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Abstract

A simple graph G(V, E) admits an H-covering if every edge in G belongs to a subgraph of GG
isomorphic to H. In this case, G is called H-magic if there exists a bijective function f : V U
E — {1,2,...,|V| + |E|}, such that for every subgraph H’ of GG isomorphic to H, wt;(H') =
> weviry J (V) + 2 cpmn f(€) is constant. Moreover, G is called H-supermagic if f : V/(G) —
{1,2,...,|V|}. This paper generalizes the previous labeling by introducing the (F, H)-sim-(super)
magic labeling. A graph admitting an F'-covering and an H-covering is called (F, H )-sim-(super)
magic if there exists a function f that is F-(super)magic and H-(super)magic at the same time.
We consider such labelings for two product graphs: the join product and the Cartesian product. In
particular, we establish a sufficient condition for the join product G+ H tobe (Ky+ H, 2Ky + H)-
sim-supermagic and show that the Cartesian product G x K5 is (Cy, H)-sim-supermagic, for H
isomorphic to a ladder or an even cycle. Moreover, we also present a connection between an
a-labeling of a tree 7" and a (C}, Cg)-sim-supermagic labeling of the Cartesian product 7' x K.
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1. Introduction

The graphs considered in this paper are finite and simple. Let G be a graph, with the vertex
set V(G) and the edge set F(G). The cardinalities of V(G) and E(G) are called the order and the
size of G, respectively. A labeling f of GG is a map that assigns certain elements of G to positive
or non-negative integers. In this paper, we consider a fotal labeling of GG as a bijective function
f V(@)U EG) = {1,2,...,]V(G)| + |E(G)|}. Under a total labeling f, the weight of a
vertex v € V(G) is wty(v) = ( ) + X wwen(c) f(vw) and the weight of an edge vw € E(G) is
wty(vw) = f(v) + flow) + f(w).

Simanjuntak et al. [27] introduced an (a, d)-edge-antimagic total labeling ((a,d)-EAT) as a
total labeling f where the set of edge-weights {wt;(vw)|vw € E(G)} constitutes a set of an
arithmetic progression {a,a + d,...,a + (|E(G)| — 1)d} for two integers a > 0 and d > 0.
When d = 0, the (a, 0)-edge(vertex)-antimagic labeling was previously known as the edge-magic
total labeling (EMT) and was introduced by Kotzig and Rosa [15] in 1970. When G has EMT
or (a,d)-EAT labelings and the corresponding f labeling has the property f(V(G)) = {1,2,...,
|[V(G)|}, we say that G is super edge-magic total (SEMT) or super (a,d)-edge-antimagic total
((a, d)-SEAT), respectively.

Another variation of magic labeling called vertex-magic total labeling was introduced by Mac-
Dougal et al. [17]. A vertex-magic total labeling (VMT) of G is a total labeling where there exists
a positive integer k such that the vertex-weight wt,(v) = k for every vertex v of G. If
{wt;(v)|lv e V(G)} ={a,a+d,...,a+(]V(G)| —1)d} for two integers ¢ > 0 and d > 0, the la-
beling f of G is called (a, d)-vertex-antimagic total labeling ((a, d)-VAT), that was first introduced
by Baca et al. [3]. Comprehensive surveys about the existence of magic and antimagic graphs can
be found in [4, 5, 11, 29].

In 2005, as an extension of the edge-magic total labeling, Gutiérez and Llad6 [12] introduced an
H-magic labeling of a graph. A graph GG admits an H-covering if every edge in E'(G) belongs to a
subgraph of G isomorphic to a given graph H. A total labeling f of G is an H-magic labeling
if there exists a positive integer k such that wt(H') = > vy (V) + 2 cpur fle) = k
for every subgraph H’ of G isomorphic to H. In this case, G is called an H-magic graph. 1f
fv)y = {1,2,...,|V(G)
H-magic labelings can be seen in the survey [11].

In 2005, Exoo et al. [9] asked whether there exists a labeling of a graph that is simultaneously
vertex-magic and edge-magic and called such labeling totally magic. Subsequently, in 2005, Baca
et al. [6] extended a similar question for (a, d)-EAT labeling and (a, d)-VAT labelings; and defined
the totally antimagic total (TAT) labeling.

