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Abstract

A rainbow path in an edge-colored graph G is a path that every two edges have different colors.
The minimum number of colors needed to color the edges of G such that every two distinct vertices
are connected by a rainbow path is called the rainbow connection number of G. Let (Γ, ∗) be a
finite group with TΓ = {t ∈ Γ|t ̸= t−1}. The inverse graph of Γ, denoted by IG(Γ), is a graph
whose vertex set is Γ and two distinct vertices, u and v, are adjacent if u ∗ v ∈ TΓ or v ∗ u ∈ TΓ.
In this paper, we determine the necessary and sufficient conditions for the inverse graph of a finite
group to be connected. We show that the inverse graph of a finite group is connected if and only if
the group has a set of generators whose all elements are non-self-invertible. We also determine the
rainbow connection numbers of the inverse graphs of finite groups.
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1. Introduction

The concept of the rainbow connection number of a graph was introduced by Chartrand et al.
in 2008 [9]. This concept has attracted the attention of many researchers to study. For a graph G,
the set of vertices of G is denoted by V (G), and the set of edges of G is denoted by E(G). An edge
coloring of a graph G is a mapping from E(G) to a set of a finite number of colors. In this paper,
we use edge colorings that allow adjacent edges to have the same color. A path of an edge-colored
graph is called a rainbow path if every two edges of the path have different colors. If every two
distinct vertices in V (G) are connected by a rainbow path, then G is called a rainbow-connected
graph, and its edge coloring is called rainbow coloring. If a rainbow coloring uses k colors, it
is called the rainbow k-coloring. The minimum number of colors needed to color the edges of
G such that G is rainbow-connected is called the rainbow connection number of G, denoted by
rc(G). A rainbow rc(G)-coloring of a graph G is called a minimum rainbow coloring of G.

Some properties of the rainbow connection number of a graph have been determined in [9]. For
a connected graph G, rc(G) = 1 if and only if G is a complete graph. If diam(G) is the diameter
of G and p is the number of edges of G, then diam(G) ≤ rc(G) ≤ p. If H is a connected spanning
subgraph of G, then rc(G) ≤ rc(H).

Several researchers have investigated the rainbow connection numbers of some graphs. Char-
trand et al. [9] studied the rainbow connection number of complete graphs, trees, wheel graphs,
bipartite graphs, and multipartite graphs. Li et al. [16] studied the rainbow connection numbers of
line graphs. Fitriani et al. investigated the rainbow connection number of amalgamation of some
graphs [13] and comb products of graphs [14].

The rainbow connection number of a graph can be used to measure the security of a commu-
nication or computer network modeled by the graph [19]. Among various types of graphs used
to model networks, there are graphs of finite groups. The graphs of finite groups have attracted
the attention of some researchers in the last decades. Besides modeling networks, through graphs
of finite groups, we can study the algebraic structures of groups by using combinatorial proper-
ties of graphs. Some of the graphs of finite groups are Cayley graphs [7], commuting graphs [5],
non-commuting graphs [2], power graphs of finite groups [8], and enhanced power graphs [1].

One of the graphs of finite groups used to model networks is Cayley graph. Akers et al. [3] used
Cayley graphs for designing and analyzing symmetric interconnection networks. They also showed
that some symmetry graphs which have been used as processor/communication interconnection
networks, such as the ring, n-dimensional Boolean hypercube, and cube-connected cycles, can be
represented by Cayley graph models. These facts motivated some researchers to study the rainbow
connection numbers of Cayley graphs to measure the security of the networks modeled by the
graphs. Several studies related to the rainbow connection numbers of Cayley graphs have been
conducted by Li et al. [15], Lu et al. [17], Ma et al. [19], and Bau et al. [6]. Motivated by
these studies, some researchers investigated the rainbow connection numbers of the other graphs
of finite groups, such as the rainbow connection number of the power graph of a finite group
[18], the rainbow connectivity of the non-commuting graph of a finite group [20], and the rainbow
connection number of the enhanced power graph [12].

