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Abstract

A graph G is distance antimagic if there is a bijection f : V (G) → {1, 2, . . . , |V (G)|} such
that for every pair of distinct vertices x and y applies w(x) ̸= w(y), where w(x) =

∑
z∈N(x) f(z)

and N(x) is the neighbourhood of x, i.e., the set of all vertices adjacent to x. It was conjectured
that a graph is distance antimagic if and only if each vertex in the graph has a distinct neigh-
bourhood. In this paper, we study the truth of the conjecture by posing sufficient conditions and
constructing distance antimagic product graphs; the products under consideration are join, corona,
and Cartesian.
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1. Introduction

Let G = G(V,E) be a finite, simple, and undirected graph with v vertices and e edges. In
1994, Vilfred introduced the concept of a distance magic graph in his Ph.D. thesis [10]. A graph G
is called distance magic if there exists a bijection f : V (G) → {1, 2, . . . , v} such that at any vertex
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x, the weight of x, ω(x) =
∑

y∈N(x) f(y) is constant, where N(x) is the open neighbourhood of
x, i.e., the set of vertices adjacent to x. In 2013, Kamatchi and Arumugam [7] introduced the
concept of a distance antimagic graph. A graph G is said to be distance antimagic if there is a
bijection f : V (G) → {1, 2, . . . , v} such that for every pair of distinct vertices x and y applies
w(x) ̸= w(y). In this case, the bijection f is called antimagic labeling of G. In the same paper,
Kamatchi and Arumugam conjectured the following.

Conjecture 1.1. [7] A graph G is distance antimagic if and only if G does not have two vertices
with the same neighbourhood.

In this paper, we study the truth of the conjecture for some product graphs. We pose suffi-
cient conditions such that the join product of an arbitrary graph with a complete graph is distance
antimagic (Section 2). We also prove that the corona product of two complete graphs is distance
antimagic and poses sufficient conditions for the corona product of two arbitrary graphs to be
distance antimagic (Section 3). To conclude, we provide sufficient conditions for the Cartesian
product of an arbitrary graph with a K2 to be distance antimagic and prove that the Cartesian
product of two complete graphs is distance antimagic (Section 4).

We start by providing the definitions and notations of graph products studied in this paper.

Definition 1.1. [9] The join product of G and H , denoted by G+H , is the graph G∪H together
with all the edges joining V (G) and V (H).

Definition 1.2. [3] The corona product of G and H , denoted by G⊙H , is the graph obtained by
taking a copy of G and |V (G)| copies of H and joining the i-th vertex of G to every vertex in the
i-th copy of H .

Definition 1.3. [6] The Cartesian product of G and H , denoted by G□H , is the graph with
V (G□H) = V (G)× V (H) and two vertices (u, u′) and (v, v′) are adjacent if and only if either
1. u = v and u′ is adjacent to v′ in H , or
2. u′ = v′ and u is adjacent to v in G.

Notice that throughout the paper we will use wG(x) as the weight of a vertex x in the graph G,
while w(x) is the weight of a vertex x in the product graph.

2. Distance Antimagic Labelings of Join Product Graphs

In their seminal paper, Kamatchi and Arumugam [7] proved that the wheel, Cn + K1, and
rK2 +K1 are distance antimagic. They also posed the following problem.

Problem 2.1. [7] If G is distance antimagic, is it true that the graph G + K1 and G + K2 are
distance antimagic?

In the following two theorems, we provide sufficient conditions such that the answer to the
previous problem is affirmative.

Theorem 2.1. Let G be a graph on n vertices with maximum degree ∆. If G = Kn or G is distance
antimagic with n ≥ ∆+ 1 +

⌊
1+

√
8∆+9
2

⌋
then G+K1 is also distance antimagic.
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Proof. If G = Kn, then G+K1 = Kn+1 which is obviously distance antimagic.
Now, consider G a distance antimagic graph with n ≥ ∆ + 1 +

⌊
1+

√
8∆+9
2

⌋
. Let g be the

distance antimagic labeling of G and V (K1) = {u}.
Define f : V (G+K1) → {1, 2, ..., n+ 1} with

f(x) =

{
g(x), for every x ∈ V (G),

n+ 1, for x = u.

