivi+1) = αnk(vn+1−ivn−i) for i = 1, 2, . . . , n− 1,

where k = 0, 1, 2, 3.
In this paper we will use also (a, d)-edge-antimagic vertex labelings of Pn for two differences

d = 1 and d = 2. These labelings βnd : V (Pn)→ {1, 2, . . . , n} we define in the following way:

e) The (dn
2
e+ 2, 1)-edge-antimagic vertex labeling βn1 of Pn:

βn1 (vi) =

{
i+1
2

for i ≡ 1 (mod 2),

dn
2
e+ i

2
for i ≡ 0 (mod 2).

The set of edge-weights of Pn consists of the consecutive integers

{wβn
1
(vivi+1) =

⌈n
2

⌉
+ 1 + i = Cn

β,1 + i : i = 1, 2, . . . , n− 1}.

f) The (3, 2)-edge-antimagic vertex labeling βn2 of Pn:

βn2 (vi) = i for i = 1, 2, . . . , n.

The edge-weights of Pn constitute the arithmetic progression of difference 2:

{wβn
2
(vivi+1) = 1 + 2i = Cn

β,2 + 2i : i = 1, 2, . . . , n− 1}.

The (a, d)-edge-antimagic vertex labelings of Pn for d negative we define as follows

βn−l(vi) = βnl (vn+1−i) for i = 1, 2, . . . , n,

where l = 1, 2.

3. Partitions with determined differences

For construction of vertex and edge labelings of plane graphs we will use the partitions of a set
of integers with determined differences.

Let n, k, d and i be positive integers. We will consider the partition Pnk,d of the set {1, 2, . . . ,
kn} into n, n ≥ 2, k-tuples such that the difference between the sum of the numbers in the (i+1)th
k-tuple and the sum of the numbers in the ith k-tuple is always equal to the constant d, where
i = 1, 2, . . . , n − 1. Thus they form an arithmetic sequence with the difference d. By the symbol
Pk,d(i) we denote the ith k-tuple in the partition with the difference d, where i = 1, 2, . . . , n.

Let
∑
Pnk,d(i) be the sum of the numbers in Pnk,d(i). Evidently

∑
Pnk,d(i+1)−

∑
Pnk,d(i) = d.

It is obvious that if there exists a partition of the set {1, 2, . . . , kn} with the difference d, there also
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exists a partition with the difference −d. By the notation Pnk,d(i) ⊕ c we mean that we add the
constant c to every number in Pnk,d(i).

If k = 1 then only the following partition of the set {1, 2, . . . , n} is possible

Pn1,1(i) = {i} for i = 1, 2, . . . , n.

If k = 2 then we have several partitions of the set {1, 2, . . . , 2n}. Let us define the partitions
into 2-tuples in the following way:

Pn2,0(i) = {i, 2n+ 1− i},∑
Pn2,0(i) = 2n+ 1, for i = 1, 2, . . . , n.

Pn2,2(i) = {i, n+ i},∑
Pn2,2(i) = n+ 2i, for i = 1, 2, . . . , n.

Pn2,4(i) = {2i− 1, 2i},∑
Pn2,4(i) = 4i− 1, for i = 1, 2, . . . , n.

Moreover, for 3 ≤ n ≡ 1 (mod 2)

Pn2,1(i) =

{
{n+1

2
+ i−1

2
, n+ 1 + i−1

2
} for i ≡ 1 (mod 2),

{ i
2
, n+ n+1

2
+ i

2
} for i ≡ 0 (mod 2),∑

Pn2,1(i) = n+
n+ 1

2
+ i, for i = 1, 2, . . . , n.

Note that we are also able to obtain the partitions into 2-tuples Pn2,0(i) and Pn2,2(i) as Pn1,s(i) ∪(
Pn1,t(i)⊕ n

)
, where s, t = ±1. We can use this idea to construct the other partitions. More

precisely,
Pnk,d(i) = Pnl,s(i) ∪

(
Pnm,t(i)⊕ ln

)
,

where k = l +m.
For example, we are able to obtain Pn3,d(i) from the partitions Pn1,s(i), s = ±1 and Pn2,t(i),

t = 0,±2,±4 and also t = ±1 for n odd. It means, Pn3,d exists for d = ±1,±3,±5 and if n ≡ 1
(mod 2) also for d = 0,±2. Moreover, we are able to construct Pn3,9 in the following way

Pn3,9(i) = {3(i− 1) + 1, 3(i− 1) + 2, 3(i− 1) + 3},∑
Pn3,9(i) = 9i− 3, for i = 1, 2, . . . , n.

