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Abstract

A simple graph G(V,E) admits an H-covering if every edge in G belongs to a subgraph of G
isomorphic to H . In this case, G is called H-magic if there exists a bijective function f : V ∪
E → {1, 2, . . . , |V | + |E|}, such that for every subgraph H ′ of G isomorphic to H , wtf (H ′) =∑

v∈V (H′) f(v) +
∑

e∈E(H′) f(e) is constant. Moreover, G is called H-supermagic if f : V (G) →
{1, 2, . . . , |V |}. This paper generalizes the previous labeling by introducing the (F,H)-sim-(super)
magic labeling. A graph admitting an F -covering and an H-covering is called (F,H)-sim-(super)
magic if there exists a function f that is F -(super)magic and H-(super)magic at the same time.
We consider such labelings for two product graphs: the join product and the Cartesian product. In
particular, we establish a sufficient condition for the join product G+H to be (K2+H, 2K2+H)-
sim-supermagic and show that the Cartesian product G × K2 is (C4, H)-sim-supermagic, for H
isomorphic to a ladder or an even cycle. Moreover, we also present a connection between an
α-labeling of a tree T and a (C4, C6)-sim-supermagic labeling of the Cartesian product T ×K2.
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1. Introduction

The graphs considered in this paper are finite and simple. Let G be a graph, with the vertex
set V (G) and the edge set E(G). The cardinalities of V (G) and E(G) are called the order and the
size of G, respectively. A labeling f of G is a map that assigns certain elements of G to positive
or non-negative integers. In this paper, we consider a total labeling of G as a bijective function
f : V (G) ∪ E(G) → {1, 2, . . . , |V (G)| + |E(G)|}. Under a total labeling f , the weight of a
vertex v ∈ V (G) is wtf (v) = f(v) +

∑
vw∈E(G) f(vw) and the weight of an edge vw ∈ E(G) is

wtf (vw) = f(v) + f(vw) + f(w).
Simanjuntak et al. [27] introduced an (a, d)-edge-antimagic total labeling ((a, d)-EAT) as a

total labeling f where the set of edge-weights {wtf (vw)|vw ∈ E(G)} constitutes a set of an
arithmetic progression {a, a + d, . . . , a + (|E(G)| − 1)d} for two integers a > 0 and d ≥ 0.
When d = 0, the (a, 0)-edge(vertex)-antimagic labeling was previously known as the edge-magic
total labeling (EMT) and was introduced by Kotzig and Rosa [15] in 1970. When G has EMT
or (a, d)-EAT labelings and the corresponding f labeling has the property f(V (G)) = {1, 2, . . . ,
|V (G)|}, we say that G is super edge-magic total (SEMT) or super (a, d)-edge-antimagic total
((a, d)-SEAT), respectively.

Another variation of magic labeling called vertex-magic total labeling was introduced by Mac-
Dougal et al. [17]. A vertex-magic total labeling (VMT) of G is a total labeling where there exists
a positive integer k such that the vertex-weight wtf (v) = k for every vertex v of G. If
{wtf (v)|v ∈ V (G)} = {a, a+d, . . . , a+(|V (G)|−1)d} for two integers a > 0 and d ≥ 0, the la-
beling f of G is called (a, d)-vertex-antimagic total labeling ((a, d)-VAT), that was first introduced
by Bača et al. [3]. Comprehensive surveys about the existence of magic and antimagic graphs can
be found in [4, 5, 11, 29].

In 2005, as an extension of the edge-magic total labeling, Gutiérez and Lladó [12] introduced an
H-magic labeling of a graph. A graph G admits an H-covering if every edge in E(G) belongs to a
subgraph of G isomorphic to a given graph H . A total labeling f of G is an H-magic labeling
if there exists a positive integer k such that wt(H ′) =

∑
v∈V (H′) f(v) +

∑
e∈E(H′) f(e) = k

for every subgraph H ′ of G isomorphic to H . In this case, G is called an H-magic graph. If
f(V ) = {1, 2, . . . , |V (G)|}, then G is said to be an H-supermagic graph. Current results on
H-magic labelings can be seen in the survey [11].

In 2005, Exoo et al. [9] asked whether there exists a labeling of a graph that is simultaneously
vertex-magic and edge-magic and called such labeling totally magic. Subsequently, in 2005, Bača
et al. [6] extended a similar question for (a, d)-EAT labeling and (a, d)-VAT labelings; and defined
the totally antimagic total (TAT) labeling.

Motivated by the two notions above, it is interesting to ask a similar question by considering the
subgraph covering in G. Suppose that G simultaneously admits an F -covering and an H-covering.
We propose a new notion of a labeling called an (F,H)-sim-magic labeling as a bijective function
f : V (G) ∪ E(G) → {1, 2, . . . , |V (G)| + |E(G)|} where there exist two positive integers kF and
kH (not necessarily the same) such that

wtf (F
′) =

∑
v∈V (F ′)

f(v) +
∑

e∈E(F ′)

f(e) = kF
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and
wtf (H

′) =
∑

v∈V (H′)

f(v) +
∑

e∈E(H′)

f(e) = kH ,

for each subgraph F ′ of G isomorphic to F and each subgraph H ′ of G isomorphic to H . We
say that G is (F,H)-sim-magic. Furthermore, if f(V (G)) = {1, 2, . . . , |V (G)|}, G is said to be
(F,H)-sim-supermagic.