Let x, y be two distinct vertices in G. Since wG(x) ̸= wG(y) then

wG(x) + n+ 1 ̸= wG(y) + n+ 1,

that is w(x) ̸= w(y).
Next, we will prove that w(x) ̸= w(u), for every x ∈ V (G). Note that

w(u) = 1 + 2 + 3 + ...+ n =
n(n+ 1)

2
.

Assume that there is x ∈ V (G) such that w(x) = w(u), then

wG(x) + n+ 1 =
n(n+ 1)

2

wG(x) = (n+ 1)(
n

2
− 1).

Since G is a graph with maximum degree ∆, then the weights of all vertices a bounded above by
the sum of ∆ largest labels.

wG(x) ≤ n+ (n− 1) + (n− 2) + ...+ (n−∆+ 1)

(n+ 1)(
n

2
− 1) ≤ n∆− ∆(∆− 1)

2
n2 − (1 + 2∆)n− 2 + ∆(∆− 1) ≤ 0.

Thus,

∆+
1−

√
8∆ + 9

2
≤ n ≤ ∆+

1 +
√
8∆ + 9

2
,

a contradiction, and so there is no x ∈ G such that w(x) = w(u).

Some examples of Theorem 2.1 are in the following.

Example 2.1. 1. For n ≥ 2, Kn +K1 is distance antimagic.
2. Let G be a distance antimagic disjoint union of paths. For n ≥ 6, G + K1 is distance

antimagic.
3. Let G be a 2-regular graph. For n ≥ 6, G+K1 is distance antimagic.

We obtain the following result using the same proof technique as in Theorem 2.1.
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Theorem 2.2. Let G be graph on n vertices with maximum degree ∆. If G ∼= Kn or G is distance
antimagic with n ≥ ∆ + 1 +

⌊
1+

√
8∆+17
2

⌋
, then G + K2

∼= (G + K1) + K1 is also distance
antimagic.

We have the following examples for the application of Theorem 2.2.

Example 2.2. 1. For n ≥ 2, Kn +K2 is distance antimagic.
2. Let G be a distance antimagic disjoint union of paths. For n ≥ 6, G + K2 is distance

antimagic.
3. Let G be a 2-regular graph. For n ≥ 6, G+K2 is distance antimagic.
4. Let G be a distance antimagic 3-regular graph. For n ≥ 7, G+K2 is distance antimagic.

Furthermore, the previous two theorems can be generalized inductively, and we obtain the
following.

Theorem 2.3. Let m be a positive integer. Let G be a graph on n vertices with maximum degree

∆. If G ∼= Kn or G is distance antimagic with n ≥ ∆ + 1 +

⌊
1+
√

8(∆+m)+1

2

⌋
, then G + Km is

also distance antimagic.

Proof. The proof will be by induction on m. For m = 1, the statement is true by Theorem 2.1.
Now, assume that the statement is true for m = p− 1, and we shall show that the statement is also
true for m = p.

If G = Kn, then G + Km = Kn+1 which is obviously distance antimagic. Thus consider G

as a distance antimagic graph with n ≥ ∆ + 1 +

⌊
1+
√

8(∆+p)+1

2

⌋
. Let g be a distance antimagic

labeling of G and V (Kp) = {u1, u2, . . . , up}. Define f : V (G + Kp) → {1, 2, . . . , n + p} with
f(x) = g(x) for x ∈ V (G) andf(ui) = n + i for i ∈ {1, 2, . . . , p}. For two distinct vertices x, y
in G, w(x) ̸= w(y) since wG(x) ̸= wG(y) and wG(x) + np + p(p+1)