Thus Pn3,d exists for d = ±1,±3,±5,±9 and if n ≡ 1 (mod 2) also for d = 0,±2.
For the partition into 4-tuples we can use the following fact

Pn4,d(i) = Pnl,s(i) ∪
(
Pnm,t(i)⊕ ln

)
,
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where l = 3,m = 1 or l = 2,m = 2. Also

Pn4,16(i) = {4(i− 1) + 1, 4(i− 1) + 2, 4(i− 1) + 3, 4(i− 1) + 4},∑
Pn4,16(i) = 16i− 6, for i = 1, 2, . . . , n.

Thus Pn4,d exists for d = 0,±2,±4,±6,±8,±10,±16 and if n ≡ 1 (mod 2) also for d =
±1,±3,±5.

Let us note that each of the defined partition Pnk,d has the property that∑
Pnk,d(i) = Cn

k,d + di,

where Cn
k,d is a constant depending on the parameters k and d.

4. d-antimagic labelings for certain families of plane graphs

In this section, we shall use the edge-antimagic labelings of paths Pn and the partitions of the
set {1, 2, . . . , kn} with determined differences described in the previous two sections to examine
the existence of a super d-antimagic labeling for several families of plane graphs.

The friendship graph Fn is a set of n triangles having a common central vertex, say v, and oth-
erwise disjoint. The friendship graph Fn has 2n vertices of degree 2, say vi, ui for i = 1, 2, . . . , n,
and 3n edges, say viv, uiv, viui for i = 1, 2, . . . , n. Let us define the 3-sided face fi, i = 1, 2, . . . , n,
as the face bounded by the edges vvi, viui and uiv and let f be the external unbounded face.

Theorem 4.1. The friendship graph Fn, n ≥ 2, has a super d-antimagic labeling of type (1, 1, 0)
for d ∈ {1, 3, 5, 7, 9, 11, 13}.
Moreover, if n ≡ 1 (mod 2) then the graph Fn also admits a super d-antimagic labeling of type
(1, 1, 0) for d ∈ {0, 2, 4, 6, 8, 10}.

Proof. We define the bijection g1 : V (Fn) ∪ E(Fn)→ {1, 2, . . . , 5n+ 1} as follows:

{g1(vi), g1(ui)} = Pn2,k(i), i = 1, 2, . . . , n,

g1(v) = 2n+ 1,

{g1(viv), g1(viui), g1(uiv)} = Pn3,l(i)⊕ (2n+ 1) i = 1, 2, . . . , n,

where k = 0,±2,±4 or for n ≡ 1 (mod 2) also k = ±1, and l = ±1,±3,±5,±9 or for n ≡ 1
(mod 2) also l = 0,±2.

It is not difficult to check that the vertices are labeled by the smallest possible numbers 1, 2, . . . ,
2n+ 1. Moreover, for the weight of the face fi, i = 1, 2, . . . , n, we obtain

wg1(fi) =
(
g1(vi) + g1(ui)

)
+ g1(v) +

(
g1(viv) + g1(viui) + g1(uiv)

)
=
∑
Pn2,k(i) + (2n+ 1) +

∑
(Pn3,l(i)⊕ (2n+ 1))

=
(
Cn

2,k + ki
)
+ (2n+ 1) +

(
Cn

3,l + li+ 3(2n+ 1)
)

= Cn
2,k + Cn

3,l + 4(2n+ 1) + (k + l)i.
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As k = 0,±2,±4 or for n ≡ 1 (mod 2) also k = ±1, and l = ±1,±3,±5,±9 or for n ≡ 1
(mod 2) also l = 0,±2, we obtain that k + l ∈ {1, 3, 5, 7, 9, 11, 13} and for n odd we also
get k + l ∈ {0, 2, 4, 6, 8, 10}. Thus under the labeling g1 the weights of the 3-sided faces form
an arithmetic sequence with the desired difference, which completes the proof.