The simplest example of a (F,H)-sim-magic graph can be deduced from previously known
H-magic labelings. For odd m and n at least three, the disjoint union of m cycles mCn is both
SEMT [10] and Cn-supermagic [1, 18]. Although the Cn-supermagic labelings described in [1, 18]
are not SEMT, the SEMT labeling of 3C3 described in [10] is also C3-supermagic (see Figure 1).
This implies that 3C3 is (K2, C3)-sim-supermagic.

Figure 1. A (K2, C3)-sim-supermagic graph.

An interesting fact for (F,H)-sim-magic labeling is that although a graph is both F -magic and
H-magic, such a graph does not need to be (F,H)-sim-magic. An example is the fan Fn with
vertex-set V (Fn) = {vi|0 ≤ i ≤ n} and edge-set E(Fn) = {vivi+1|1 ≤ i ≤ n − 1} ∪ {v0vi|1 ≤
i ≤ n}. It is known that, for every n ≥ 3, Fn is EMT (see [28]) and C3-supermagic (see [21]).
However, for every n ≥ 3, Fn is not (K2, C3)-sim-magic as stated in the following theorem.

Theorem 1.1. Let n ≥ 3 be a positive integer. A fan Fn is not (K2, C3)-sim-magic.

Proof. Suppose that Fn is a (K2, C3)-sim-magic graph and let f be a (K2, C3)-sim-magic labeling
of Fn with a magic constant pair (k1, k2). Consider the weights of two C3 cycles v0v1, v1v2, v2v0
and v0v2, v2v3, v3v0. As these weights are equal, we have

2∑
i=0

f(vi) + f(v0v1) + f(v1v2) + f(v2v0) =
3∑

i=1

f(vi) + f(v0v2) + f(v2v3) + f(v3v0),

and so
f(v1) + f(v1v0) + f(v1v2) = f(v3) + f(v2v3) + f(v0v3). (1)

Adding f(v0) to both sides of Equation (1) and using the fact that all edges have the same edge
weight, we obtain f(v1v2) = f(v2v3), a contradiction.

In this paper, we study simultaneous labelings for two product graphs: the join product and
Cartesian product graphs. In particular, we investigate a sufficient condition for the join product
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graph G +H to be (K2 +H, 2K2 +H)-sim-supermagic (Section 3). We construct (C4, H)-sim-
supermagic labelings for the Cartesian product G ×K2, where H is isomorphic to a ladder or an
even cycle (Section 4). Finally, in the last section, we provide relationships between an α-labeling
of a tree T and a (C4, C6)-sim-supermagic labeling of the Cartesian product T ×K2.

Throughout the paper, we shall use the following definitions and notations. The degree of a
vertex v is denoted by deg(v). For a connected graph H , a graph G is H-free if G does not contain
H as a subgraph. Notations for some classes of graphs can be seen in Table 1.

Table 1. Classes of graphs
Notation Notes
Cn A cycle on n vertices, n ≥ 3.
Kn A complete graph on n vertices, n ≥ 1.
K1,n A star with one internal vertex and n leaves, n ≥ 2.
Pn A path on n vertices, n ≥ 2.
Sn1,n2,...,nk

A caterpillar is a graph derived from a path Pk, k ≥ 2, where
for i ∈ {1, 2, ..., k}, each vi ∈ V (Pk) is adjacent to ni ≥ 0 additional leaves.

2. Balanced and Anti Balanced Multisets

A multiset is a generalization of a set where repetition of elements is allowed. Let a and b be
two integers. We use the notation [a, b] to define the set of consecutive integers {a, a + 1, . . . , b}.
So [a, b] = ∅, if a > b. For an integer k, the addition k + [a, b] means [a + k, b + k] and for a
multiset of integers Y , we denote

∑
x∈Y x by

∑
Y . Let x be an element of a multiset Y . Then, the

multiplicity of x, denoted by mY (x), is the number of occurrences of x in Y . Let X and Y be two
multisets. A multiset sum X

⊎
Y is a union of X and Y , where mX

⊎
Y (x) = mX(x) +mY (x) for

each x ∈ X
⊎

Y . For example, if X = {a} and Y = {a, a, b}, then, X
⊎
Y = {a, a, a, b}.

We shall utilize the notions of a k-balanced partition of a multiset introduced by Maryati et
al. [19] and a (k, δ)-anti balanced partition of a multiset introduced by Inayah et al. [13] to con-
struct labelings in Sections 3 and 4. Let k and δ be two positive integers, and X be a multiset
containing positive integers. X is said to be (k, δ)-anti balanced if there exist k subsets of X , say
X1, X2, . . . , Xk, such that for every i ∈ [1, k], |Xi| = |X|

k
,
⊎k

i=1Xi = X , and for each i ∈ [1, k−1],∑
Xi+1 −

∑
Xi = δ. For every i ∈ [1, k], Xi is called a (k, δ)-anti balanced subset of X . In the

case that there exists a positive integer θ such that
∑

Xi = θ for every i ∈ [1, k], then X is called
k-balanced with Xis as k-balanced subsets of X .

