

Electronic Journal of Graph Theory and Applications

Reciprocal complementary distance spectra and reciprocal complementary distance energy of line graphs of regular graphs

Harishchandra S. Ramane, Ashwini S. Yalnaik

Department of Mathematics, Karnatak University, Dharwad - 580003, India

hsramane@yahoo.com, ashwiniynaik@gmail.com

Abstract

The reciprocal complementary distance (RCD) matrix of a graph G is defined as $RCD(G) = [rc_{ij}]$ where $rc_{ij} = \frac{1}{1+D-d_{ij}}$ if $i \neq j$ and $rc_{ij} = 0$, otherwise, where D is the diameter of G and d_{ij} is the distance between the vertices v_i and v_j in G. The RCD-energy of G is defined as the sum of the absolute values of the eigenvalues of RCD(G). Two graphs are said to be RCDequienergetic if they have same RCD-energy. In this paper we show that the line graph of certain regular graphs has exactly one positive RCD-eigenvalue. Further we show that RCD-energy of line graph of these regular graphs is solely depends on the order and regularity of G. This results enables to construct pairs of RCD-equienergetic graphs of same order and having different RCDeigenvalues.

Keywords: Reciprocal complementary distance eigenvalues, adjacency eigenvalues, line graphs, reciprocal complementary distance energy Mathematics Subject Classification : 05C50, 05C12 DOI: 10.5614/ejgta.2015.3.2.10

1. Introduction

Molecular matrices, encoding in various ways the topological infromation, are an important source of structural descriptors for quantitative structure property relationships (QSPR) and quantitative structure activity relationships (QSAR) models [6]. A large number of molecular matrices

Received: 01 June 2015, Revised: 08 September 2015, Accepted: 13 October 2015.

were defined in the chemical literature. One of these is reciprocal complementary distance (RCD) matrix.

Let G be a simple, undirected, connected graph with n vertices and m edges. Let the vertices of G be labeled as v_1, v_2, \ldots, v_n . The *adjacency matrix* of a graph G is the square matrix $A = A(G) = [a_{ij}]$, in which $a_{ij} = 1$ if v_i is adjacent to v_j and $a_{ij} = 0$, otherwise. The eigenvalues of the adjacency matrix A(G) are the *adjacency eigenvalues* of G, and these will be labeled as $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$ and their collection is called as a *adjacency spectra* of G [3].

The *distance* between the vertices v_i and v_j , denoted by d_{ij} , is the length of the shortest path between them. The *diameter* of a graph G, denoted by diam(G), is the maximum distance between any pair of vertices of G. A graph G is said to be *r*-regular graph if all of its vertices have same degree equal to r.

The reciprocal complementary distance between the vertices v_i and v_j , denoted by rc_{ij} is defined as $rc_{ij} = \frac{1}{1+D-d_{ij}}$, where D is the diameter of G and d_{ij} is the distance between v_i and v_j in G.

The reciprocal complementary distance matrix [6, 7] of a graph G is an $n \times n$ real symmetric matrix $RCD(G) = [rc_{ij}]$, where

$$rc_{ij} = \begin{cases} \frac{1}{1+D-d_{ij}}, & \text{if } i \neq j\\ 0, & \text{otherwise.} \end{cases}$$

The eigenvalues of RCD(G) labeled as $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_n$ are said to be the *RCD*eigenvalues of G and their collection is called *RCD*-spectra of G. Two non-isomorphic graphs are said to be *RCD*-cospectral if they have same *RCD*-spectra.

The reciprocal complementary distance energy (RCD-energy) of a graph G is defined as

$$RCDE(G) = \sum_{i=1}^{n} |\mu_i|.$$
(1)

The Eq. (1) is defined in full analogy with the *ordinary graph energy* E(G), defined as [4]

$$E(G) = \sum_{i=1}^{n} |\lambda_i| .$$
⁽²⁾

Two graphs G_1 and G_2 are said to be *equienergetic* if $E(G_1) = E(G_2)$ [1, 2, 8, 11, 12, 16]. For more details on E(G) one can refer [8].

Two connected graphs G_1 and G_2 are said to be *reciprocal complementary distance equiener*getic or *RCD-equienergetic* if $RCDE(G_1) = RCDE(G_2)$. Of course, *RCD*-cospectral graphs are *RCD*-equienergetic. In this paper we obtain the *RCD*-eigenvalues and *RCD*-energy of line graphs of certain regular graphs. Further we show that the RCD-energy of line graphs of certain regular graphs is solely depends on the order and regularity of a graph. Thus infinitely many pairs of RCD-equienergetic graphs can be constructed such that they have equal number of vertices, equal number of edges and are non RCD-cospectral.