2
̸= wG(y) + np + p(p+1)

2
. For

two distinct vertices ui, uj in Kp, it is clear that w(ui) ̸= w(uj).
Based on the induction hypothesis, w(x) ̸= w(ui), for every x ∈ V (G) and i ∈ {1, 2, . . . , p−

1}. The proof is complete if w(x) ̸= w(up), for every x ∈ V (G). We shall show this by using
contradiction. For the contrary, assume that there exists a vertex x in G such that w(x) = w(up).
This leads to

wG(x) + np+
p(p+ 1)

2
=

n(n+ 1)

2
+

p(p− 1)

2
+ n(p− 1)

wG(x) =
n2 − n− 2p

2
.

Since G has a maximum degree ∆, then

wG(x) ≤ n+ (n− 1) + . . .+ (n−∆+ 1)

n2 − n− 2p

2
≤ n∆− ∆(∆− 1)

2
n2 − (1 + 2∆)n− 2p+∆2 +∆ ≤ 0.
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∆+
1−

√
8(∆ + p) + 1

2
≤ n ≤ ∆+

1 +
√

8(∆ + p) + 1

2
,

a contradiction.

In the following, we can see examples of the application of Theorem 2.3.

Example 2.3. 1. For n ≥ 2, Kn +Km is distance antimagic.
2. Let G be a distance antimagic disjoint union of paths. For (n ≥ 7 and 4 ≤ m ≤ 7) or (n ≥ 8

and 8 ≤ m ≤ 12), G+Km is distance antimagic.
3. Let G be a 2-regular graph. For (n ≥ 7 and 4 ≤ m ≤ 7) or (n ≥ 8 and 8 ≤ m ≤ 12),

G+Km is distance antimagic.

Note that if G does not contain two vertices with the same neighborhood, then neither does
G + Km. Considering Conjecture 1.1, it is natural to suspect that the sufficient conditions in
Theorem 2.3 are not necessary, so we pose the following question.

Problem 2.2. Let m be a positive integer. Let G be a graph on n vertices with maximum degree

∆ and ∆ + 2 ≤ n ≤ ∆ +

⌊
1+
√

8(∆+m)+1

2

⌋
. If G is distance antimagic, is G +Km also distance

antimagic?

3. Distance Antimagic Labelings of Corona Product Graphs

In [7], Kamatchi and Arumugam proved that the G⊙K1 is distance antimagic for arbitrary graf
G. Thus G ⊙Kn is distance antimagic if and only if n = 1 [8]. Other results for corona product
graphs are sufficient conditions for K1⊙G, K2⊙G, G⊙P2, and P2⊙G to be distance antimagic
[8].

Our first result for corona product graphs is constructing a distance antimagic labeling for the
corona product of two complete graphs. To do so, we shall utilize the elements of the following
matrix.

Definition 3.1. Let m,n be integers with odd m. Define matrix A as follows:

A = [ai,j] =



1 2 3 . . . n− 1 n
2n 2n− 1 2n− 2 . . . n+ 2 n+ 1

2n+ 1 2n+ 2 2n+ 3 . . . 3n− 1 3n
. . . . . .
. . . . . .
. . . . . .

n(m+ 1) n(m+ 1)− 1 n(m+ 1)− 2 . . . nm+ 2 nm+ 1


Notice that the sum of each column in A is equal to (m+1)(nm+n+1)

(2)
.

Theorem 3.1. If n and m are integers with odd m, then Kn ⊙Km is distance antimagic.
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Proof. Let V (Kn ⊙Km) = {v1, v2, . . . , vn} ∪ {vi,j|i = 1, 2, . . . , n, j = 1, 2, . . . ,m} where {v1,
v2, . . . , vn} = V (Kn) and E(Kn ⊙ Km) = E(Kn) ∪ {vivi,j|i = 1, 2, . . . , n; j = 1, 2, . . . ,m} ∪
{vi,avi,b|i = 1, 2, . . . , n; a, b = 1, 2, . . . ,m; a ̸= b}.