Lemma 2.1. [18] Let x, y, and k be three integers, where 1 ≤ x < y and k > 1. If X = [x, y] and
|X| is a multiple of 2k, then X is k-balanced with

∑
Xi =

|X|
2k
(x+ y) for every i ∈ [1, k].

Lemma 2.2. Let x and k be positive integers, k ≥ 2. If

X =

{
[x, x+ 2k − 1], for odd k;

[x, x+ 2k] \ {x+ k
2
}, for even k,

then X is (k, 1)-anti balanced with
∑

Xi = 2x+ i+ 3
⌊
k
2

⌋
for every i ∈ [1, k].
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Proof. For each i ∈ [1, k], define Xi = {ai, bi}, where ai = x−1+
⌈
i+1
2

⌉
+2(1−(i mod 2))

⌊
k
2

⌋
and bi = x +

⌊
k
2

⌋
+

⌈
i
2

⌉
+ 2(i mod 2)

⌊
k
2

⌋
. Thus,

⊎k
i=1Xi = X and we have |Xi| = 2 and∑

Xi = 2x+ i+ 3
⌊
k
2

⌋
for each i ∈ [1, k]. Since

∑
Xi+1 −

∑
Xi = 1 for every i ∈ [1, k − 1], X

is a (k, 1)-anti balanced.

Lemma 2.3. Let x and k be positive integers, k ≥ 2. If X = [x, x+ 2k − 1], then X is (k, 2)-anti
balanced with

∑
Xi = 2(x+ i− 1) + k for every i ∈ [1, k].

Proof. Define Xi = {x− 1+ i, x+ i+ k− 1} for each i ∈ [1, k]. Hence,
⊎k

i=1Xi = X , |Xi| = 2,
and

∑
Xi = 2(x + i − 1) + k for every i ∈ [1, k]. We have that X is (k, 2)-anti balanced since∑

Xi+1 −
∑

Xi = 2 for every i ∈ [1, k − 1].

3. Labelings for Join Product Graphs

Let G∪H denote the disjoint union of G and H . Then, the join product G+H of two disjoint
graphs G and H is the graph G ∪H together with all the edges joining vertices of G and vertices
of H . The study of H-magicness of join product graphs has been conducted for some particular
families of graphs, as summarized in Table 2.

Table 2. Known join product graphs which are H-magic
Join product H Reference
Pn +K1, n ≥ 3 C3 Ngurah et al. [21] and Ovais et al. [22]

C4 Ovais et al. [22]
Cn +K1, n odd, n ≥ 5 C3 Lladó and Moragas [16]

n even, n ≥ 4 C3 Roswitha et al. [25]
Cn +K1, n ≥ 3 C4 Semaničová-Feňovčı́ková et al. [26]
K1,n +K1, n ≥ 3 C3 Ngurah et al. [21]
nK2 +K1, n ≥ 2 C3 Lladó and Moragas [16]

The following theorem provides a sufficient condition for the join product graph G +H to be
(K2 +H, 2K2 +H)-sim-supermagic.

Theorem 3.1. Let G and H be two connected graphs such that G admits a 2K2-covering and
G + H contains exactly |E(G)| subgraphs isomorphic to K2 + H . If G is SEMT, then G + H is
(K2 +H, 2K2 +H)-sim-supermagic.

Proof. Let g be a super edge-magic total (SEMT) labeling of G with the magic constant mg. Let
V (G) = {vi|vi = g−1(i) and i ∈ [1, p]}, V (H) = {ui|i ∈ [1, r]}, E(G) = {ei|i ∈ [1, q]}, and
E(H) = {ki|i ∈ [1, s]}. Hence, |V (G)| = p, |E(G)| = q, |V (H)| = r, |E(H)| = s. Thus,
V (G+H) = V (G) ∪ V (H) and E(G+H) = E(G) ∪ E(H) ∪ {uivj|i ∈ [1, r] and j ∈ [1, p]}.

Consider Y = [1, p + q + r + s + p r] as the set of all labels of vertices and edges in G +H .
Then, we divide the proof into three cases.

Case 1. r is even.
Partition Y into five subsets, namely A = [1, r], B = r+[1, p], C = (r+p)+[1, p r], D = (r+p+
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p r)+[1, q] and E = (r+p+p r+q)+[1, s]. Since r is even, |C| is a multiple of 2p. By Lemma 2.1,
we have that C is p-balanced with

∑
Ci =

pr
2p
(r + p + 1 + r + p + pr) = 1

2
r(p(r + 2) + 2r + 1)

for each i ∈ [1, p].
Next, label the vertices and edges in G+H by total labeling f as defined in the following steps.

1. For each i ∈ [1, r], f(ui) = i.
2. For each i ∈ [1, p], f(vi) = i+ r.
3. For each j ∈ [1, p] and i ∈ [1, r], f(uivj) = mi, where mi ∈ Cj .
4. For each ei ∈ E(G) and i ∈ [1, q], f(ei) = g(ei) + r + pr.
5. For each ki ∈ E(H) and i ∈ [1, s], f(ki) = mi, where mi ∈ E and no two distinct edges in

E(H) are assigned the same number.