In 2017, Alfuraidan and Zakariya [4] introduced a new graph of a finite group called the inverse
graph of a finite group. Given a finite group (Γ, ∗) with TΓ = {t ∈ Γ|t ̸= t−1}. The inverse graph
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of (Γ, ∗), denoted by IG(Γ), is a graph whose vertices are the elements of Γ such that two distinct
vertices u and v are adjacent if and only if u ∗ v ∈ TΓ or v ∗ u ∈ TΓ. Alfuraidan and Zakariya have
studied some properties of IG(Γ) [4]. If (Γ, ∗) is a finite group with TΓ ̸= ∅, then every element
of TΓ is adjacent to the identity element of Γ. The set E(IG(Γ)) is an empty set if and only if TΓ

is an empty set. They also proved that there is no inverse graph that is complete for any nontrivial
finite group.

In the context of networks, one of the interconnection networks, which is not a complete graph,
is a partial mesh network, an interconnection network whose not all nodes are connected directly to
each other. Since a connected inverse graph of a nontrivial finite group is not a complete graph, we
can construct a partial mesh network based on the graph. Hence, determining the rainbow connec-
tion number of a connected inverse graph of a finite group is the same as determining the rainbow
connection number of the partial mesh network formed based on the graph. Therefore, research
on the rainbow connection number of the inverse graphs of finite groups should be meaningful.
Figure 1 shows an example of a partial mesh network, which is also the inverse graph of group Z6.

Figure 1. An example of a partial mesh network

Our research continues the research conducted by Alfuraidan and Zakariya. Alfuraidan and
Zakariya [4] proved that if the group is abelian, then the inverse graph of the group is connected.
In this research, we determine the necessary and sufficient conditions for the inverse graph of a
finite group to be connected. We also obtain that if the inverse graph of a finite group is connected,
then the group has a minimal set of generators whose all members are non-self-invertible. We also
investigate the rainbow connection numbers of the inverse graph of finite groups.

This paper is organized as follows. In Section 2, we present some definitions and properties
in Graph Theory and Group Theory that will be used to obtain the main results. In Section 3,
we discuss the necessary and sufficient conditions for the inverse graph of a finite group to be
connected. We also discuss a property of a minimal set of generators of a group whose inverse
graph is connected and some families of groups whose inverse graphs are connected. In section
4, we discuss the rainbow connection numbers of the inverse graphs of finite groups. In the last
section, we give some conclusions.
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2. Preliminaries

This section presents some definitions and properties in Group Theory and Graph Theory that
will be useful in the next sections.

2.1. Some definitions and properties in group theory
Throughout the remaining sections, we refer to [11] for definitions and notations in Group

Theory that are not described here. Let (Γ, ∗) be a finite group, where Γ is the set of all elements
of the group, and ∗ is the binary operation of the group. The order of the group (Γ, ∗), denoted by
|Γ|, is the number of elements of Γ. If |Γ| is finite, then (Γ, ∗) is called a finite group. For x ∈ Γ,
the product x ∗ x ∗ · · · ∗ x (n terms) is denoted by xn. The order of x ∈ Γ, denoted by |x|, is the
smallest positive integer n such that xn = e. According to Lagrange’s Theorem, if (Γ, ∗) is a finite
group and (H, ∗) is a subgroup of (Γ, ∗), then the order of (H, ∗) divides the order of (Γ, ∗). The
following theorem is a consequence of Lagrange’s Theorem.

Theorem 2.1. [11] In a finite group, the order of a group element divides the order of its group.

A subset A of elements of a group (Γ, ∗) is called a set of generators of (Γ, ∗) if every element
of Γ can be expressed as a (finite) product of some elements of A and their inverses. If A does not
contain any other set of generators of (Γ, ∗), then A is called a minimal set of generators of (Γ, ∗).

For a group (Γ, ∗), we define SΓ = {s ∈ Γ|s = s−1} and TΓ = {t ∈ Γ|t ̸= t−1}. It is clear that
SΓ ∩ TΓ = ∅ and SΓ ∪ TΓ = Γ. According to the definition of TΓ, if an element t is in TΓ, then
t−1 is also in TΓ. Thus, |TΓ| is even. In the remaining sections, the group notation (Γ, ∗) will be
written as Γ for simplicity.

2.2. Some definitions and properties in graph theory
All graphs discussed in this paper are simple, undirected, and nontrivial. Throughout the re-

maining sections, we refer to [10] for definitions and notations in Graph Theory that are not de-
scribed here. A path is a non-empty graph having the set of all vertices V = {x0, x1, . . . , xk} and
the set of all edges E = {ϵ1, ϵ2, . . . , ϵk}, where ϵi = xi−1xi and the xi are all distinct. The length
of a path is the number of edges in the path. A graph G is called a connected graph if any two of
its vertices are linked by a path in G. The distance of two vertices x and y in a graph G, denoted
by dG(x, y), is the length of the shortest path in G that connects x and y. The greatest distance
between any two vertices in G is called the diameter of G, denoted by diam(G).