Motivated by the two notions above, it is interesting to ask a similar question by considering the
subgraph covering in GG. Suppose that G simultaneously admits an F'-covering and an H-covering.
We propose a new notion of a labeling called an (F, H)-sim-magic labeling as a bijective function
f:V(G)UE(G) = {1,2,...,|V(G)| + |E(G)|} where there exist two positive integers kr and
ky (not necessarily the same) such that

wt(Fy = Y fl)+ > fle

veV (F) ecE(F")
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and

wty(H) =) f)+ Y fle)=kn,

veV(H') ecE(H')

for each subgraph F” of GG isomorphic to F' and each subgraph H' of GG isomorphic to H. We
say that G is (F, H)-sim-magic. Furthermore, if f(V(G)) = {1,2,...,|V(G)
(F, H)-sim-supermagic.

The simplest example of a (F, H)-sim-magic graph can be deduced from previously known
H-magic labelings. For odd m and n at least three, the disjoint union of m cycles mC, is both
SEMT [10] and C),-supermagic [1, 18]. Although the C,,-supermagic labelings described in [1, 18]
are not SEMT, the SEMT labeling of 3C’5 described in [10] is also C's-supermagic (see Figure 1).
This implies that 3C}5 is (K>, C'3)-sim-supermagic.

1 2 3

9 10 5 7 11 6 8 12 4
Figure 1. A (K>, C3)-sim-supermagic graph.

An interesting fact for (F, H)-sim-magic labeling is that although a graph is both F-magic and
H-magic, such a graph does not need to be (F, H)-sim-magic. An example is the fan F,, with
vertex-set V' (F,) = {v;]0 < i < n} and edge-set E(F,) = {vivi41]l <i<n— 1} U{vov|l <
i < n}. It is known that, for every n > 3, F}, is EMT (see [28]) and Cs-supermagic (see [21]).
However, for every n > 3, F,, is not (K5, C3)-sim-magic as stated in the following theorem.

Theorem 1.1. Let n > 3 be a positive integer. A fan F,, is not (K5, C3)-sim-magic.

Proof. Suppose that F,, is a (K5, C3)-sim-magic graph and let f be a (K5, C3)-sim-magic labeling
of F,, with a magic constant pair (k1, k2). Consider the weights of two Cj cycles vyvy, v1v9, Va0
and vovs, Vov3, V3Uy. As these weights are equal, we have

2 3
D Fwi) + fvowr) + f(v1v2) + f(vave) = Y f(vi) + f(vova) + f(vavs) + f(vsvo),
i=0 i=1
and so
f(or) + f(vivo) + f(vive) = f(vs) + f(v2v3) + f(vovs). (1)
Adding f(vg) to both sides of Equation (1) and using the fact that all edges have the same edge
weight, we obtain f(vjvg) = f(vqv3), a contradiction. O

In this paper, we study simultaneous labelings for two product graphs: the join product and
Cartesian product graphs. In particular, we investigate a sufficient condition for the join product
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graph G + H to be (K, + H,2K, + H)-sim-supermagic (Section 3). We construct (Cy, H )-sim-
supermagic labelings for the Cartesian product G x K5, where H is isomorphic to a ladder or an
even cycle (Section 4). Finally, in the last section, we provide relationships between an a-labeling
of atree T and a (Cy, Cg)-sim-supermagic labeling of the Cartesian product 7' x K.

Throughout the paper, we shall use the following definitions and notations. The degree of a
vertex v is denoted by deg(v). For a connected graph H, a graph G is H-free if G does not contain
H as a subgraph. Notations for some classes of graphs can be seen in Table 1.

Table 1. Classes of graphs

Notation Notes
Cn A cycle on n vertices, n > 3.
K, A complete graph on n vertices, n > 1.
K, A star with one internal vertex and n leaves, n > 2.
P, A path on n vertices, n > 2.
Snima....n, | A caterpillar is a graph derived from a path Py, £ > 2, where
fori € {1,2,...,k}, each v; € V(F) is adjacent to n; > 0 additional leaves.

2. Balanced and Anti Balanced Multisets

A multiset is a generalization of a set where repetition of elements is allowed. Let a and b be
two integers. We use the notation [a, b] to define the set of consecutive integers {a,a + 1,...,b}.
So [a,b] = 0, if a > b. For an integer k, the addition k + [a,b] means [a + k,b + k] and for a
multiset of integers Y, we denote ) 5, # by > Y. Let x be an element of a multiset Y. Then, the
multiplicity of x, denoted by my (), is the number of occurrences of z in Y. Let X and Y be two
multisets. A multiset sum X 'Y is a union of X and Y, where mx gy (z) = mx(x) + my () for
each v € X |4 Y. For example, if X = {a} and Y = {a,a,b}, then, X § Y = {a,a,a,b}.