Thus, we get
⋃r

i=1{f(ui)} = A,
⋃p

i=1{f(vi)} = B,
⋃p

j=1{f(uivj)|i ∈ [1, r]}= C, {f(vivj)|vivj ∈
E(G)} = D, and {f(uiuj)|uiuj ∈ E(H)} = E. Clearly, f is a bijective function from V (G +
H) ∪ E(G+H) to Y .

Let F be a subgraph of G + H isomorphic to K2 + H . It is clear that F contains exactly
one edge of E(G), say vxvy for some distinct x, y ∈ [1, p]. Then, V (F ) = V (H) ∪ {vx, vy} and
E(F ) = E(H) ∪ {vxvy} ∪ {uivj|j ∈ {x, y}, i ∈ [1, r]}. Thus,

wtf (F ) =
r∑

i=1

f(ui) + f(vx) + f(vy) +
∑

e∈E(H)

f(e) + f(vxvy) +
r∑

i=1

[f(uivx) + f(uivy)]

= [g(vx) + g(vy) + g(vxvy)] + 3r + pr + 1
2
r(r + 1) + s(r + p+ pr + q) +

s∑
i=1

i

+r(p(r + 2) + 2r + 1).

Since [g(vx) + g(vy) + g(vxvy)] = mg, we see that wtf (F ) is independent of F .
Now, let F ′ be a subgraph of G +H isomorphic to 2K2 +H . It is clear that F ′ contains two

non-adjacent edges of E(G). Then, wtf (F ′) = 2wtf (F )−
(∑

u∈V (H) f(u) +
∑

e∈E(H) f(e)
)

. So,
wtf (F

′) is independent of F ′.
Case 2. r is odd and p is odd.

Partition Y into five subsets, namely A = [1, r], B = r + [1, 2p], C = (r + 2p) + [1, p(r − 1)],
D = (r + p + p r) + [1, q], and E = (r + p + p r + q) + [1, s]. By Lemma 2.2, B is (p, 1)-anti
balanced with

∑
Bi = 2(r + 1) + 3

⌊
p
2

⌋
+ i for every i ∈ [1, p]. Since g is an injective function,

g−1(i) = vi for every i ∈ [1, p]. This gives
∑

Bi = 2(r+1)+3⌊p
2
⌋+ i = 2(r+1)+3⌊p

2
⌋+ g(vi)

for every i ∈ [1, p]. The cardinality of C is a multiple of 2p. By Lemma 2.1, C is p-balanced with∑
Ci =

p(r−1)
2p

(r+2p+1+ r+2p+ p(r− 1)) = 1
2
(r− 1)(2r+3p+ pr+1) for every i ∈ [1, p].

Next, label the vertices and edges in G+H by total labeling f as defined in the following steps.

1. For each i ∈ [1, r], f(ui) = i.
2. For each i ∈ [1, p], f(vi) = min{x|x ∈ Bi}.
3. For each i ∈ [1, p], f(u1vi) = bi, where bi ∈ Bi \ {f(vi)}.
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4. For each j ∈ [1, p] and i ∈ [2, r], f(uivj) = mi, where mi ∈ Cj .
5. For each ei ∈ E(G) and i ∈ [1, q], f(ei) = g(ei) + r + pr.
6. For each ki ∈ E(H) and i ∈ [1, s], ki = mi, where mi ∈ E and no two distinct edges are

assigned the same number.

Thus, we get
⋃r

i=1{f(ui)} = A,
⋃p

i=1{f(vi), f(u1vi)} = B,
⋃p

j=1{f(uivj)| i ∈ [2, r]} = C,
{f(vivj)|vivj ∈ E(G)} = D, and {f(uiuj)|uiuj ∈ E(H)} = E. Clearly, f is a bijective function
from V (G+H) ∪ E(G+H) to Y .

Let F be a subgraph of G + H isomorphic to K2 + H . It is clear that F contains exactly
one edge of E(G), say vxvy for some distinct x, y ∈ [1, p]. Then, V (F ) = V (H) ∪ {vx, vy} and
E(F ) = E(H) ∪ {vxvy} ∪ {uivj|j ∈ {x, y}, i ∈ [1, r]}. Thus,

wtf (F ) =
r∑

i=1

f(ui) + f(vx) + f(vy) +
∑

e∈E(H)

f(e) + f(vxvy) +
r∑

i=1

[f(uivx) + f(uivy)]

= [g(vx) + g(vy) + g(vxvy)] + 4(r + 1) + 6
⌊
p
2

⌋
+ r + pr + 1

2
r(r + 1)

+s(r + p+ pr + q) + 1
2
s(s+ 1) + (r − 1)(2r + 3p+ pr + 1).

Since [g(vx) + g(vy) + g(vxvy)] = mg, we see that wtf (F ) is independent on the choosing of F .
Now, let F ′ be a subgraph of G +H isomorphic to 2K2 +H . It is clear that F ′ contains two

non-adjacent edges of E(G). Thus, wtf (F ′) = 2wtf (F )−
(∑

v∈V (H) f(v) +
∑

e∈E(H) f(e)
)

. So,
wtf (F

′) is independent of F ′.
Case 3. r is odd and p is even.