If we replace every edge viui, i = 1, 2, . . . , n, of the friendship graph Fn by a path of length two
with vertices vi, wi, ui, then we obtain a graph, say Bn, with the vertex set V (Bn) = {vi, wi, ui, v :
i = 1, 2, . . . , n} and the edge set E(Bn) = {viv, uiv, viwi, wiui : i = 1, 2, . . . , n}. Let us define
the 4-sided face fi, i = 1, 2, . . . , n, as the face bounded by the edges vvi, viwi, wiui and uiv and
let f be the external unbounded face.

Theorem 4.2. The graph Bn, n ≥ 2, has a super d-antimagic labeling of type (1, 1, 0) for d ∈
{1, 3, 5, . . . , 21, 25}.
Moreover, if n ≡ 1 (mod 2) then the graph Bn also admits a super d-antimagic labeling of type
(1, 1, 0) for d ∈ {0, 2, 4, . . . , 18}.

Proof. We define the bijection g2 : V (Bn) ∪ E(Bn)→ {1, 2, . . . , 7n+ 1} in the following way:

{g2(vi), g2(wi), g2(ui)} = Pn3,k(i), i = 1, 2, . . . , n,

g2(v) = 3n+ 1,

{g2(viv), g2(viwi), g2(wiui), g2(uiv)} = Pn4,l(i)⊕ (3n+ 1), i = 1, 2, . . . , n.

It is not difficult to see that the vertices are labeled by the numbers 1, 2, . . . , 3n+1. Moreover,
for the weight of the face fi, i = 1, 2, . . . , n, we have

wg2(fi) =
(
g2(vi) + g2(wi) + g2(ui)

)
+ g2(v)

+
(
g2(viv) + g2(viwi) + g2(wiui) + g2(uiv)

)
=
∑
Pn3,k(i) + (3n+ 1) +

∑
(Pn4,l(i)⊕ (3n+ 1))

=
(
Cn

3,k + ki
)
+ (3n+ 1) +

(
Cn

4,l + li+ 4(3n+ 1)
)

=Cn
3,k + Cn

4,l + 5(3n+ 1) + (k + l)i,

where k = ±1,±3,±5,±9 or for n ≡ 1 (mod 2) also k = 0,±2, and l = 0,±2,±4,±6,±8,
±10,±16 or for n ≡ 1 (mod 2) also l = ±1,±3,±5. It means that g2 is a super d-antimagic
labeling of type (1, 1, 0) of Bn, for d = 1, 3, 5, . . . , 21, 25 and if n ≡ 1 (mod 2) then d =
0, 2, 4, . . . , 18.

A triangular snake En is a triangular cactus whose block-cutpoint graph is a path, i.e. En is
obtained from a path v1, v2, . . . , vn+1 by joining vi and vi+1 to a new vertex ui, for i = 1, 2, . . . , n.
Let fi be the 3-sided face, i = 1, 2, . . . , n, bounded by the edges viui, uivi+1 and vivi+1. We denote
the external unbounded face by the symbol f .

Theorem 4.3. The graph En, n ≥ 2, has a super d-antimagic labeling of type (1, 1, 0) for d ∈
{0, 1, 2, . . . , 12}.
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Proof. Define the bijection g3 : V (En) ∪ E(En)→ {1, 2, . . . , 5n+ 1} as follows:

g3(vi) = αn+1
k (vi), i = 1, 2, . . . , n+ 1,

g3(ui) = αn+1
k (vivi+1), i = 1, 2, . . . , n,

{g3(viui), g3(uivi+1), g3(vi+1vi)} = Pn3,l(i)⊕ (2n+ 1), i = 1, 2, . . . , n.