Define f : V (Kn ⊙ Km) → {1, 2, . . . n(m + 1)} with f(vi) = a1,i and f(vi,j) = aj+1,i for
i = 1, 2, . . . , n.

Since the sum of each column in A is (m+1)(nm+n+1)
2

, then w(vi) =
n(n+1)

2
+ (m+1)(nm+n+1)

2
−

2f(vi), and so w(vi) ̸= w(vj). Additionally, since w(vi,j) =
(m+1)(nm+n+1)

2
−f(vi,j) and f(va,b) ̸=

f(vc,d) for every va,b ̸= vc,d, then (m+1)(nm+n+1)
2

−f(va,b) ̸= (m+1)(nm+n+1)
2

−f(vc,d), or w(va,b) ̸=
w(vc,d).

Next, we will prove that w(vi) ̸= w(va,b) for every vi, va,b. Denote by α = min{w(vi)} =
n(n+1)

2
+ (m+1)(nm+n+1)

2
− 2f(vi)− 2n = and β = max{w(va,b)} = (m+1)(nm+n+1)

2
− (n+1). We

shall prove that α > β. For the contrary, suppose that β ≥ α. Thus,

(m+ 1)(nm+ n+ 1)

2
− (n+ 1) ≥ n(n+ 1)

2
+

(m+ 1)(nm+ n+ 1)

2
− 2n, or

1 >
(n+ 1)

2
,

a contradiction with n ≥ 1. This completes the proof.

Theorem 3.1 only provides distance antimagic labelings Kn ⊙Km only when m is odd, so we
ask the following question.

Problem 3.1. Is Kn ⊙Km a distance antimagic graph for even m?

In [5], Handa et al. provided sufficient conditions for the corona product of arbitrary two graphs
to be distance antimagic, as stated in the following theorem. One condition is for one of the graphs
to be arbitrarily distance antimagic.

For a bijection f : V (G) → {1, 2, . . . , n} and a positive integer k, define a bijection fk :
V (G) → {k + 1, k + 2, . . . , k + n} by fk(x) = f(x) + k. A graph G of order n is said to be
arbitrarily distance antimagic if there exists a bijection f : V (G) → {1, 2, . . . , n} such that for
any k ≥ 0, wfk(x) ̸= wfk(y) for any two distinct vertices x and y. To conclude this section, we
present Theorem 3.3 that provides other sufficient conditions for the corona product of arbitrary
two graphs to be distance antimagic.

Theorem 3.2. [5] Suppose that G1 is a distance magic graph of order n1 with magic constant k and
G2 is an r-regular graph of order n2 with an arbitrarily distance antimagic labeling f . Let K be
the maximum weight of a vertex in G2 under f . If k+n2

2
(n2+2n1+1) > n1r(1+

(n1−1)n2

n1
)+(K+n1)

then G1 ⊙G2 is distance antimagic.

We shall utilize the following definition that was introduced in [8]. Although originally defined
as monoton, in this paper, we use the notion of monotonic increasing to avoid confusion with
monotonic decreasing, which will be used in the next section.

Definition 3.2. Let G be a graph on n vertices. G is said to be monotonic increasing if there
exists a bijection g : V (G) → {1, 2, . . . , n} such that wG(x) ≥ wG(y) for every g(x) > g(y).
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Figure 1. An example of a monotonic increasing graph. The weights of the vertices are written in brackets.