Partition Y into five subsets, A = [1, r− 1] ∪ {r+ p
2
}, B = [r, r + 2p] \ {r+ p

2
}, C = (r+ 2p) +

[1, p (r − 1)], D = (r + p+ p r) + [1, q], and E = (r + p+ pr + q) + [1, s]. By Lemma 2.2, B is
(p, 1)-anti balanced with

∑
Bi = 2r+ i+3⌊p

2
⌋ for each i ∈ [1, p]. Since g is an injective function,

g−1(i) = vi for every i ∈ [1, p]. Therefore,
∑

Bi = 2r + 3⌊p
2
⌋+ i = 2r + 3⌊p

2
⌋+ g(vi) for every

i ∈ [1, p].
Now, the cardinality of C is a multiple of 2p. By Lemma 2.1, we have that C is p-balanced

with
∑

Ci =
p(r−1)

2p
(r + 2p+ 1+ r + 2p+ pr) = 1

2
(r− 1)(2r + 3p+ pr + 1) for every i ∈ [1, p].

Next, label the vertices and edges in G + H by the total labeling f defined in the following
steps.

1. For each i ∈ [2, r], f(ui) = i− 1, and f(u1) = r + p
2
.

2. For each i ∈ [1, p], f(vi) = min{x|x ∈ Bi}.
3. For each i ∈ [1, p], f(u1vi) = bi, where bi ∈ Bi \ {f(vi)}.
4. For each j ∈ [1, p] and i ∈ [2, r], f(uivj) = mi, where mi ∈ Cj .
5. For each ei ∈ E(G) and i ∈ [1, q], f(ei) = g(ei) + r + pr.
6. For each ki ∈ E(H) and i ∈ [1, s], f(ki) = mi, where mi ∈ E and no two distinct edges are

assigned the same number.

Then,
⋃r

i=1{f(ui)} = A,
⋃p

i=1{f(vi), f(u1vi)} = B,
⋃p

j=1{f(uivj)|i ∈ [2, r]} = C, {f(vivj)|vivj ∈
E(G + H)} = D and {f(uiuj)|uiuj ∈ E(G + H)} = E. Clearly, f is a bijective function from
V (G+H) ∪ E(G+H) to Y .
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Let F be a subgraph of G + H isomorphic to K2 + H . Then F contains exactly one edge of
E(G), say vxvy for some distinct x, y ∈ [1, p]. Then, F has the form V (F ) = V (H) ∪ {vx, vy}
and E(F ) = E(H) ∪ {vxvy} ∪ {uivj|j ∈ {x, y}, i ∈ [1, r]}. Thus,

wtf (F ) =
r∑

i=1

f(ui) + f(vx) + f(vy) +
∑

e∈E(H)

f(e) + f(vxvy) +
r∑

i=1

f(uivx) +
r∑

i=1

f(uivy)

= [g(vx) + g(vy) + g(vxvy)] +
r∑

i=2

i+
s∑

i=1

i+ p
(
r2 + r(s+ 3) + s− 5

2

)
+ 6

⌊
p
2

⌋
+2r2 + rs+ qs+ 4r.

Since [g(vx) + g(vy) + g(vxvy)] = mg, we see that wtf (F ) is independent on the choosing of F .
Now, let F ′ be a subgraph of G + H isomorphic to 2K2 + H . F ′ contains two non-adjacent

edges of E(G). Thus, wtf (F ′) = 2wtf (F ) −
(∑

v∈V (H) f(v) +
∑

e∈E(H) f(e)
)

. So, wtf (F ′) is
independent of F ′.

An example of the labeling depicted in the proof of Theorem 3.1 can be seen in Figure 2 where
a (K5, 2K2 + C3)-sim-supermagic labeling of S2,0,0,2 + C3 is presented.

Figure 2. A (K5, 2K2 + C3)-sim-supermagic labeling of S2,0,0,2 + C3

The following corollary is a consequence of Theorem 3.1 with H = K1.

Corollary 3.1. Let G be a C3-free connected graph containing a P5. If G is SEMT graph, then
G+K1 is (C3, 2K2 +K1)-sim-supermagic.

This corollary enlarges the classes of graphs known to be C3-supermagic; since up to date, only
the following join product graphs were known to be C3-supermagic: Pn+K1, Cn+K1, K1,n+K1,
and nK2 +K1, where n ≥ 3 [16, 21, 22, 25].
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4. Labelings for Cartesian Product Graphs

The Cartesian product of two graphs G and H , denoted by G × H , is a graph whose vertex
set is V (G) × V (H) = {(u, v)|u ∈ V (G), u ∈ V (H)} and for which two vertices (u1, v1) and
(u2, v2) are adjacent if and only if either u1u2 ∈ E(G) and v1 = v2 or v1v2 ∈ E(H) and u1 = u2.