3. Connected Inverse Graph of a Finite Group

In this section, we discuss finite groups whose inverse graphs are connected. We begin with a
finite group Γ of odd order with TΓ ̸= ∅.

Theorem 3.1. Let Γ be a group of finite order with TΓ ̸= ∅. If the order of Γ is odd, then IG(Γ) is
a connected graph.
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Proof. Let Γ be a finite group of odd order. Since the order of a group element divides the order
of the group, Γ does not have any non-identity element of order 2. Hence, the only member of SΓ

is e, the identity element of Γ. For every t ∈ TΓ, we get e ∗ t = t. Hence, e is adjacent to every
t ∈ TΓ in IG(Γ). Thus, IG(Γ) is a connected graph.

It is known that not all finite groups have an odd order. Therefore, we need to determine the
necessary and sufficient conditions for an inverse graph of a finite group to be connected. For a
finite group Γ with TΓ ̸= ∅, according to the definition of IG(Γ), two elements g1, g2 ∈ Γ are
adjacent in IG(Γ) if and only if g1 ∗ g2 ∈ TΓ or g2 ∗ g1 ∈ TΓ. In the case of g1 ∗ g2 ∈ TΓ, there
exists an element t1 ∈ TΓ such that g1 ∗ g2 = t1. Let r1 be the inverse of t1. Then, g1 ∗ g2 = t1 if
and only if r1 ∗ g1 = g−1

2 . In the case of g2 ∗ g1 ∈ TΓ, there exists an element t2 ∈ TΓ such that
g2 ∗ g1 = t2. Let r2 be the inverse of t2. Then, g2 ∗ g1 = t2 if and only if g1 ∗ r2 = g−1

2 . Thus,
two elements g1, g2 ∈ Γ are adjacent in IG(Γ) if and only if r1 ∗ g1 = g−1

2 or g1 ∗ r2 = g−1
2 for

r1, r2 ∈ TΓ. We use this fact to determine the necessary and sufficient conditions for an inverse
graph of a finite group to be connected.

Theorem 3.2. Let Γ be a group of finite order with TΓ ̸= ∅. The inverse graph IG(Γ) is connected
if and only if TΓ is a set of generators of Γ.

Proof. Let Γ be a group of finite order with TΓ ̸= ∅. Recall that every t in TΓ is adjacent to the
identity element e. For any s in SΓ, we get e ∗ s = s ∗ e = s. Hence, each s in SΓ is not adjacent
to e.

Let the inverse graph IG(Γ) be a connected graph. In order to prove that TΓ is a set of genera-
tors of Γ, it is enough to show that each s ∈ SΓ can be expressed as a product of some elements of
TΓ. The identity element e can be expressed as e = t∗ t−1, with t ∈ Γ. Since t−1 is also in TΓ, then
e is a product of elements of TΓ. Since IG(Γ) is a connected graph, there is a path connecting e to
every s ∈ SΓ \ {e}. Choose any s ∈ SΓ \ {e}. Let the path from e to s is eg1g2 . . . gm−1gms, with
m ≥ 1. Because e is adjacent to g1, we get e∗g1 ∈ TΓ or g1∗e ∈ TΓ. Since e∗g1 = g1∗e = g1, we
get g1 ∈ TΓ. Next, we use induction to show that if gi is a product of some elements of TΓ and gi+1

is adjacent to gi, then gi+1 is also a product of some elements of TΓ for every i ∈ {1, 2, . . . ,m−1}.
Let gi be a product of some elements of TΓ and gi+1 be adjacent to gi. Since gi is adjacent to gi+1,
gi ∗ gi+1 ∈ TΓ or gi+1 ∗ gi ∈ TΓ. In the case of gi ∗ gi+1 ∈ TΓ, there exists an element ri ∈ TΓ

such that gi ∗ gi+1 = ri. Hence, gi+1 = g−1
i ∗ ri. In the case of gi+1 ∗ gi ∈ TΓ, there exists an

element ti ∈ TΓ such that gi+1 ∗ gi = ti. Hence, gi+1 = ti ∗ g−1
i . Because gi is a product of