Theorem 3.3. Let n,m, r be integers with n ≥ 2. Let G be a graph on n vertices that is monotonic
increasing under a bijection g and let H be an r-regular graph on m vertices, which is distance
antimagic. Denote by k and K the minimum and maximum weight of a vertex in G under the
bijection g, respectively. If

m > rn− r +
−1 +

√
4r2n2 − 8r2n+ 4rn+ 8n+ 8r − 8k + 1

2
or

r + 1 ≤ m <
−2n− 1 +

√
4n2 + 20n+ 7 + (8− 16n)K + 16rn2 + 8r2n− 4r2 − 4r

4n− 2
,

then G⊙H is distance antimagic.

Proof. Let V (G) = {v1, v2, . . . , vn}, V (H) = {u1, u2, . . . , um}, and h be a distance antimagic
labeling on H .

Denote by V (G ⊙ H) = V (G) ∪ {vi,j|i = 1, 2, . . . , n, j = 1, 2, . . . ,m} and E(G ⊙ H) =
E(G)∪{(vi, vi,j)|i = 1, 2, . . . , n; j = 1, 2, . . . ,m}∪{(vi,j, vi,k)|i = 1, 2, . . . , n; j, k where (uj, uk) ∈
E(H)}. Define f : V (G ⊙ H) → {1, 2, . . . n(m + 1)} by f(vi) = g(vi) and f(vi,j) = n + (i −
1)m+ h(uj) for i = 1, 2, . . . , n and j = 1, 2, . . . ,m.

Due to the fact that (vi, vi,j) ∈ E(G⊙H), then w(vi) = wG(vi)+m(n+(i− 1)m)+ m(m+1)
2

.
Since g is monotonic increasing and m(n+(i−1)m)+ m(m+1)

2
is distinct for every i then w(v1) <

w(v2) < . . . < w(vn). The fact that for any distinct vertices x, y in H , wH(x) ̸= wH(y), leads to
r(n+ (i− 1)m) + wH(x) + i ̸= r(n+ (i− 1)m) + wH(y) + i or w(vi,x) ̸= w(vi,y).

Denote by xmin and xmax the vertices in H with minimum and maximum weight under the
labeling h, respectively. Thus, it is clear that wH(xmax)−wH(xmin) ≤ rm− r2 < rm+1, and so

wH(xmax)− rm < wH(xmin) + 1,

r(n+ (i− 1)m) + wH(xmax) + i < r(n+ (i)m) + wH(xmin) + i+ 1, for every i

max{w(vi,j)} < min{w(vi+1,j)}, for every i,

which means w(va,b) ̸= w(vc,d) for any two distinct vertices va,b, vc,d, 1 ≤ a ≤ c ≤ n and
1 ≤ b < d ≤ m.

Lastly, we will prove that w(vi) ̸= w(va,b), for any i, a ∈ {1, 2, . . . , n} and b ∈ {1, 2, . . . ,m}.
We consider the following two cases.

Case 1. m > rn− r + −1+
√
4r2n2−8r2n+4rn+8n+8r−8k+1

2
.

Denote by α = min{w(vi)} = w(v1) = wG(v1) + mn + m(m+1)
2

= k + mn + m(m+1)
2

and
by β = max{w(va,b)|a = 1, 2, . . . , n, b = 1, 2, . . . ,m} = max{w(vn,b)|b = 1, 2, . . . ,m} ≤
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r(n + (n − 1)m) + n + nm − r(r−1)
2

. We will prove that α > β. For the contrary, assume that
α ≤ β, and so

2k +m2 +m+ ≤ 2rn+ 2rnm− 2rm+ 2n− r2 + r, or

m2 + (1− 2rn+ 2r)m+ 2k − 2rn− 2n+ r2 − r ≤ 0.

Thus, rn− r + −1−
√
4r2n2−8r2n+4rn+8n+8r−8k+1

2
≤ m ≤ rn− r+ −1+

√
4r2n2−8r2n+4rn+8n+8r−8k+1

2
.

Since

rn− r +
−1−

√
4r2n2 − 8r2n+ 4rn+ 8n+ 8r − 8k + 1

2
< r + 1,

then r + 1 ≤ m ≤ rn− r + −1+
√
4r2n2−8r2n+4rn+8n+8r−k+1

2
, a contradiction.