In this section, we shall study (F,H)-sim-supermagic labeling for the Cartesian product of an
arbitrary graph G with K2. The following notations are used or vertices and edges in G×K2 For
each x ∈ V (G), let x and x′ be the corresponding vertices in the two copies of G in G×K2, and
so xx′ ∈ E(G×K2). For each xy ∈ E(G), denote by xy and x′y′ the corresponding edges in the
two copies of G in G×K2.

We summarize the Cartesian product graphs G×K2 known to be H-magic in Table 3.

Table 3. G×K2 that are H-magic
Cartesian product H Conditions and Reference
G×K2 C4 G is C4-free and SEMT of odd size [16]
Pm ×K2 C4 m ≥ 3 [21]
mK1,n ×K2 C4 m ≥ 2 and n ≥ 1 [1]
s(Pn+1 ×K2) ∪ k(Pn ×K2) C4 s ≥ 1, k ≥ 1 and n ≥ 2 [1]
m(Pn ×K2) C4 m ≥ 2 and n ≥ 2 [23]
Pn ×K2 C2m n ≥ 4 and m ∈ [3, ⌊n

2
⌋+ 1] [20]

Pn ×K2 Pm ×K2 n ≥ 4 and m ∈ [3, n− 1] [20]
G×K2 C4 G is C4-free, SEMT and a connected (p, q)-graph

where p or q is odd [14]
(2G)×K2 C4 G is C4-free, connected, bipartite (with

partite sets U and V ) and G has a SEMT labeling
f such that f(U) = [1, |U |] [14]

In [20], Ngurah et al. constructed (Pm ×K2)-supermagic labelings of the ladder Pn ×K2 for
every m ∈ [3, n− 1]. A more general result by Baca et al. [7] established the following sufficient
conditions for the Cartesian product G1×G2 to be (H×G2)-supermagic as stated in the following
theorem. On the other hand, in [14] and [16] it was proved that if G is connected of odd order or
size, C4-free, and SEMT, then G×K2 admits a C4-supermagic labeling.

Theorem 4.1. [7] Let G1 be a graph of odd order p1 ≥ 3 admitting an H-covering given by t
subgraphs isomorphic to H . If G2 is a graph of even order q2 ≥ 2 and odd size p2 ≥ 3 and the
graph G1 × G2 contains exactly t subgraphs isomorphic to H × G2, then G1 × G2 is (H × G2)-
supermagic.

In the next theorem, we enlarge the classes of graphs known to be (Pm ×K2)-supermagic [20]
and extend sufficient conditions for the existence of a C4-supermagic labeling of G×K2 [14, 16]
without considering a SEMT labeling of G. Furthermore, our result settles the remaining cases of
Theorem 4.1 for p2 = 1 and q2 = 2.

Theorem 4.2. Let G be a C4-free connected graph of odd order p ≥ 5. If G admits a Pm-covering
for some m ∈ [3, p− 1], then G×K2 is (C4, Pm ×K2)-sim-supermagic.
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Proof. Let p and q be the order and the size of G, respectively. Consider A = [1, 3p + 2q] as
the set of integers used to label vertices and edges in G × P2. Now, partition A into three sets
W = [1, 2p], X = [2p + 1, 3p], and Y = [3p + 1, 3p + 2q]. Since p is odd, by Lemma 2.2, W
is (p, 1)-anti balanced with

∑
Wi = 2 + i + 3

⌊
p
2

⌋
for every i ∈ [1, p]. Now, since |Y | = 2q,

Lemma 2.1 ensures that Y is q-balanced with
∑

Yj = 2q
2q
(3p + 1 + 3p + 2q) = 6p + 2q + 1 for

each j ∈ [1, q].
Let g and h be bijections from V (G) to [1, p] and from E(G) to [1, q], respectively. Next, define

a total labeling f of G×K2. For each x ∈ V (G), label x and x′ in G×K2 by the elements of Wg(x)

chosen so that f(x) < f(x′) and define f(xx′) = 3p− g(x) + 1. For each xy ∈ E(G), define f as
a bijection from {xy, x′y′} to Yh(xy) with f(xy) < f(x′y′). Hence,

⋃
v∈V (G×K2)

{f(v)} = W and⋃
e∈E(G×K2)

{f(e)} = X∪Y . Consequently, f is a bijective function from V (G×K2)∪E(G×K2)
to A.

Since G is C4-free, there are q subgraphs of G × K2 isomorphic to C4. Let F be a subgraph
of G×K2 isomorphic to C4. Then, V (F ) = {x, x′, y, y′} and E(F ) = {xx′, yy′, xy, x′y′}, where
x, y ∈ V (G) and xy ∈ E(G). Therefore,

wtf (F ) = f(x) + f(x′) + f(y) + f(y′) + f(xx′) + f(yy′) + f(xy) + f(x′y′)

=
∑

Wg(x) +
∑

Wg(y) + 3p− g(x) + 1 + 3p− g(y) + 1 +
∑

Yh(xy)

= 12p+ 6
⌊
p
2

⌋
+ 2q + 7,

which is independent of F .
Moreover, as G admits a Pm-covering for some m ∈ [3, p − 1], we have that G × K2 admits

a (Pm ×K2)-covering. Let H = x1x2 . . . xm be a subgraph of G isomorphic to Pm. For each H ,
denote by H ′ = x′