some elements of TΓ, g−1
i is also a product of some elements of TΓ. Therefore, we get that gi+1

is a product of some elements of TΓ. We conclude that gi is a product of some elements of TΓ for
every i ∈ {1, 2, . . . ,m}. Because gm is adjacent to s, gm ∗ s ∈ TΓ or s ∗ gm ∈ TΓ. In the case of
gm ∗ s ∈ TΓ, there exists an element rm ∈ TΓ such that gm ∗ s = rm. Hence, s = g−1

m ∗ rm. In the
case of s ∗ gm ∈ TΓ, there exists an element tm ∈ TΓ such that s ∗ gm = tm. Hence, s = tm ∗ g−1

m .
Since gm is a product of some elements of TΓ, g−1

m is also a product of some elements of TΓ. Thus,
s is a product of some elements of TΓ. In conclusion, TΓ is a set of generators of Γ.

Now let TΓ be a set of generators of Γ. We have to prove that IG(Γ) is a connected graph.
Since each t ∈ TΓ is adjacent to e, it is sufficient to prove that every s ∈ SΓ \ {e} is connected
to e. Choose any s ∈ SΓ \ {e}. Since TΓ is a set of generators of Γ, s can be expressed as
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s =
∏k

i=1 ti = t1 ∗ t2 ∗ · · · ∗ tk, where ti ∈ TΓ for every i ∈ {1, . . . , k} and 2 ≤ k ≤ |TΓ|. Recall
that a, b ∈ Γ are adjacent in IG(Γ) if and only if r1∗a = b−1 for an element r1 ∈ TΓ or a∗r2 = b−1

for an element r2 ∈ TΓ. Since s = t1 ∗ t2 ∗ · · · ∗ tk−1 ∗ tk, we get s−1 = t−1
k ∗ t−1

k−1 ∗ · · · ∗ t
−1
1 . Now

write t−1
k−1 ∗ t

−1
k−2 ∗ · · · ∗ t

−1
1 = g1. Hence, we get s−1 = t−1

k ∗ g1. Thus, s is adjacent to g1. If k = 2,
then g1 = t−1

1 ∈ TΓ. Therefore, g1 is adjacent to e and s is connected to e. If k ≥ 3, we use the
iterative steps in Algorithm 1 below to construct gi for i ∈ {2, . . . , k − 1}.

Algorithm 1 Constructing gi for i ∈ {2, . . . , k − 1}
1: Input: t1, . . . , tk−1

2: Output: g2, . . . , gk−1

3: Set l1 = 1, l2 = 2, m1 = k − 1, m2 = k − 1
4: for each integer i in {2, . . . , k − 1} do
5: if i is odd then
6: gi =

∏m1

j=l1
t−1
j

7: l1 = l1 + 1
8: m1 = m1 − 1
9: else

10: gi =
∏m2

j=l2
tj

11: l2 = l2 + 1
12: m2 = m2 − 1

At the end of the iterative steps, we get gk−1 = t−1
k/2 if k is even or gk−1 = t⌈k/2⌉ if k is odd.

Hence, gk−1 is adjacent to e. We also get g−1
i = t ∗ gi+1 or g−1

i = t−1 ∗ gi+1, where t is an element
of TΓ, for i ∈ {1, . . . , k − 2}. Hence, gi is adjacent to gi+1 for i ∈ {1, . . . , k − 2}. Thus, the path
egk−1 · · · g1s connects s to e. We conclude that IG(Γ) is a connected graph.

It has been mentioned that if Γ is a group of odd order, then SΓ = {e}, where e is the identity
element of Γ. The identity e can be expressed as e = t ∗ t−1 for any t ∈ TΓ. Therefore, TΓ is a
set of generators of Γ. Hence, a group of odd order, whose inverse graph is connected, satisfies
Theorem 3.2. Theorem 3.2 also gives us the following corollary.

Corollary 3.1. Let Γ be a group of finite order with TΓ ̸= ∅. The inverse graph IG(Γ) is connected
if and only if Γ has a minimal set of generators whose all members are non-self-invertible.

Proof. Let Γ be a finite group with a connected inverse graph IG(Γ). According to Theorem 3.2,
TΓ is a set of generators of Γ. Thus, Γ has a subset of TΓ as its minimal set of generators. Therefore,
all elements of the minimal set of generators are non-self-invertible in Γ. Conversely, let Γ has a
minimal set of generators whose all elements are non-self-invertible. Clearly, the minimal set of
generators is a subset of TΓ. Hence, TΓ is also a set of generators of Γ. According to Theorem 3.2,
IG(Γ) is connected.