Case 2. r + 1 ≤ m <
−2n−1+

√
4n2+20n+7+(8−16n)K+16rn2+8r2n−4r2−4r

4n−2
.

Denote by θ = max{w(vi)|i = 1, 2, . . . , n} = w(vn) = K +m(n+ (n− 1)m) + m(m+1)
2

and γ =

min{w(va,b)|a = 1, 2, . . . , n, b = 1, 2, . . . ,m} = min{w(v1,b)|b = 1, 2, . . . ,m} ≥ rn+1+ r(r+1)
2

.
We will show that θ < γ by contradiction, which leads to the following.

K +m(n+ (n− 1)m) +
m(m+ 1)

2
≥ rn+ 1 +

r(r + 1)

2
, or

(2n− 1)m2 + (2n+ 1)m− 2rn+ 2K − 2− r2 − r ≥ 0.

Thus,

m ≤
−2n− 1−

√
4n2 + 20n+ 7 + (8− 16n)K + 16rn2 + 8r2n− 4r2 − 4r

4n− 2
or

m ≥
−2n− 1 +

√
4n2 + 20n+ 7 + (8− 16n)K + 16rn2 + 8r2n− 4r2 − 4r

4n− 2
.

Since −2n−1−
√

4n2+20n+7+(8−16n)K+16rn2+8r2n−4r2−4r

4n−2
< 0 then

m ≥
−2n− 1 +

√
4n2 + 20n+ 7 + (8− 16n)K + 16rn2 + 8r2n− 4r2 − 4r

4n− 2
,

a contradiction.

The following are some examples of corona product graphs that are distance antimagic due to
Theorem 3.3.

Example 3.1. Let G be a 2-regular graph with order m.

1. For m ≥ 12, C4 ⊙G is distance antimagic.
2. For m ≥ 8, P3 ⊙G is distance antimagic.
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4. Distance Antimagic Labelings of Cartesian Product Graphs

In this last section, we present our results for Cartesian product graphs. Recall that Kamatchi
and Arumugam [7] asked the following question.

Problem 4.1. [7] If G is distance antimagic, is it true that the Cartesian product G□K2 is distance
antimagic?

Partial answers for the problem were given in [1] and [8], where it was proved that Pn□K2,
for n ̸= 2, Cn□K2, and Kn,n□K2, for n ̸= 1, are distance antimagic. We shall provide a more
general answer to the question in Theorem 4.1. To do so, we shall utilize the following definition
of a monotonic decreasing graph.

Definition 4.1. Let G be a graph on n vertices. G is said to be monotonic decreasing graph if there
exists a bijection g : V (G) → {1, 2, . . . , n} such that wG(x) ≥ wG(y) for every g(x) < g(y).

An obvious example of a monotonic decreasing graph is the complete graph Kn that is mono-
tonic decreasing for any bijection on Kn.

Theorem 4.1. Let n, r be integers with r >
√
2n− 1. Let G be an r-regular graph on n vertices.

If G is monotonic decreasing then G□K2 is distance antimagic.

Proof. Let g be a bijection from V (G) to {1, 2, . . . , n} with g(vi) = i for every i = 1, 2, . . . , n such
that wG(v1) ≥ wG(v2) ≥ . . . ≥ wG(vn). Denote by V (G□K2) = {vi|1 ≤ i ≤ n}∪{v′i|1 ≤ i ≤ n}
and E(G□K2) = E(G)∪{(vi, v′i)|1 ≤ i ≤ n}∪ {(v′i, v′j)|1 ≤ i < j ≤ n where (vi, vj) ∈ E(G)}.
Define a bijection f : V (G□K2) → {1, 2, . . . , 2n} with f(vi) = g(vi) = i and f(v′i) = 2n+1− i.
It is clear that, w(vi) = wG(vi) + f(v′i) = wG(vi) + 2n+ 1− i and

w(v′i) =
∑

(v′i,x)∈G□K2

f(x) =
∑

(vi,vj)∈V (G)

f(v′j) + f(vi) = r(2n+ 1)− wG(vi) + i.