The labeling g3 assigns the numbers 1, 2, . . . , 2n + 1 to the vertices of the graph En. For the
weight of the face fi, i = 1, 2, . . . , n, we have

wg3(fi) =
(
g3(vi) + g3(ui) + g3(vi+1)

)
+
(
g3(viui) + g3(uivi+1) + g3(vi+1vi)

)
= wαn+1

k
(vivi+1) +

∑
Pn3,l(i)⊕ (2n+ 1)

=
(
Cn+1
α,k + ki

)
+
(
Cn

3,l + li+ 3(2n+ 1)
)

= Cn+1
α,k + Cn

3,l + 3(2n+ 1) + (k + l)i,

where k = 0,±1,±2,±3 and l = ±1,±3,±5,±9, moreover for n ≡ 1 (mod 2) also l = 0,±2.
Analogously as in the proof of the previous theorem we obtain that for d ∈ {0, 1, 2, . . . , 12} the
bijection g3 is a super d-antimagic labeling of type (1, 1, 0) of the graph En.

If we replace every edge vivi+1, i = 1, 2, . . . , n, of the triangular snake En by a path of length
two with vertices vi, wi, vi+1, then we obtain a graph, say Gn, with the vertex set V (Gn) =
{v1, v2, . . . , vn+1, u1, u2, . . . , un, w1, w2, . . . wn} and the edge set E(Gn) = {viui, uivi+1, viwi,
wivi+1 : i = 1, 2, . . . , n}. Let us define the 4-sided face fi, i = 1, 2, . . . , n, as the face bounded by
the edges viui, uivi+1, viwi and wivi+1 and let f be the external unbounded face.

Theorem 4.4. The graph Gn, n ≥ 2, has a super d-antimagic labeling of type (1, 1, 0) for d ∈
{0, 1, 2, . . . , 22}.

Proof. Define the bijection g4 : V (Gn) ∪ E(Gn)→ {1, 2, . . . , 7n+ 1} in the following way:

g4(vi) = βn+1
k (vi), i = 1, 2, . . . , n+ 1,

{g4(ui), g4(wi)} = Pn2,l(i)⊕ (n+ 1), i = 1, 2, . . . , n,

{g4(viui), g4(uivi+1), g4(viwi), g4(wivi+1)}
= Pn4,m(i)⊕ (3n+ 1), i = 1, 2, . . . , n.

It is easy to verify that the labeling g4 assigns integers 1, 2, . . . , 3n+1 to the vertices. By direct
computation we obtain that the weight of the face fi, i = 1, 2, . . . , n, admits a value

wg4(fi) =
(
g4(vi) + g4(vi+1)

)
+
(
g4(ui) + g4(wi)

)
+
(
g4(viui) + g4(uivi+1) + g4(viwi) + g4(wivi+1)

)
=wβn+1

k
(vivi+1) +

∑
Pn2,l(i)⊕ (n+ 1) +

∑
Pn4,m(i)⊕ (3n+ 1)

=
(
Cn+1
β,k + ki

)
+
(
Cn

2,l + li+ 2(n+ 1)
)
+
(
Cn

4,m +mi+ 4(3n+ 1)
)

=Cn+1
β,k + Cn

2,l + Cn
4,m + 14n+ 6 + (k + l +m)i,
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where k = ±1,±2, l = 0,±2,±4 and m = 0,±2,±4,±6,±8,±10,±16. After some manipula-
tions we obtain that there exists a super d-antimagic labeling of the graph Gn for every difference
d ∈ {0, 1, 2, . . . , 22}.

Let ladder Ln be a Cartesian product Ln ' Pn × P2 of a path on n vertices with a path
on two vertices. Let V (Ln) = {v1, v2, . . . , vn, u1, u2, . . . , un} be the vertex set and E(Ln) =
{vivi+1, uiui+1 : i = 1, 2, . . . , n − 1} ∪ {viui : i = 1, 2, . . . , n} be the edge set of ladder. Let
us define the 4-sided face fi, i = 1, 2, . . . , n, as the face bounded by the edges vivi+1, vi+1ui+1,
uiui+1 and viui and let f be the external unbounded face.

Theorem 4.5. The ladder Ln ' Pn × P2, n ≥ 3, admits a super d-antimagic labeling of type
(1, 1, 0) for d ∈ {0, 1, 2, . . . , 10}.