We need following results.

Theorem 1.1. [3] If G is an r-regular graph, then its maximum adjacency eigenvalue is equal to r.

Theorem 1.2. [13] Let G be an r-regular graph of order n. If $r, \lambda_2, ..., \lambda_n$ are the adjacency eigenvalues of G, then the adjacency eigenvalues of \overline{G} , the complement of G, are n - r - 1 and $-\lambda_i - 1$, i = 2, 3, ..., n.

The *line graph* of G, denoted by L(G) is the graph whose vertices corresponds to the edges of G and two vertices of L(G) are adjacent if and only if the corresponding edges are adjacent in G [5]. If G is a regular graph of order n and of degree r then the line graph L(G) is a regular graph of order nr/2 and of degree 2r - 2.

Theorem 1.3. [14] If $\lambda_1, \lambda_2, ..., \lambda_n$ are the adjacency eigenvalues of a regular graph G of order n and of degree r, then the adjacency eigenvalues of L(G) are

 $\lambda_i + r - 2,$ i = 1, 2, ..., n, and -2, n(r-2)/2 times.

Figure 1: The forbidden induced subgraphs

Theorem 1.4. [9, 10] For a connected graph G, $diam(L(G)) \le 2$ if and only if none of the three graphs F_1 , F_2 and F_3 of Fig. 1 is an induced subgraph of G.

Lemma 1.1. [15] If for any two adjacent vertices u and v of a graph G, there exists a third vertex w which is not adjacent to any of u and v, then (i) \overline{G} is connected and (ii) $diam(\overline{G}) \leq 2$.

2. RCD-eigenvalues

Theorem 2.1. Let G be an r-regular graph on n vertices and diam(G) = 2. If $r, \lambda_2, \ldots, \lambda_n$ are the adjacency eigenvalues of G, then its RCD-eigenvalues are $n - 1 - \frac{r}{2}$ and $-1 - \frac{\lambda_i}{2}$, $i = 2, 3, \ldots, n$.

Proof. Since G is an r-regular graph, $\mathbf{1} = [1, 1, ..., 1]'$ is an eigenvector of A = A(G) corresponding to the eigenvalue r. Set $\mathbf{z} = \frac{1}{\sqrt{n}} \mathbf{1}$ and let P be an orthogonal matrix with its first column equal to \mathbf{z} such that $P'AP = \text{diag}(\lambda_1, \lambda_2, ..., \lambda_n)$. Since diam(G) = 2, RCD(G) can be written as RCD(G) = J - I - (1/2)A, where J is the matrix whose all entries are equal to 1 and I is an identity matrix. It follows that

$$P'(RCD)P = P'(J - I - \frac{1}{2}A)P$$

= $P'JP - I - \frac{1}{2}P'AP$
= diag $(n - 1 - \frac{r}{2}, -1 - \frac{\lambda_2}{2}, \dots, -1 - \frac{\lambda_n}{2})$,

where we have used the fact that any column of P other than the first column is orthogonal to the first column. Hence the eigenvalues of RCD(G) are n - 1 - (r/2) and $-1 - (\lambda_i/2)$, i = 2, 3, ..., n.

Theorem 2.2. If G is an r-regular, connected graph of order $n \ge 4$ and if none of the three graphs F_1 , F_2 and F_3 of Fig. 1 is an induced subgraph of G, then L(G) has exactly one positive RCD-eigenvalue, equal to r(n-2)/2.

Proof. Let $r, \lambda_2, \lambda_3, \ldots, \lambda_n$ be the adjacency eigenvalues of a regular graph G. Then from Theorem 1.3, the adjacency eigenvalues of L(G) are

$$\lambda_i + r - 2, \qquad i = 1, 2, \dots, n, \qquad \text{and} \\ -2, \qquad n(r-2)/2 \text{ times.}$$

$$(3)$$

The graph G is regular of degree r and has order n. Therefore L(G) is a regular graph on nr/2 vertices and of degree 2r - 2. As none of the three graphs F_1 , F_2 and F_3 of Fig. 1 is an induced subgraph of G, from Theorem 1.4, diam(L(G)) = 2. Therefore from Theorem 2.1 and Eq. (3), the RCD-eigenvalues of L(G) are

$$\left. \begin{array}{ccc} r(n-2)/2, & \text{and} \\ -(\lambda_i + r)/2, & i = 2, 3, \dots, n \\ 0, & n(r-2)/2 \text{ times.} \end{array} \right\}$$
(4)

All adjacency eigenvalues of a regular graph of degree r satisfy the condition $-r \le \lambda_i \le r$ [3]. Therefore $\lambda_i + r \ge 0$, i = 1, 2, ..., n. The theorem follows from Eq. (4).