Since wG(vi) ≥ wG(vi+1), then wG(vi) + 2n + 1 − i > wG(vi+1) + 2n + 1 − (i + 1), or
w(vi) > w(vi+1). Similarly, r(2n + 1) − wG(vi) + i < r(2n + 1) − wG(vi+1) + i + 1, or
w(v′i) < w(v′i+1), for 1 ≤ i ≤ n− 1.

To complete the proof, we will show that w(vi) ̸= w(v′j) for i ̸= j. For the contrary, assume
that there exist i ̸= j such that w(vi) = w(v′j). Thus,

wG(vi) + 2n+ 1− i = r(2n+ 1)− wG(vj) + j

wG(vi) + wG(vj) = r(2n+ 1)− (2n+ 1) + i+ j = 2nr + r − 2n− 1 + i+ j.

Since wG(vi) + wG(vj) ≤ 2nr − r2 + r, then

2nr + r − 2n− 1 + i+ j ≤ 2nr − r2 + r

r2 − 2n− 1 + (i+ j) ≤ 0.

Due to the fact that 2 ≤ i+ j, we have r2 − 2n+ 1 ≤ 0, or r ≤
√
2n− 1, a contradiction.

119



www.ejgta.org

Distance antimagic labelings of product graphs | R.Y. Wulandari and R. Simanjuntak

An example of the application of the previous theorem is presented in the following.

Example 4.1. For n ≥ 4, Kn□K2 is distance antimagic.

Note that the sufficient conditions in Theorem 4.1 are not necessary as it has been shown that
Cn□K2 is distance antimagic, although the cycle Cn is not monotonic decreasing. Therefore it is
natural to ask the following.

Problem 4.2. Find necessary and sufficient conditions for G such that G□K2 is distance an-
timagic.

Other results for the Cartesian product graphs are presented in [8] and [2], where it was proved
that Pm□K3 is distance antimagic, for m ≥ 1, and Cm□K3 is distance antimagic, for any odd
integer m ≥ 3. There is also a result for the Cartesian product of two complete graphs of the same
order as presented in the following theorem. We conclude by generalizing this result in Theorem
4.3.

Theorem 4.2. [2] Kn□Kn is distance antimagic if and only if n ̸= 2.

Theorem 4.3. For m,n positive integers, Kn□Km is distance antimagic if and only if m ̸= 2 and
n ̸= 2.

Proof. For n = 1 or m = 1, it is clear that Kn□Km is distance antimagic. For n ≥ 4, Kn□K2

is distance antimagic (Example 4.1). Now, consider n ≥ 3 and m ≥ 3. Let V (Kn□Km) =
{vi,j|1 ≤ i ≤ m, 1 ≤ j ≤ n} and E(Kn□Km) = {(vi,j, vi,k)|1 ≤ i ≤ m; 1 ≤ j, k ≤ n, j ̸=
k} ∪ {(vi,j, vh,j)|1 ≤ i, h ≤ m; i ̸= h; 1 ≤ j ≤ n}. Define f : V (Kn□Km) → {1, 2, . . . , nm}
with f(vi,j) = (i− 1)n+ j, for odd i and f(vi,j) = in+ 1− j, for even i.
Case 1. For even m.

m∑
h=1

= f(v1,j) + f(v2,j) + . . .+ f(vm,j)

= j + (2n+ 1− j) + (2n+ j) + (4n+ 1− j) + . . .+ (m− 2)n+ j +mn+ 1− j

=
m

2
(mn+ 1).