1x
′
2 . . . x

′
m the corresponding subgraph in G′. Thus, for each H , we obtain H ′′

with V (H ′′) = {x1, x2, . . . , xm, x
′
1, x

′
2, . . . , x

′
m} and E(H ′′) = E(H)∪E(H ′)∪{xx′|x ∈ V (H)}

as the corresponding subgraph in G × K2 isomorphic to Pm × K2. We can verify that there are
exactly t subgraphs of G × K2 isomorphic to Pm × K2, where t is the number of subgraphs
isomorphic to Pm in G. Thus,

wtf (H
′′) =

∑
v∈V (H)

f(v) +
∑

v∈V (H′)

f(v) +
∑

e∈E(H)

f(e) +
∑

e∈E(H′)

f(e) +
∑

v∈V (H)

f(vv′)

=
∑

v∈V (H)

[f(v) + f(v′)] +
∑

e∈E(H)

[f(e) + f(e′)] +
∑

v∈V (H)

[3p− g(v) + 1]

=
∑

v∈V (H)

[∑
Wg(v)

]
+

∑
e∈E(H)

[∑
Yh(e)

]
+

∑
v∈V (H)

[3p− g(v) + 1]

=3m
⌊
p
2

⌋
+ 4m+ 9mp+ 2mq − 6p− 2q − 1,

which is independent of H ′′. Hence, G×K2 is (C4, Pm ×K2)-sim-supermagic.

An example of the labeling in the proof of Theorem 4.2 is depicted in Figure 3.
In [20], Ngurah et al. showed that the ladder Pn × K2 is C2m-supermagic for every m ∈

[3,
⌊
n
2

⌋
+ 1]. Then it is natural to ask for which graphs G, the Cartesian product G × K2 is
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Figure 3. A (C4, Pm ×K2)-sim-supermagic labeling of C7 ×K2 for every m ∈ [3, 6].

(C2x, C2y)-sim-supermagic for some x, y ∈
[
3,
⌊
n
2

⌋
+ 1

]
. We will answer this question in Theorem

4.3, but to do so, we need to recall the following notion that was first introduced by Simanjuntak et
al. [27]. An injective function f from V (G) onto the set {1, 2, . . . , |V (G)|} is called (a, d)-edge-
antimagic vertex labeling ((a, d)-EAV) if the set of edge-weights {w(xy) = f(x) + f(y)|xy ∈
E(G)} = {a, a+ d, . . . , a+ (|E(G)| − 1)d}, where a > 0 and d ≥ 0 are two integers. A graph G
is said to be an (a, d)-edge-antimagic vertex ((a, d)-EAV) graph if G has an (a, d)-EAV labeling.
In [4], it was shown that a connected graph G that is not a tree has no (a, d)-EAV labeling for
d ̸= 1.

Lemma 4.1. [4] Let G be a connected graph that is not a tree. If G has an (a, d)-EAV labeling,
then d = 1.

The next theorem describes a construction of a (C2x, C2y)-sim-supermagic labeling of G×K2

from an (a, 2)-EAV labeling for some x, y ∈
[
3,
⌊
n
2

⌋
+ 1

]
. Due to Lemma 4.1, we restrict our

consideration to trees.

Theorem 4.3. Let m,n and p be positive integers where 3 ≤ m < p. Let G be a tree on p vertices
where p ≥ 5, such that G admits a Pm-covering for some m ∈

[
3,
⌊
n
2

⌋
+ 1

]
. If G is an (a, 2)-EAV

graph, then G×K2 is (C2x, C2y)-sim-supermagic for all x, y ∈ [2,m].

Proof. Let p and q be the order and the size of G, respectively. Let g : V (G) → {1, 2, . . . , p} be
an (a, 2)-EAV labeling of G.

Since |V (G×K2)| = 2p and |E(G×K2)| = p+2q, the set of labels used to label vertices and
edges of G×K2 is A = [1, 3p+2q]. Now, partition A into three sets W = [1, 2p], X = [2p+1, 3p]
and Y = [3p + 1, 3p + 2q]. By Lemma 2.3, W is (p, 2)-anti balanced with

∑
Wi = 2i + p for

every i ∈ [1, p]. According to Lemma 2.3, Y is (q, 2)-anti balanced with
∑

Yj = 6p + q + 2j for
each j ∈ [1, q].

Next, define a total labeling f of G×K2. For each x ∈ V (G), label the corresponding vertices
x and x′ in G × K2 by the elements of Wg(x) chosen so that f(x) < f(x′). For each x ∈ V (G),
define f(xx′) = 3p + 1− g(x). Now, for each xy ∈ E(G), label the corresponding edges xy and
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x′y′ in G×K2 by the elements of Yr where r = 1
2
(2q+a−g(x)−g(y)) such that f(xy) < f(x′y′).

It follows easily that f depends on g. Then, f is a bijective function from V (G×K2)∪E(G×K2)
to A.