3. RCD-energy

Theorem 3.1. If G is an r-regular, connected graph of order $n \ge 4$ and if none of the three graphs F_1 , F_2 and F_3 of Fig. 1 is an induced subgraph of G, then

$$RCDE(L(G)) = r(n-2).$$

Proof. Bearing in mind Theorem 2.2 and Eq. (4), the *RCD*-energy of L(G) is computed as:

$$RCDE(L(G)) = \frac{r(n-2)}{2} + \sum_{i=2}^{n} \frac{(\lambda_i + r)}{2} + |0| \times \frac{n(r-2)}{2}$$
$$= r(n-2) \quad \text{since} \quad \sum_{i=2}^{n} \lambda_i = -r.$$

From Theorem 3.1, we see that the RCD-energy of the line graph of a regular graph G, that does not contain F_i , i = 1, 2, 3, as an induced subgraph is fully determined by the order n and degree r of G.

Let K_n be the *complete graph* on n vertices, $K_{k,k}$ be the *complete bipartite graph* on 2k vertices and CP(k) be the *cocktail party graph* (a regular graph on n = 2k vertices and of degree 2k - 2) [3]. None of the three graphs F_1 , F_2 and F_3 of Fig.1 is an induced subgraph of these graphs. Therefore from Theorem 3.1 we have following:

Corollary 3.1. (i) $RCDE(L(K_n)) = n^2 - 3n + 2$, for $n \ge 4$. (ii) $RCDE(L(K_{k,k})) = 2k(k-1)$, for $k \ge 2$. (iii) $RCDE(L(CP(k))) = 4(k-1)^2$, for $k \ge 2$.

Theorem 3.2. Let G be an r-regular graph of order n. Let L(G) be the line graph of G such that for any two adjacent vertices u and v of L(G), there exists a third vertex w in L(G) which is not adjacent to any of u and v.

(i) If the smallest adjacency eigenvalue of G is greater than or equal to 3 - r, then

$$RCDE\left(\overline{L(G)}\right) = 3n(r-2)/2.$$

(ii) If the second largest adjacency eigenvalue of G is at most 3 - r, then

$$RCDE\left(\overline{L(G)}\right) = (nr/2) + 2r - 3.$$

Proof. Let the adjacency eigenvalues of G be $r, \lambda_2, \ldots, \lambda_n$. From Theorem 1.3, the adjacency eigenvalues of L(G) are

$$\begin{array}{l} 2r - 2, & \text{and} \\ \lambda_i + r - 2, & i = 2, 3, \dots, n, \\ -2, & n(r-2)/2 \text{ times.} \end{array} \right\}$$
(5)

www.ejgta.org

From Theorem 1.2 and the Eq. (5), the adjacency eigenvalues of $\overline{L(G)}$ are

$$\begin{array}{ccc} (nr/2) - 2r + 1, & \text{and} & \\ & -\lambda_i - r + 1, & i = 2, 3, \dots, n, & \text{and} \\ & 1, & n(r-2)/2 \text{ times.} \end{array} \right\}$$
(6)

Since for any two adjacent vertices u and v of L(G) there exists a third vertex w which is not adjacent to any of u and v in L(G), by Lemma 1.1, $diam\left(\overline{L(G)}\right) = 2$. Therefore by Theorem 2.1 and Eq. (6), the RCD-eigenvalues of $\overline{L(G)}$ are

$$\begin{array}{ccc} (nr/4) + r - (3/2), & \text{and} \\ & \frac{\lambda_i + r - 3}{2}, & i = 2, 3, \dots, n, \\ & (-3/2), & n(r-2)/2 \text{ times.} \end{array} \right\}$$
(7)

Therefore

$$RCDE\left(\overline{L(G)}\right) = \left|\frac{nr}{4} + r - \frac{3}{2}\right| + \sum_{i=2}^{n} \left|\frac{\lambda_i + r - 3}{2}\right| + \left|-\frac{3}{2}\right| \frac{n(r-2)}{2}.$$
 (8)

(i) By assumption, $\lambda_i + r - 3 \ge 0, i = 2, 3, \dots n$, then from Eq. (8)

$$\begin{aligned} RCDE\left(\overline{L(G)}\right) &= \frac{nr}{4} + r - \frac{3}{2} + \sum_{i=2}^{n} \left(\frac{\lambda_i + r - 3}{2}\right) + \frac{3n(r-2)}{4} \\ &= \frac{nr}{4} + r - \frac{3}{2} + \frac{1}{2} \sum_{i=2}^{n} \lambda_i + (n-1)\left(\frac{r-3}{2}\right) + \frac{3n(r-2)}{4} \\ &= \frac{3n(r-2)}{2} \qquad \text{since} \qquad \sum_{i=2}^{n} \lambda_i = -r. \end{aligned}$$