Thus the vertex weights are as follows.
For odd i,

w(vi,j) =
∑
k ̸=j

f(vi,k) +
∑
h̸=i

f(vh,j)

=
n∑

k=1

f(vi,k)− f(vi,j) +
m∑

h=1

f(vh,j)− f(vi,j)

= n((i− 1)n) +
n(n+ 1)

2
+

m

2
(mn+ 1)− 2((i− 1)n+ j).
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For even i,

w(vi,j) =
∑
k ̸=j

f(vi,k) +
∑
h̸=i

f(vh,j)

=
n∑

k=1

f(vi,k)− f(vi,j) +
m∑

h=1

f(vh,j)− f(vi,j)

= n(in+ 1)− n(n+ 1)

2
+

m

2
(mn+ 1)− 2(in+ 1− j).

Therefore, it is clear that w(vi,j) ̸= w(vh,k) for every distint i, h with the same parity.
Next, we will prove that w(vi,j) ̸= w(vh,k) for every 1 ≤ i, h ≤ m and 1 ≤ j, k ≤ n with

(i, j) ̸= (h, k).
Case 1.1 For n = 3.

Suppose that there are (i, j) ̸= (h, k) such that w(vi,j) = w(vh,k), then i, h must be of a different
parity. WLOG, suppose that i is odd and h is even, then

n((i− 1)n) +
n(n+ 1)

2
− 2((i− 1)n+ j) = n(hn+ 1)− n(n+ 1)

2
− 2(hn+ 1− k),

3(i− h− 1) + 11 = 2j + 2k.

Because i is odd and h is even then i− h− 1 is even. Since 3(i− h− 1) + 11 is odd, then j + k is
not an integer, a contradiction.

Case 1.2 For n ≥ 4.
Note that max{w(vi,j} −min{w(vi+1,j} = −n2 + 4n− 2. Since n ≥ 4, then −n2 + 4n− 2 < 0,
and so max{w(vi,j} −min{w(vi+1,j} < 0.

Case 2. For odd m.
Note that,

m∑
h=1

f(vh,j) = f(v1,j) + f(v2,j) + . . .+ f(vm,j)

= j + (2n+ 1− j) + (2n+ j) + (4n+ 1− j) + . . .+ (m− 1)n+ 1−
j +mn+ j

=
m− 2

2
(mn− n+ 1) +mn+ j.

Then the vertex weights are as follows.
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For odd i,

w(vi,j) =
∑
k ̸=j

f(vi,k) +
∑
h̸=i

f(vh,j)

=
n∑

k=1

f(vi,k)− f(vi,j) +
m∑

h=1

f(vh,j)− f(vi,j)

= n((i− 1)n) +
n(n+ 1)

2
+

m− 2

2
(mn− n+ 1) +mn+ j − 2f(vi,j)

= (n− 2)(i− 1)n+
n(n+ 1)

2
+

m− 2

2
(mn− n+ 1) +mn− j.

For even i,

w(vi,j) =
∑
k ̸=j

f(vi,k) +
∑
h̸=i

f(vh,j)

=
n∑

k=1

f(vi,k)− f(vi,j) +
m∑

h=1

f(vh,j)− f(vi,j)

= n(in+ 1)− n(n+ 1)

2
+

m− 2

2
(mn− n+ 1) +mn+ j − 2f(vi,j)

= (n− 2)(in+ 1)− n(n+ 1)

2
+

m− 2

2
(mn− n+ 1) +mn+ 3j.

Therefore w(vi,j) ̸= w(vh,k) for every i ̸= h with the same parity. Next, we will prove that
w(vi,j) ̸= w(vh,k) for every 1 ≤ i, h ≤ m and 1 ≤ j, k ≤ n where (i, j) ̸= (h, k).
Note that max{w(vi,j} −min{w(vi+1,j} = −n2 − 2n− 6. Since n ≥ 3, then −n2 + 4n− 2 < 0,
and so max{w(vi,j} −min{w(vi+1,j} < 0. This complete the proof.
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