We shall utilize the notions of a k-balanced partition of a multiset introduced by Maryati et
al. [19] and a (k, 0)-anti balanced partition of a multiset introduced by Inayah et al. [13] to con-
struct labelings in Sections 3 and 4. Let k£ and ¢ be two positive integers, and X be a multiset
containing positive integers. X is said to be (k, §)-anti balanced if there exist k subsets of X, say
X1, Xo, ..., Xy, such that forevery i € [1, k], | X;| = %', ijzl X; = X, andforeachi € [1,k—1],
> Xit1— >, X;=4. Forevery i € [1,k], X, is called a (k, d)-anti balanced subset of X . In the
case that there exists a positive integer # such that > X; = 6 for every ¢ € [1, k], then X is called
k-balanced with X;s as k-balanced subsets of X .

Lemma 2.1. [18] Let x,y, and k be three integers, where 1 < x < yandk > 1. If X = [z, y] and

| X| is @ multiple of 2k, then X is k-balanced with |, X; = %'(:E +y) for everyi € [1,k].

Lemma 2.2. Let x and k be positive integers, k > 2. If

[z, e+ 2k -1, for odd k;
[z, + 2K\ {2+ £}, forevenk,

then X is (k,1)-anti balanced with > X; = 2z + i+ 3 | %] for every i € [1, k].
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Proof. Foreachi € [1,k], define X; = {a’,b'}, where @’ = z — 1+ [] +2(1— (i mod 2)) | %]
and b' = =+ |£| + [%] + 2(¢ mod 2) [£]|. Thus, Wi, Xi = X and we have |X;| = 2 and
S X;=2x+i+3|%| foreachi € [1,k]. Since > X1 — > X; = Lforeveryi € [1,k— 1], X
is a (k, 1)-anti balanced. O

Lemma 2.3. Let x and k be positive integers, k > 2. If X =[x,z + 2k — 1], then X is (k,2)-anti
balanced with > X; = 2(x + i — 1) + k for every i € [1, k.

Proof. Define X; = {x — 1 44,2 +i+k — 1} foreachi € [1,k]. Hence, Wi, X; = X, |X;| = 2,
and > X; = 2(x +1i — 1) + k for every i € [1, k]. We have that X is (k,2)-anti balanced since
Y Xiv1 — > X, =2foreveryi € [1,k —1]. O

3. Labelings for Join Product Graphs

Let G'U H denote the disjoint union of G' and H. Then, the join product G + H of two disjoint
graphs GG and H is the graph G U H together with all the edges joining vertices of G and vertices
of H. The study of H-magicness of join product graphs has been conducted for some particular
families of graphs, as summarized in Table 2.

Table 2. Known join product graphs which are H-magic
Join product H | Reference
P,+K,n>3 C3 | Ngurah et al. [21] and Ovais et al. [22]
Cy | Ovais et al. [22]
Cn,+ Ki,nodd,n>5 | Cs | Lladé and Moragas [16]
neven,n > 4 | C3 | Roswitha et al. [25]

C,+Ki,n>3 C4 | Semanicova-Fenovcikova et al. [26]
Kip,+Ki,n>3 C5 | Ngurah et al. [21]
nkKo+ Kqi,n>2 C5 | Lladé and Moragas [16]

The following theorem provides a sufficient condition for the join product graph G + H to be
(Ks + H,2K5 + H)-sim-supermagic.

Theorem 3.1. Let G and H be two connected graphs such that G admits a 2Ky-covering and
G + H contains exactly |E(G)| subgraphs isomorphic to Ko + H. If G is SEMT, then G + H is
(Ko + H,2K5 + H)-sim-supermagic.

Proof. Let g be a super edge-magic total (SEMT) labeling of G with the magic constant m,,. Let
V<G) = {Ui|vi = gil(i) and i € [1,p]},V(H) = {uz|Z € [1,T]}7E(G) = {61’2 < [LQ]}’ and
E(H) = {kili € [1,s]}. Hence, |V(G)| = p, |[E(G)| = ¢, |V(H)| = r, |E(H)| = s. Thus,
V(G+H)=V(G)UV(H)and E(G+ H) = E(G)U E(H) U {wuv;|i € [1,r]and j € [1, p|}.
Consider Y = [1,p + ¢ + r + s + pr] as the set of all labels of vertices and edges in G + H.
Then, we divide the proof into three cases.
Case 1. r is even.
Partition Y into five subsets, namely A = [1,7], B =r+[1,p|,C = (r+p)+[Ll,pr|, D = (r+p+
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pr)+[l,qland E = (r+p+pr+q)+[1, s|. Since r is even, |C| is a multiple of 2p. By Lemma 2.1,
we have that C'is p-balanced with 35 C; = £ (r +p+ 1 +7+p+pr) = gr(p(r +2) +2r + 1)
foreach i € [1, pl.

Next, label the vertices and edges in G+ H by total labeling f as defined in the following steps.