Theorem 3.2 and Corollary 3.1 give us an interesting fact. If a finite group has a connected
inverse graph, then we can ensure that the group has at least one minimal set of generators whose
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all members are non-self-invertible elements. If the inverse graph of a finite group is not connected,
then the group cannot have a minimal set of generators whose all members are non-self-invertible.

The following examples show some applications of Theorem 3.2 and Corollary 3.1.

Example 1. Consider the symmetric group Sym(4), the group of all permutations of 4 objects.
This group has 24 elements. The subset SSym(4) ={(1), (12), (13), (14), (23), (24), (34), (12)(34),
(13)(24), (14)(23)}, where (1) is the identity permutation, is the set of all self-invertible elements
of Sym(4). The set TSym(4) = Sym(4) \ SSym(4) is the set of all non-self-invertible elements
of Sym(4). In a group of permutations, the binary operation is the composition of two permuta-
tions. If we compose each non-identity permutation in SSym(4) with some elements of TSym(4),
the results are also an element of TSym(4). For example, (234)(12) = (1342), (234)(13) =
(1423), (234)(14) = (1234), (341)(23) = (1324), (341)(24) = (1342), (412)(34) = (1243),
(412)((12)(34)) = (143), (412)((13)(24)) = (132), and (412)((14)(23)) = (234). Therefore,
each non-identity element in SSym(4) is adjacent to at least one element in TSym(4). Since every
element in TSym(4) is adjacent to the identity, the inverse graph IG(Sym(4)) is connected. Since
IG(Sym(4)) is connected, according to Theorem 3.2 and Corollary 3.1, TSym(4) is a set of genera-
tors of Sym(4), and we can ensure that Sym(4) has a minimal set of generators whose all elements
are non-self-invertible.

Example 2. The dihedral group D2n = ⟨r, s : rn = s2 = e, srs = r−1⟩, with n ≥ 3, is an
example of a group with no set of generators whose all elements are non-self-invertible. All non-
self-invertible elements of the group have the form ri, where i ∈ {1, 2, . . . , n} and i ̸= n/2 if n
is even. The element s ∈ D2n cannot be expressed as a product of some finite ri or their inverses.
Therefore, the inverse graph of D2n is not connected according to Theorem 3.2. Figure 2 shows
the inverse graph of group D6.

Figure 2. The inverse graph of group D6

Theorem 3.2 can help us determine which families of groups have connected inverse graphs.
Some of them are presented in the following corollaries.

Corollary 3.2. Let Γ be a group of finite order with TΓ ̸= ∅. If for every s ∈ SΓ there exist some
t ∈ TΓ such that s ∗ t ̸= t−1 ∗ s, then IG(Γ) is a connected graph.

Proof. Let Γ be a finite group with TΓ ̸= ∅ and for every s ∈ SΓ there exist some t ∈ TΓ such that
s ∗ t ̸= t−1 ∗ s. Choose any s ∈ SΓ. Since t−1 ∗ s = (s ∗ t)−1, we get s ∗ t ̸= (s ∗ t)−1 for some
t ∈ TΓ. Hence, s ∗ t is a member of TΓ for some t ∈ TΓ. Therefore, there exists a t′ ∈ TΓ such
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that s ∗ t = t′. As a consequence, s = t′ ∗ t−1, which is a product of two members of TΓ. So,
we get that TΓ is a set of generators of Γ. According to Theorem 3.2, the inverse graph IG(Γ) is
connected.

Corollary 3.3. Let Γ be a group of finite order with TΓ ̸= ∅. If for every s ∈ SΓ there exist some
t ∈ TΓ such that s ∗ t = t ∗ s, then IG(Γ) is a connected graph.

Proof. Let Γ be a group of finite order with TΓ ̸= ∅. If for every s ∈ SΓ there exist some t ∈ TΓ

such that s ∗ t = t ∗ s, then for every s ∈ SΓ, s ∗ t ̸= t−1 ∗ s for some t ∈ TΓ. Thus, according to
Corollary 3.2, IG(Γ) is a connected graph.

It has been proven in [4] that the inverse graph of an abelian group is connected. This result
conforms to Corollary 3.3 since an abelian group satisfies s ∗ t = t ∗ s for every s ∈ SΓ and every
t ∈ TΓ. The following example shows a group that satisfies Corollary 3.2.