Since G admits a Pm-covering for some m ∈
[
3,
⌊
n
2

⌋
+ 1

]
, G × K2 admits C2z-covering for

every z ∈ [2,m]. Let H = x1x2 . . . xz be a subgraph of G isomorphic to Pz for an arbitrary
z ∈ [2,m]. For each H , denote by H ′ = x′

1x
′
2 . . . x

′
z the corresponding subgraph in G′. Thus,

for each H , we obtain H ′′ as the corresponding subgraph in G × K2 isomorphic to C2z where
V (H ′′) = V (H) ∪ V (H ′) and E(H ′′) = E(H) ∪E(H ′) ∪ {x1x

′
1, xzx

′
z}. We can verify that there

are exactly t subgraphs of G × K2 isomorphic to C2z, where t is the number of subgraphs in G
isomorphic to Pz. Thus,

wtf (H
′′) =

∑
v∈V (H)

f(v) +
∑

v∈V (H′)

f(v) +
∑

uv∈E(H)

f(uv) +
∑

uv∈E(H′)

f(uv) + f(x1x
′
1) + f(xzx

′
z)

=
∑

v∈V (H)

[f(v) + f(v′)] +
∑

uv∈E(H)

[f(uv) + f(u′v′)] + 3p+ 1− g(x1) + 3p+ 1− g(xz)

=
∑

v∈V (H)

[∑
Wg(v)

]
+

∑
uv∈E(H)

[∑
Y1

2
(2q+a−g(u)−g(v))

]
+ 6p+ 2− g(x1)− g(xz)

= 7zp+ 3zq − 3q + az − a+ 2,

which is independent of H ′′.
Therefore, G×K2 is (C2x, C2y)-sim-supermagic for all x, y ∈ [2,m].

An example of the labeling in Theorem 4.3 can be seen in Figure 4.

Figure 4. A (C4, C2m)-sim-supermagic labeling of P6 ×K2 for m = 3 and 4

Note that the preceding theorem enlarges the classes of graphs known to be C2m-supermagic,
as stated in Table 3. For instance, since every path Pn was shown to be (3, 2)-EAV [27], an
immediate consequence of Theorem 4.3 is that the ladder Pn × K2 is (C4, C2m)-sim-supermagic
for every m ∈ [3, ⌊n

2
⌋+ 1].

In [2], Bača and Barrientos described a connection between an α-labeling and an (a, 2)-EAV
labeling of graphs. An injective mapping f : V (G) → [0, |E(G)|] is said to be graceful labeling if
|f(x)−f(y)| are distinct for each xy ∈ E(G). A graceful labeling f is called an α-labeling if there
exists an integer λ such that for each edge xy either f(x) ≤ λ < f(y) or f(y) ≤ λ < f(x) [24].
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A graph G that admits an α-labeling is said to be an α-graph. From the definition of α-labeling, it
follows that an α-graph is necessarily bipartite.

Let {A,B} be the natural bipartition of the vertex set of an α-graph. Bača and Barrientos [2]
presented the following theorem.

Theorem 4.4. [2] A tree T is a (3, 2)-EAV graph if and only if T is an α-graph and ||A|−|B|| ≤ 1,
where {A,B} is the natural bipartition of the vertex set of T .

Theorem 4.3 together with Theorem 4.4 implies the relationship between an α-labeling of a
tree T and a (C4, C6)-sim-supermagic labeling of the Cartesian product T ×K2. Let n ≥ 2 be a
positive integer and let T be an α-tree and ||A| − |B|| ≤ 1, where {A,B} is the natural bipartition
of the vertex set of T . It is clear that T ×K2 admits a C4-covering and a C6-covering only if T is
not isomorphic to a star.

Corollary 4.1. Let T be an α-tree not isomorphic to a star on at least five vertices and let ||A| −
|B|| ≤ 1, where {A,B} is the natural bipartition of the vertex set of T . Then T ×K2 is (C4, C6)-
sim-supermagic.

Figure 5 illustrates a (C4, C6)-sim-supermagic labeling of product graph S2,1,0,1 ×K2.

Figure 5. A (C4, C6)-sim-supermagic labeling of S2,1,0,1 ×K2.

A perfect matching of a graph is a matching (i.e., an independent edge set) in which every
vertex of the graph is incident to exactly one edge of the matching. Brankovic et al. [8] posed the
following conjecture for α-trees.

Conjecture 1. [8] All trees with maximum degree three and a perfect matching have an α-labeling.

Consider a tree T with a perfect matching. Since T is bipartite, by a perfect matching in T , we
have a natural bipartition of the vertex-set of T , namely A and B, such that ||A| − |B|| ≤ 1. As a
direct consequence of Corollary 4.1 and Conjecture 1, the following holds.

Theorem 4.5. Let T be a tree on at least five vertices that are not isomorphic to a star, with a
maximum degree three and containing a perfect matching. If Conjecture 1 is true, then T ×K2 is
(C4, C6)-sim-supermagic.
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Although all our results in this section are restricted to trees, the proof of Theorem 7 in [16]
implied that Cn × K2 is (C4, C2m)-sim-supermagic for each odd n ≥ 5 and m = 2. Thus, it is
interesting to seek conditions such that a Cartesian product of a non-tree graph G with K2 admits
a (C4, C2m)-sim-supermagic labeling.
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