Foreach i € [1,7], f(u;) = 1.

Foreachi € [1,p], f(v;) = i + .

Foreach j € [1,p] and i € [1,7], f(w;v;) = m;, where m; € C;.

For eache; € E(G) andi € [1,q], f(e;) = g(e;) + 7 + pr.

For each k; € F(H) and i € [1,s], f(k;) = m;, where m; € E and no two distinct edges in
E(H) are assigned the same number.

Thus, we get UL, {f (1)} = A UL, {F (o)} = B. U2, {f(wiwy)li € [L ]} = C. {f(vwy)uw €
E(G)} = D, and {f(wu;)|uu; € E(H)} = Clearly, f is a bijective function from V(G +
HYUE(G+H)toY.
Let F' be a subgraph of G + H isomorphic to Ky + H. It is clear that F' contains exactly
one edge of E(G), say v,v, for some distinct z,y € [1,p]. Then, V(F) = V(H) U {v,,v,} and
E(F) = E(H) U {v,v,} U{uv;|j € {z,y},i € [1,r]}. Thus,

M e

wtp(F) = quz + flvg) + f(v,) + Z fle) + f(vv,) +Z (wivy) + f(ugy)]

ecE(H

= [9(vs) 4+ g(vy) + g(vavy)] + 3r +pr+ r(r+ 1)+ s(r +p+pr+q) + Zz
i—1
+r(p(r+2)+2r +1).

Since [g(v.) + g(vy) + g(vvy)] = my,, we see that wt (F') is independent of F.
Now, let I be a subgraph of G + H isomorphic to 2K, + H. It is clear that F” contains two
non-adjacent edges of E(G). Then, wt ¢(F") = 2wt ¢(F') — <Zu€V fu) + X ccnan fle )> So,

wt ¢(F") is independent of F.
Case 2. r is odd and p is odd.
Partition Y into five subsets, namely A = [1,7], B = r + [1,2p], C = (r + 2p) + [1,p(r — 1)],
D=(r+p+pr)+[l,q,and E = (r+p+pr+q)+[1,s]. By Lemma 2.2, B is (p, 1)-anti
balanced with Y~ B; = 2(r + 1) + 3 |&| + i for every i € [1,p]. Since g is an injective function,
g (i) = v; forevery i € [1,p]. This gives > B; = 2(r +1) + 35| +i =2(r+1) + 32| + g(v;)
for every i E [1 p]. The cardinality of C'is a multiple of 2p. By Lemma 2.1, C'is p-balanced with
S =20 (2 1+ 2p+p(r—1)) = s(r=1)(2r+3p+pr+1)foreveryi € [1,p).
Next, label the vertices and edges in G+ H by total labeling f as defined in the following steps.

1. Foreachi € [1,r], f(u;) = 1.
2. Foreachi € [1,p], f(v;) = min{z|z € B;}.
3. Foreachi € [1,p], f(uiv;) = b;, where b; € B; \ {f(v;)}.
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4. Foreach j € [1,p] and i € [2, 7], f(u;vj) = m;, where m; € C}.

For eache; € E(G) andi € [1,q], f(e;) = g(e;) + 7 + pr.

6. Foreach k; € E(H) and i € [1,s], k; = m;, where m; € E and no two distinct edges are
assigned the same number.

Thus, we get U, {f(u)} = A UL {f(0). fluw)} = B, UL {F(uwy)| i € 2.0} = C.
{f(vv;)|viv; € E(G)} = D, and { f(u;u;)|uu; € E(H)} = E. Clearly, f is a bijective function
fromV(G+H)UE(G+H)toY.

Let F' be a subgraph of G + H isomorphic to Ky + H. It is clear that F' contains exactly
one edge of E(G), say v,v, for some distinct x,y € [1,p|. Then, V(F) = V(H) U {v,,v,} and
E(F)=E(H)U{vyv,} U{ww,|j € {z,y},i € [1,r]|}. Thus,

bt

wty(F) = quljtfvx + f(vy) + Z f(e) + f(vavy) +Z (uivz) + fuivy)]
ecE(H
= [g(vy) + g(vy) + g(vyvy)] + 4(r + 1) +6 8| +r+pr+ir(r+1)
+s(r+p+pr+q)+3s(s+1)+ (r—1)(2r +3p+pr+1).