Example 3. Consider the group A4 = {(1), (12)(34), (13)(24), (14)(23), (123), (132), (124), (142),
(134), (143), (234), (243)}, which is the alternating group whose all members are even permuta-
tions of four objects. Note that SA4 = {(1), (12)(34), (13)(24), (14)(23)} and TA4 = A4 \ SA4 .
We get that |SA4| = 4 and |TA4| = 8. This group satisfies s ∗ t ̸= t−1 ∗ s for every s ∈ SΓ and
every t ∈ TΓ. Hence, every s ∈ SΓ is adjacent to every t ∈ TΓ. The inverse graph IG(A4) can be
seen in Figure 3.

Figure 3. The inverse graph of group A4

In the next section, we discuss the rainbow connection numbers of the inverse graphs of finite
groups. Before determining the rainbow connection number of an inverse graph of a finite group,
we have to ensure that the graph is connected since the rainbow connection number is defined only
for a connected graph.
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4. Rainbow Connection Numbers of the Inverse Graphs of Finite Groups

Now we discuss the rainbow connection numbers of the inverse graphs of finite groups. All
groups discussed in this section have some non-self-invertible elements. We begin with the inverse
graph of a group of odd order.

Theorem 4.1. If Γ is a group of odd order with TΓ ̸= ∅, then rc(IG(Γ)) = 2.

Proof. Let Γ be a group of odd order with TΓ ̸= ∅. Clearly, Γ is a nontrivial group. According to
Theorem 3.1, IG(Γ) is connected and SΓ = {e}, where e is the identity of Γ. Hence, for every
t ∈ TΓ, t−1 is the only element of Γ which is not adjacent to t in IG(Γ). Recall that if Γ is a
nontrivial finite group, then IG(Γ) is not a complete graph. Therefore, we get that rc(IG(Γ)) ≥ 2.
Now write TΓ = {t1, t−1

1 , t2, t
−1
2 , . . . , t|TΓ|/2, t

−1
|TΓ|/2}. Next, we color the edge eti with color 1

and the edge et−1
i with color 2 for every i ∈ {1, 2, . . . , (|TΓ|)/2}, and the other edges of IG(Γ)

are colored with color 2. Under this coloring, every two distinct vertices of IG(Γ) are connected
by a rainbow path. Hence, this coloring is a rainbow coloring with two colors, and we get that
rc(IG(Γ)) ≤ 2. Since rc(IG(Γ)) ≥ 2, we conclude that rc(IG(Γ)) = 2.

Theorem 4.1 gives an exact value for rc(IG(Γ)) if Γ is any group of odd order with TΓ ̸= ∅. As
we already know, for any group Γ of odd order with identity element e, SΓ = {e} and e∗t = t∗e = t
for every t ∈ TΓ. For a group Γ of even order which satisfies s ∗ t = t ∗ s for every s ∈ SΓ and
every t ∈ TΓ, we obtain the following result.

Theorem 4.2. Let Γ be a group of even order with TΓ ̸= ∅. If s ∗ t = t ∗ s for every s ∈ SΓ and
every t ∈ TΓ, then rc(IG(Γ)) = 2.

Proof. Let Γ be a finite group of even order with TΓ ̸= ∅, and s ∗ t = t ∗ s for every s ∈ SΓ

and every t ∈ TΓ. Since Γ = SΓ ∪ TΓ and |TΓ| is even, |SΓ| is also even, and hence |SΓ| > 1.
From Corollary 3.3, we get that IG(Γ) is connected. Since t ∗ s ̸= t−1 ∗ s = (s ∗ t)−1, we get
s∗t ̸= (s∗t)−1, and hence s∗t ∈ TΓ for every s ∈ SΓ and every t ∈ TΓ. It means that every s ∈ SΓ

is adjacent to every t ∈ TΓ. Consequently, there exists an element t′ ∈ TΓ for each s ∈ SΓ and
each t ∈ TΓ such that s ∗ t = t′. Suppose that |SΓ| > |TΓ|. Then there exist two distinct elements
s1 and s2 in SΓ such that s1 ∗ t = s2 ∗ t for an element t ∈ TΓ. According to the cancellation law,
we get s1 = s2, which is a contradiction. Thus, |SΓ| cannot be greater than |TΓ|.