(ii) By assumption, $\lambda_i + r - 3 < 0, i = 2, 3, \dots n$, then from Eq. (8)

$$\begin{aligned} RCDE\left(\overline{L(G)}\right) &= \frac{nr}{4} + r - \frac{3}{2} - \sum_{i=2}^{n} \left(\frac{\lambda_i + r - 3}{2}\right) + \frac{3n(r-2)}{4} \\ &= \frac{nr}{4} + r - \frac{3}{2} - \frac{1}{2} \sum_{i=2}^{n} \lambda_i - (n-1)\left(\frac{r-3}{2}\right) + \frac{3n(r-2)}{4} \\ &= \frac{nr}{2} + 2r - 3 \qquad \text{since} \qquad \sum_{i=2}^{n} \lambda_i = -r. \end{aligned}$$

www.ejgta.org

Some of the examples of r-regular graphs whose second largest adjacency eigenvalue is at most 3 - r and the diameter of the complement of their line graph is equal to two are a 5-vertex cycle C_5 , a 5-vertex complete graph K_5 , a 6-vertex cycle C_6 and a complete bipartite graph $K_{3,3}$.

Corollary 3.2. Let G be a cubic graph of order n. Let L(G) be the line graph of G such that for any two adjacent vertices u and v of L(G), there exists a third vertex w in L(G) which is not adjacent to any of u and v. Then

$$RCDE\left(\overline{L(G)}\right) = \frac{3n + E(G)}{2}.$$

Proof. Substituting r = 3 in Eq. (8) we get

$$RCDE\left(\overline{L(G)}\right) = \left|\frac{3n}{4} + \frac{3}{2}\right| + \sum_{i=2}^{n} \left|\frac{\lambda_{i}}{2}\right| + \left|-\frac{3}{2}\right|\frac{n}{2}$$
$$= \frac{3n}{4} + \frac{3}{2} + \frac{1}{2}(E(G) - 3) + \frac{3n}{4}$$
$$= \frac{3n + E(G)}{2}.$$

4. RCD-equienergetic graphs

Lemma 4.1. Let G_1 and G_2 be regular graphs of the same order and of the same degree. Then following holds:

(i) $L(G_1)$ and $L(G_2)$ are of the same order, same degree and have the same number of edges. (ii) $\overline{L(G_1)}$ and $\overline{L(G_2)}$ are of the same order, same degree and have the same number of edges.

Proof. Statement (i) follows from the fact that the line graph of a regular graph is a regular and that the number of edges of G is equal to the number of vertices of L(G). Statement (ii) follows from the fact that the complement of a regular graph is a regular and that the number of vertices of a graph and its complement is equal.

Lemma 4.2. Let G_1 and G_2 be regular, connected graphs of the same order $n \ge 4$ and of the same degree. Let none of the three graphs F_1 , F_2 and F_3 of Fig. 1 be an induced subgraph of G_i , i = 1, 2. Then $L(G_1)$ and $L(G_2)$ are RCD-cospectral if and only if G_1 and G_2 are cospectral.

Proof. Follows from Eqs. (3) and (4).

Lemma 4.3. Let G_1 and G_2 be regular graphs of the same order and of the same degree. Let for $i = 1, 2, L(G_i)$ be the line graph of G_i such that for any two adjacent vertices u_i and v_i of $L(G_i)$, there exists a third vertex w_i in $L(G_i)$ which is not adjacent to any of u_i and v_i . Then $\overline{L(G_1)}$ and $\overline{L(G_2)}$ are RCD-cospectral if and only if G_1 and G_2 are cospectral.

Proof. Follows from Eqs. (5), (6) and (7).

Theorem 4.1. Let G_1 and G_2 be regular, connected, non cospectral graphs of the same order $n \ge 4$ and of the same degree r. Let none of the three graphs F_1 , F_2 and F_3 of Fig. 1 be an induced subgraph of G_i , i = 1, 2. Then line graphs $L(G_1)$ and $L(G_2)$ form a pair of non RCD-cospectral, *RCD*-equienergetic graphs of equal order and of equal number of edges.

Proof. Follows from Lemma 4.1, Lemma 4.2 and Theorem 3.1.