Since [g(v.) + g(vy) + g(vzvy)] = my, we see that wt ¢(F') is independent on the choosing of F.
Now, let " be a subgraph of G + H isomorphic to 2K, + H. It is clear that F” contains two
non-adjacent edges of E(G). Thus, wtf(F') = 2wt ¢(F') — (ZUGV(H) )+ 2 cemm f(e)). So,
wt ¢ (F") is independent of F.
Case 3. r is odd and p is even.
Partition Y into five subsets, A = [1,7 — 1JU{r + L}, B =[r,r +2p] \ {r + 5}, C = (r +2p) +
L,p(r—1],D=(r+p+pr)+[l,q,and E = (r + p+ pr+q) + [1, s]. By Lemma 2.2, B is
(p, 1)-anti balanced with ) © B; = 2r +i+3| 5| foreach i € [1, p|. Since g is an injective function,
g (i) = v; forevery i € [1, p]. Therefore, Y B; = 2r + 3| 5] 4+ = 2r 4+ 3| &| + g(v;) for every
i€[l,p].
Now, the cardinality of C' is a multiple of 2p. By Lemma 2.1, we have that C' is p-balanced
with Y~ C; = p(rpl)(r—l—2p+1+r+2p+pr) T(r—1)(2r +3p+pr+ 1) forevery i € [1, p].
Next, label the vertices and edges in G + H by the total labeling f defined in the following
steps.

1. Foreachi € [2,7], f(u;) =i —1,and f(u;) =7+ §.
2. Foreachi € [1,p], f(v;) = min{z|x € B;}.

For each i € [1,p], f(u1v;) = b;, where b; € B; \ {f(v)}.

Foreach j € [1,p] and i € [2,7], f(w;v;) = m;, where m; € C;.

Foreache; € E(G) andi € [1,q|, f(e;) = g(e;) +r + pr.

Foreach k; € E(H) and i € [1,s], f(k;) = m;, where m; € F and no two distinct edges are
assigned the same number.

Then, U;_ {f(ui)} = A, U {f (i), flwv)} = B, Ui {f (wivy)]i € [2,7]} = C { f(vivy)|viv; €
E(G+H)} =D and {f(u u;)|uu; € E(G+ H)} = E. Clearly, f is a bijective function from
VIG+H)UE(G+H)toY.

b

AN
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Let F' be a subgraph of G + H isomorphic to K» + H. Then F' contains exactly one edge of
E(G), say v,v, for some distinct z,y € [1,p]. Then, F has the form V(F) = V(H) U {v,,v,}
and E(F) = E(H) U{v,v,} U{uv;lj € {z,y},7 € [1,r]}. Thus,

wip(F) = 3 flus) + f (o) + S (o)) + Y o)+ Flowvy) + 3 fluiva) + D flwivy)

e€E(H)

= [g(vs) + g(vy) + g(vavy)] —{—Zi—i—Zi—i—p(TQ—i—r(s—i—S) +s— %) +6 ng

i=2 i=1
+2r% + 15+ gs + 4r.
Since [g(v,) + g(vy) + g(vvy)] = my,, we see that wt ;(F') is independent on the choosing of F'.
Now, let F” be a subgraph of G + H isomorphic to 2K, + H. F’ contains two non-adjacent
edges of E(G). Thus, wtf(F') = 2wt (F) — (ZUGV(H) )+ X cemm f(e)). So, wt¢(F") is
independent of F”. O

An example of the labeling depicted in the proof of Theorem 3.1 can be seen in Figure 2 where
a (K, 2K, + Cs)-sim-supermagic labeling of Sp 02 + Cj is presented.

Figure 2. A (Kj5,2K5 + C3)-sim-supermagic labeling of S22 + C3

The following corollary is a consequence of Theorem 3.1 with H = K.

Corollary 3.1. Let G be a Cs-free connected graph containing a Ps. If G is SEMT graph, then
G+ K is (C3, 2Ky + Ky)-sim-supermagic.

This corollary enlarges the classes of graphs known to be C5-supermagic; since up to date, only
the following join product graphs were known to be Cs-supermagic: P, + K, C, + K, K, + K1,
and nK, + K, where n > 3 [16, 21, 22, 25].
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4. Labelings for Cartesian Product Graphs

The Cartesian product of two graphs G and H, denoted by G x H, is a graph whose vertex
setis V(G) x V(H) = {(u,v)|u € V(G),u € V(H)} and for which two vertices (u,v;) and
(ug, v9) are adjacent if and only if either ujus € E(G) and vy = vy or v1v9 € E(H) and uy; = us.

In this section, we shall study (F, H )-sim-supermagic labeling for the Cartesian product of an
arbitrary graph GG with K5. The following notations are used or vertices and edges in G x K5 For
each z € V(G), let x and 2’ be the corresponding vertices in the two copies of G in G x K5, and
so zx’ € E(G x K3). For each zy € E(G), denote by xy and z'y’ the corresponding edges in the
two copies of G'in G X K.