Proof. Construct the bijective function g5 : V (Ln) ∪ E(Ln)→ {1, 2, . . . , 5n− 2} as follows:

g5(vi) = βnk (vi), i = 1, 2, . . . , n,

g5(ui) = βnl (vi) + n, i = 1, 2, . . . , n,

g5(viui) = βnm(vi) + 2n, i = 1, 2, . . . , n,

{g5(vivi+1), g5(uiui+1)} = Pn−1
2,t (i)⊕ (3n), i = 1, 2, . . . , n− 1.

It is a routine procedure to verify that the vertices are labeled by the smallest possible numbers
1, 2, . . . , 2n. Moreover, for the weight of the face fi, i = 1, 2, . . . , n− 1, we obtain

wg5(fi) =
(
g5(vi) + g5(vi+1)

)
+
(
g5(ui) + g5(ui+1)

)
+
(
g5(viui) + g5(vi+1ui+1)

)
+
(
g5(vivi+1) + g5(uiui+1)

)
=wβn

k
(vivi+1) + (wβn

l
(vivi+1) + 2n) + (wβn

m
(vivi+1) + 4n)

+
∑
Pn−1

2,t (i)⊕ (3n)

=
(
Cn
β,k + ki

)
+
(
Cn
β,l + li+ 2n

)
+
(
Cn
β,m +mi+ 4n

)
+
(
Cn−1

2,t + ti+ 6n
)

=Cn
β,k + Cn

β,l + Cn
β,m + Cn−1

2,t + 12n+ (k + l +m+ t)i.

As k = ±1,±2, l = ±1,±2, m = ±1,±2 and t = 0,±2,±4 we obtain that k + l + m + t ∈
{0, 1, 2, 3, . . . , 10}. This completes the proof.

Another variation of a ladder graph is specified as follows. A ladder Ln, n ≥ 2, is a graph ob-
tained by completing the ladder Ln ' Pn×P2 by n−1 edges such that V (Ln) = {v1, v2, . . . , v2n}
is the vertex set and E(Ln) = {v1v2, v2v3, . . . , v2n−1v2n, v1v3, v2v4, . . . , v2n−2v2n} is the edge set.

Theorem 4.6. The graph Ln, n ≥ 2, admits a super d-antimagic labeling of type (1, 1, 0) for
d ∈ {0, 1, 2, . . . , 6}.

Proof. Construct the bijective function g6 : V (Ln)∪E(Ln)→ {1, 2, . . . , 6n− 1} in the following
way:
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g6(vi) = i, i = 1, 2, . . . , 2n,

g6(vivi+1) = β2n−1
k (vi) + 2n, i = 1, 2, . . . , 2n− 1,

g6(vivi+2) = P2n−2
1,l (i)⊕ (4n− 1), i = 1, 2, . . . , 2n− 2.

The reader can easily verify that the labeling g6 assigns integers 1, 2, . . . , 2n to the vertices and
a weight of the face fi, i = 1, 2, . . . , 2n− 2, is

wg6(fi) =
(
g6(vi) + g6(vi+1) + g6(vi+2)

)
+
(
g6(vivi+1) + g6(vi+1vi+2)

)
+ g6(vivi+2)

=
(
i+ (i+ 1) + (i+ 2)

)
+
(
w2n−1
βk

(vivi+1) + 4n
)

+
∑
P2n−2

1,l (i)⊕ (4n− 1)

=
(
3 + 3i

)
+
(
C2n−1
β,k + ki+ 4n

)
+
(
C2n−2

1,l + li+ (4n− 1)
)

=C2n−1
β,k + C2n−2

1,l + 8n+ 2 + (3 + k + l)i.

Since k = ±1,±2, and l = ±1 we are able to show that 3 + k + l ∈ {0, 1, 2, . . . , 6}. This implies
that the labeling g6 is a super d-antimagic labeling of type (1, 1, 0) for d ∈ {0, 1, 2, . . . , 6} of the
graph Ln.

If we replace every edge vivi+1 (respectively, every edge uiui+1), i = 1, 2, . . . , n−1, of the lad-
der Ln ' Pn × P2 by a path of length two with vertices vi, wi, vi+1 (respectively, ui, wn−1+i, ui+1)
then we obtain a graph, say Hn, with the vertex set V (Hn) = {v1, v2, . . . , vn, u1, u2, . . . , un, w1,
w2, . . . , w2n−2} and the edge setE(Hn) = {viwi, wivi+1, uiwn−1+i, wn−1+iui+1 : i = 1, 2, . . . , n−
1} ∪ {viui : i = 1, 2, . . . , n}.