Theorem 4.2. Let G_1 and G_2 be regular, non cospectral graphs of the same order and of the same degree r. Let for $i = 1, 2, L(G_i)$ be the line graph of G_i such that for any two adjacent vertices u_i and v_i of $L(G_i)$, there exists a third vertex w_i in $L(G_i)$ which is not adjacent to any of u_i and v_i . (i) If the smallest adjacency eigenvalue of G_i , i = 1, 2 is greater than or equal to 3 - r, then $L(G_1)$ and $L(G_2)$ form a pair of non RCD-cospectral, RCD-equienergetic graphs of equal order and of equal number of edges.

(ii) If the second largest adjacency eigenvalue of G_i , i = 1, 2 is at most 3 - r, then $\overline{L(G_1)}$ and $L(G_2)$ form a pair of non RCD-cospectral, RCD-equienergetic graphs of equal order and of equal number of edges.

Proof. Follows from Lemma 4.1, Lemma 4.3 and Theorem 3.2.

Theorem 4.3. Let G_1 and G_2 be non cospectral, cubic equienergetic graphs of the same order. Let for i = 1, 2, $L(G_i)$ be the line graph of G_i such that for any two adjacent vertices u_i and v_i of $L(G_i)$, there exists a third vertex w_i in $L(G_i)$ which is not adjacent to any of u_i and v_i . Then $L(G_1)$ and $L(G_2)$ form a pair of non RCD-cospectral, RCD-equienergetic graphs of equal order and of equal number of edges.

Proof. Follows from Lemma 4.1, Lemma 4.3 and Corollary 3.2.

Acknowledgement

Authors are thankful to anonymous referee for his/her valuable suggestions. The first author H. S. Ramane is thankful to the University Grants Commission (UGC), Govt. of India for support through research grant under UPE FAR-II grant No. F 14-3/2012 (NS/PE). Another author A. S. Yalnaik is thankful to the University Grants Commission (UGC), Govt. of India for support through Rajiv Gandhi National Fellowship No. F1-17.1/2014-15/RGNF-2014-15-SC-KAR-74909.

References

- [1] R. Balakrishnan, The energy of a graph, *Linear Algebra Appl.*, **387** (2004), 287–295.
- [2] V. Brankov, D. Stevanović, I. Gutman, Equienergetic chemical trees, J. Serb. Chem. Soc., 69 (2004), 549-553.

- [3] D. M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs-Theory and Application, Academic Press, New York, 1980.
- [4] I. Gutman, The energy of a graph, Ber. Math. Stat. Sekt. Forschungsz. Graz, 103 (1978), 1–22.
- [5] F. Harary, Graph Theory, Addison–Wesley, Reading, 1969.
- [6] O. Ivanciuc, T. Ivanciuc, A. T. Balaban, The complementary distance matrix, a new molecular graph metric, *ACH-Models Chem.* **137**(1) (2000), 57–82.
- [7] D. Jenežić, A. Miličević, S. Nikolić, N. Trinajstić, *Graph Theoretical Matrices in Chemistry*, Uni. Kragujevac, Kragujevac, 2007.
- [8] X. Li, Y. Shi, I. Gutman, *Graph Energy*, Springer, New York, 2012.
- [9] H. S. Ramane, I. Gutman, A. B. Ganagi, H. B. Walikar, On diameter of line graphs, *Iranian J. Math. Sci. Inf.*, **8**(1) (2013), 105–109.
- [10] H. S. Ramane, D. S. Revankar, I. Gutman, H. B. Walikar, Distance spectra and distance energies of iterated line graphs of regular graphs, *Publ. Inst. Math. (Beograd)*, 85 (2009), 39–46.
- [11] H. S. Ramane, H. B. Walikar, Construction of equienergetic graphs, *MATCH Commun. Math. Comput. Chem.*, 57 (2007), 203–210.
- [12] H. S. Ramane, H. B. Walikar, S. B. Rao, B. D. Acharya, P. R. Hampiholi, S. R. Jog, I. Gutman, Equienergetic graphs, *Kragujevac J. Math.*, **26** (2004), 5–13.
- [13] H. Sachs, Über selbstkomplementare Graphen, *Publ. Math. Debrecen.* 9 (1962), 270–288.
- [14] H. Sachs, Über Teiler, Faktoren und charakteristische Polynome von Graphen, Teil II, Wiss.
 Z. TH Ilmenau, 13 (1967), 405–412.
- [15] J. Senbagamalar, J. Baskar Babujee, I. Gutman, On Wiener index of graph complements, *Trans. Comb.*, 3(2) (2014), 11–15.
- [16] L. Xu, Y. Hou, Equienergetic bipartite graphs, MATCH Commun. Math. Comput. Chem., 57 (2007), 363–370.