We summarize the Cartesian product graphs G x K5 known to be H-magic in Table 3.

Table 3. G x K that are H-magic

Cartesian product H Conditions and Reference

G x Ky Cy G is Cy-free and SEMT of odd size [16]

P, x K, Cy m > 3[21]

mi , X Ko Cy m>2andn > 1[1]

S(Pyy1 X Ko) Uk(P, x Ks) | Cy s>1,k>1andn > 2[1]

m(P, x K3) C, m > 2and n > 2 [23]

P, x K, Com, n>4andm € [3, 7] + 1] [20]

P, x K, P, x Ky |n>4andm € [3,n — 1] [20]

G x K, Cy G is Cy-free, SEMT and a connected (p, ¢)-graph
where p or ¢ is odd [14]

(2G) x K Cy G is Cy-free, connected, bipartite (with
partite sets U and V') and G has a SEMT labeling
fsuchthat f(U) = [1, |U]|] [14]

In [20], Ngurah et al. constructed (P, x K5)-supermagic labelings of the ladder P,, x K, for
every m € [3,n — 1]. A more general result by Baca et al. [7] established the following sufficient
conditions for the Cartesian product G; X G5 to be (H x G3)-supermagic as stated in the following
theorem. On the other hand, in [14] and [16] it was proved that if GG is connected of odd order or
size, Cy-free, and SEMT, then G x K, admits a C4-supermagic labeling.

Theorem 4.1. [7] Let Gy be a graph of odd order py > 3 admitting an H-covering given by t
subgraphs isomorphic to H. If G5 is a graph of even order q; > 2 and odd size p, > 3 and the
graph G x Gy contains exactly t subgraphs isomorphic to H X G, then G1 X Gg is (H x G3)-
supermagic.

In the next theorem, we enlarge the classes of graphs known to be (P, X K3)-supermagic [20]
and extend sufficient conditions for the existence of a C'y-supermagic labeling of G x K5 [14, 16]
without considering a SEMT labeling of G. Furthermore, our result settles the remaining cases of
Theorem 4.1 for po = 1 and ¢, = 2.

Theorem 4.2. Let G be a Cy-free connected graph of odd order p > 5. If G admits a P,,-covering
for some m € [3,p — 1], then G x Ky is (Cy, P, X Ky)-sim-supermagic.
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Proof. Let p and ¢ be the order and the size of G, respectively. Consider A = [1,3p + 2¢| as
the set of integers used to label vertices and edges in G x P,. Now, partition A into three sets
W =1[1,2p,X = [2p+ 1,3p],and Y = [3p + 1,3p + 2¢|. Since p is odd, by Lemma 2.2, W
s (p, 1)-anti balanced with Y W; = 24 i + 3 |5 for every i € [1,p]. Now, since |Y| = 2g,
Lemma 2.1 ensures that Y is ¢-balanced with Y, = %(Bp + 1+ 3p+2q) =6p+2¢+ 1 for
each j € [1,¢q|.

Let g and & be bijections from V' (G) to [1, p] and from E(G) to [1, g, respectively. Next, define
atotal labeling f of G x K. Foreach x € V(G), label z and 2’ in G x K by the elements of W)
chosen so that f(z) < f(2') and define f(z2’) = 3p — g(x) + 1. For each xy € E(G), define f as
a bijection from {zy, 2'y'} to Yy, with f(zy) < f(2'y’). Hence, UUGV(GxKQ){f(v)} = W and
Ueer@xx,)1f(€)} = XUY. Consequently, f is a bijective function from V(G x K») U E(G X K»)
to A.

Since G is Cy-free, there are g subgraphs of G x K, isomorphic to Cy. Let F' be a subgraph
of G x Kj isomorphic to Cy. Then, V(F) = {z,2’,y,y'} and E(F) = {z2', yy', vy, 2y’ }, where
z,y € V(G) and zy € E(G). Therefore,

wtp(F) = fl@)+ f(@) + fy) + ) + @) + flyy') + flay) + F(@y)
= ZW —|—ZW +3p—g(x )+1~|—3p—g(y)+1+ZYh(my)
= 12p+6[8] +2¢+7,

which is independent of F'.