Let us define the 6-sided face fi, i = 1, 2, . . . , n − 1, as the face bounded by the edges viwi,
wivi+1, vi+1ui+1, ui+1wn−1+i, wn−1+iui, uivi and let f be the external unbounded face.

Theorem 4.7. The graph Hn, n ≥ 2, admits a super d-antimagic labeling of type (1, 1, 0) for
d ∈ {0, 1, 2, . . . , 26}.

Proof. We define the bijection g7 : V (Hn) ∪ E(Hn)→ {1, 2, . . . , 9n− 2} in the following way:

g7(vi) = βnk (vi), i = 1, 2, . . . , n,

g7(ui) = βnl (vi), i = 1, 2, . . . , n,

{g7(wi), g7(wn−1+i)} = Pn−1
2,m (i)⊕ (2n), i = 1, 2, . . . , n− 1,

g7(viui) = βnt (vi) + 4n− 2, i = 1, 2, . . . , n,

{g7(viwi), g7(wivi+1), g7(uiwn−1+i), g7(wn−1+iui+1)}
= Pn−1

4,s (i)⊕ (5n− 2), i = 1, 2, . . . , n− 1.

It is easy to see that the vertices of Hn are labeled by the smallest possible integers 1, 2, . . . ,
4n− 2. For the weight of the face fi, i = 1, 2, . . . , n− 1, we get
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wg7(fi) =
(
g7(vi) + g7(vi+1)

)
+
(
g7(ui) + g7(ui+1)

)
+
(
g7(wi) + g7(wn−1+i)

)
+
(
g7(viui) + g7(vi+1ui+1)

)
+
(
g7(viwi) + g7(wivi+1) + g7(uiwn−1+i)

+ g7(wn−1+iui+1)
)

=wβn
k
(vivi+1) +

(
wβn

l
(vivi+1) + 2n

)
+
∑
Pn−1

2,m (i)⊕ (2n)

+
(
wnβt(vivi+1) + 8n− 4

)
+
∑
Pn−1

4,s (i)⊕ (5n− 2)

=
(
Cn
β,k + ki

)
+
(
Cn
β,l + li+ 2n

)
+
(
Cn−1

2,m +mi+ 2(2n)
)

+
(
Cn
β,t + ti+ 8n− 4

)
+
(
Cn−1

4,s + si+ 4(5n− 2)
)

=Cn
β,k + Cn

β,l + Cn
β,t + Cn−1

2,m + Cn−1
4,s + 34n− 12 + (k + l +m+ t+ s)i.

Since k = ±1,±2, l = ±1,±2, m = 0,±2,±4, t = ±1,±2 and s = 0,±2,±4,±6,±8,±10,
±16 we get that k + l +m + t + s ∈ {0, 1, 2, . . . , 26}. Thus g7 is the required super d-antimagic
labeling of type (1, 1, 0) of the graph Hn. This completes the proof.

5. Concluding Remarks

In the foregoing section we studied the super d-antimagic labelings for the seven families of
plane graphs. We have shown that there exist super d-antimagic labelings of type (1, 1, 0) for these
graphs for wide variety of difference d. We conclude with the following open problems.

Problem 1. Find the upper bound for the feasible values of the difference d which makes a super
d-antimagic labelings of type (1, 1, 0) possible for the studied families of plane graphs.

Problem 2. Find other feasible values of the difference d and the corresponding super d-antimagic
labelings of type (1, 1, 0) for the studied families of plane graphs.
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[2] M. Bača, On magic labelings of grid graphs, Ars Combin. 33 (1992), 295–299.
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[5] M. Bača, E.T. Baskoro, S. Jendrol’ and M. Miller, Antimagic labelings of hexagonal planar
maps, Utilitas Math. 66 (2004), 231–238.

38



www.ejgta.org

On d-antimagic labelings of plane graphs | Martin Bača et al.
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