Moreover, as G admits a P,,-covering for some m € [3,p — 1], we have that G x K, admits
a (P, x Kj)-covering. Let H = xx5 . .. x,, be a subgraph of G isomorphic to P,,. For each H,
denote by H' = x|z}, ...z the corresponding subgraph in G’. Thus, for each H, we obtain H”
with V(H") = {x1, 29, ..., &xm, 2, 2%, ...,z }and E(H") = E(H)UE(H")U{zd' |z € V(H)}
as the corresponding subgraph in G x K, isomorphic to P, x K,. We can verify that there are
exactly ¢ subgraphs of G x K, isomorphic to P,, x Ks, where ¢ is the number of subgraphs
isomorphic to P, in G. Thus,

wty(H") = Z fo)y+ Y f Z fler+ > flo+ >, fw)

veV(H veV (H') ecE(H ecE(H’) veV (H)

= Z [f0)+ F)+ ) [f(e)+f(e’)]+ > Br—g) +1]
veV(H) ecE(H) veV (H)

= > [ZWg<v>]+ > [ZYh a} > Bp-g)+1]
veV(H ecE(H veV(H)

—SmL J +4m+9mp—|—2mq—6p 2qg — 1,
which is independent of H”. Hence, G X K is (Cy, P, X K3)-sim-supermagic. l

An example of the labeling in the proof of Theorem 4.2 is depicted in Figure 3.
In [20], Ngurah et al. showed that the ladder P, x K5 is C5,,-supermagic for every m &
3, ng + 1]. Then it is natural to ask for which graphs G, the Cartesian product G x K is
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11

29 21 35
28 /1N\22
15 20
14 4 8 5
30 27 23 34
16 19
7 10 2 12
31 26 24 33
3 9
17 25 18

Figure 3. A (Cy, P, x Ks)-sim-supermagic labeling of C7 x K5 for every m € [3,6].

(Chy, Coy)-sim-supermagic for some , y € [3, | 2| + 1]. We will answer this question in Theorem
4.3, but to do so, we need to recall the following notion that was first introduced by Simanjuntak et
al. [27]. An injective function f from V(G) onto the set {1,2,...,|V(G)|} is called (a, d)-edge-
antimagic vertex labeling ((a,d)-EAV) if the set of edge-weights {w(xy) = f(x) + f(y)|zy €
EG)}=A{a,a+d,...;a+ (|E(G)| — 1)d}, where a > 0 and d > 0 are two integers. A graph G
is said to be an (a, d)-edge-antimagic vertex ((a, d)-EAV) graph if G has an (a, d)-EAV labeling.
In [4], it was shown that a connected graph G that is not a tree has no (a, d)-EAV labeling for

d+1.

Lemma 4.1. [4] Let G be a connected graph that is not a tree. If G has an (a, d)-EAV labeling,
then d = 1.

The next theorem describes a construction of a (Cy,, Cy, )-sim-supermagic labeling of G' x K5
from an (a,2)-EAV labeling for some z,y € [3, ng + 1}. Due to Lemma 4.1, we restrict our
consideration to trees.

Theorem 4.3. Let m,n and p be positive integers where 3 < m < p. Let G be a tree on p vertices
where p > 5, such that G admits a P,,-covering for some m € [3, L%J + 1]. If G is an (a,2)-EAV
graph, then G x Kj is (Cay, Cay)-sim-supermagic for all x,y € [2,m].

Proof. Let p and ¢ be the order and the size of G, respectively. Let g : V(G) — {1,2,...,p} be
an (a, 2)-EAV labeling of G.

Since |V (G x K,)| = 2pand |E(G x K3)| = p+ 2q, the set of labels used to label vertices and
edges of G x K5 is A = [1,3p+ 2q]. Now, partition A into three sets W = [1, 2p], X = [2p+1, 3p]
and Y = [3p+ 1,3p + 2¢q|. By Lemma 2.3, W is (p, 2)-anti balanced with Y  W; = 2i + p for
every i € [1,p|. According to Lemma 2.3, Y is (¢, 2)-anti balanced with > Y; = 6p + ¢ + 2j for
each j € [1,¢q|.

Next, define a total labeling f of G x K. For each 2 € V(G), label the corresponding vertices
r and 2’ in G x K, by the elements of W, chosen so that f(x) < f(2'). For each z € V(G),
define f(zz') = 3p+ 1 — g(z). Now, for each xy € E(G), label the corresponding edges zy and
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2’y in G x K, by the elements of Y, where r = £(2¢+a— g(x) — g(y)) such that f(zy) < f(z'y/).
It follows easily that f depends on g. Then, f is a bijective function from V(G x K3) U E(G x Ks)
to A.

Since G admits a P,,-covering for some m € [3, %] 4+ 1], G x K, admits C5.-covering for
every z € [2,m]. Let H = x129...2, be a subgraph of (G isomorphic to P, for an arbitrary
z € [2,m]. For each H, denote by H "' = 22, ... 2/ the corresponding subgraph in G’. Thus,
for each H, we obtain H” as the corresponding subgraph in G x K, isomorphic to C5, where
V(H")=V(H)UV(H')and E(H") = E(H)U E(H') U {x2, x,2"}. We can verify that there
are exactly ¢ subgraphs of G x K5 isomorphic to Cs,, where ¢ is the number of subgraphs in G
isomorphic to P,. Thus,

wtf(H”) _ Z f(v Z f(v Z f(uv) Z f(uv) —|—f($1l’/1> —i—f(xzx;)

veV(H) veV (H') uweFE(H) uweFE(H')

= Z [f(v) 1+ Z (uwv) + fF(W'V)] +3p+1—g(z1) +3p+1—g(x.)
veV(H) weE(H)

- Z [Z Wg(”>] - Z {Z Y%(2q+ag(u)g(v)):| +6p+2 - g(a1) - g(z2)
veV(H) weE(H)

=Tzp+32q—3q+az—a+2,

which is independent of H”.
Therefore, G x K is (Cs,, Cyy)-sim-supermagic for all z,y € [2,m)]. O

An example of the labeling in Theorem 4.3 can be seen in Figure 4.

1L 53 2 99 3 97 4 99 5 19 6

18 17 16 15 14 13

28 27 26 25 24

7 8 9 10 11 12

Figure 4. A (Cy, Ca,,)-sim-supermagic labeling of Ps x K5 for m = 3 and 4

Note that the preceding theorem enlarges the classes of graphs known to be C',,-supermagic,
as stated in Table 3. For instance, since every path P, was shown to be (3,2)-EAV [27], an
immediate consequence of Theorem 4.3 is that the ladder P, x K is (Cy, Cs,,)-sim-supermagic
for every m € [3, [ 5] +1].

In [2], Baca and Barrientos described a connection between an «-labeling and an (a, 2)-EAV
labeling of graphs. An injective mapping f : V(G) — [0, |E(G)|] is said to be graceful labeling if
| f(z)— f(y)| are distinct for each zy € E(G). A graceful labeling f is called an a-labeling if there
exists an integer A such that for each edge xy either f(x) < A < f(y) or f(y) < X < f(z) [24].
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A graph G that admits an a-labeling is said to be an a-graph. From the definition of a-labeling, it
follows that an a-graph is necessarily bipartite.

Let { A, B} be the natural bipartition of the vertex set of an c-graph. Baca and Barrientos [2]
presented the following theorem.

Theorem 4.4. [2] A tree T is a (3, 2)-EAV graph if and only if T' is an a-graph and ||A|—|B|| < 1,
where { A, B} is the natural bipartition of the vertex set of T.

Theorem 4.3 together with Theorem 4.4 implies the relationship between an a-labeling of a
tree 7' and a (Cy, Cg)-sim-supermagic labeling of the Cartesian product 7" x K,. Let n > 2 be a
positive integer and let 7" be an a-tree and ||A| — | B|| < 1, where { A, B} is the natural bipartition
of the vertex set of 7T'. It is clear that 7" x K5 admits a Cs-covering and a Cg-covering only if 7" is
not isomorphic to a star.

Corollary 4.1. Let T' be an a-tree not isomorphic to a star on at least five vertices and let || A| —
|B|| < 1, where { A, B} is the natural bipartition of the vertex set of T. Then T x K is (Cy, Cg)-
sim-supermagic.

Figure 5 illustrates a (Cy, C)-sim-supermagic labeling of product graph Sz 101 X Ks.

Figure 5. A (C4, Cs)-sim-supermagic labeling of Sa 1 01 X Ks.

A perfect matching of a graph is a matching (i.e., an independent edge set) in which every
vertex of the graph is incident to exactly one edge of the matching. Brankovic et al. [8] posed the
following conjecture for a-trees.

Conjecture 1. /8] All trees with maximum degree three and a perfect matching have an a-labeling.

Consider a tree 1" with a perfect matching. Since 7' is bipartite, by a perfect matching in 7', we
have a natural bipartition of the vertex-set of 7', namely A and B, such that ||A| — |B|| < 1. As a
direct consequence of Corollary 4.1 and Conjecture 1, the following holds.

Theorem 4.5. Let T be a tree on at least five vertices that are not isomorphic to a star, with a
maximum degree three and containing a perfect matching. If Conjecture 1 is true, then T' X K is
(Cy, Cg)-sim-supermagic.
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Although all our results in this section are restricted to trees, the proof of Theorem 7 in [16]
implied that C,, x K3 is (Cy, Cy,,)-sim-supermagic for each odd n > 5 and m = 2. Thus, it is
interesting to seek conditions such that a Cartesian product of a non-tree graph G' with K5 admits
a (Cy, Cy, )-sim-supermagic labeling.
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