Choose any s ∈ SΓ and any t ∈ TΓ. Since s ∗ t = t′ = t ∗ s with t′ is an element in TΓ, we get
t ∗ (t′)−1 = s and (t′)−1 ∗ t = s. Write (t′)−1 = t′′. Hence, there exists an element t′′ ∈ TΓ which
satisfies t ∗ t′′ = t′′ ∗ t = s.

Let the edges of IG(Γ) be colored using two different colors in W = {1, 2}. For every pair of
vertices t1, t2 ∈ TΓ and s1, s2 ∈ SΓ which are adjacent in IG(Γ), the edges t1t2 and s1s2 is colored
by one of the two colors in W . For every si ∈ SΓ, i ∈ {1, 2, . . . , |SΓ|}, we associate an ordered
|TΓ|-tuple code C(si) = (ci1, ci2, . . . , ci|TΓ|) called the color code of si, where cij is the color of
the edge sitj with tj ∈ TΓ for every j ∈ {1, 2, . . . , |TΓ|}. As mentioned before, for each si ∈ SΓ

and each tj ∈ TΓ, there exists an element t′′j ∈ TΓ such that tj ∗ t′′j = t′′j ∗ tj = si. Hence, we get
si ∗ tj = (t′′j )

−1 ∈ TΓ and t′′j ∗ si = t−1
j ∈ TΓ. Thus, si is adjacent to tj and t′′j . If tj ̸= t′′j , then tj

is not adjacent to t′′j . In the case of tj ̸= t′′j , if the edge sitj is colored by color 1, then the edge sit′′j
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must be colored by color 2, and vice versa. In the case of tj = t′′j , if the edge sitj is colored by
color 1, then the edge sit−1

j is colored by color 2, and vice versa. Therefore, the number of distinct
color codes of the elements of SΓ is at most 2|TΓ|/2. Since |SΓ| and |TΓ| are even, if |SΓ| ≤ |TΓ|,
then |SΓ| ≤ 2|TΓ|/2. Therefore, each si ∈ SΓ may have a unique color code. Consequently, every
two distinct elements of SΓ may have different color codes. Under this coloring, the rainbow paths
between two distinct vertices of IG(Γ) are as follows:

1. for any s ∈ SΓ and any t ∈ TΓ, the rainbow path between s and t is the edge st,
2. for any two distinct elements ti, tj ∈ TΓ that are not adjacent in IG(Γ), the rainbow path

between ti and tj is tistj , where s is an element of SΓ such that ti ∗ tj = s,
3. for any two distinct elements si, sk ∈ SΓ that are not adjacent in IG(Γ), the rainbow path

between si and sk is sitjsk, where tj is an element of TΓ such that cij ̸= ckj ,
4. for any two distinct elements ti, tj ∈ TΓ that are adjacent in IG(Γ), the rainbow path between

ti and tj is the edge titj ,
5. for any two distinct elements si, sj ∈ SΓ that are adjacent in IG(Γ), the rainbow path that

connects si and sj is the edge sisj .

Thus, we get that every pair of distinct vertices of IG(Γ) is connected by a rainbow path and
rc(IG(Γ)) ≤ 2. Since rc(IG(Γ) ≥ 2, we conclude that rc(IG(Γ)) = 2.

Based on Theorem 4.2, we can determine the rainbow connection number of the inverse graph
of an abelian group of even order.

Corollary 4.1. If Γ is an abelian group of even order with TΓ ̸= ∅, then rc(IG(Γ)) = 2.

Proof. Let Γ be an abelian group of even order with TΓ ̸= ∅. Since Γ is abelian, we get s∗ t = t∗s
for every s ∈ SΓ and every t ∈ TΓ. By using Theorem 4.2, we get rc(IG(Γ)) = 2.

Theorem 4.2 holds for a group Γ of even order that satisfies s ∗ t = t ∗ s for every s ∈ SΓ

and every t ∈ TΓ. It is known that not all groups meet this condition. For a finite group Γ of even
order where some s ∈ SΓ are not adjacent to some t ∈ TΓ, there might be a pair of non-adjacent
elements s1, s2 ∈ SΓ that are adjacent to different elements of TΓ. Hence, the distance between s1
and s2, and also the diameter of IG(Γ), might be greater than 2. Since rc(IG(Γ)) is greater than
or equal to the diameter of IG(Γ), the value of rc(IG(Γ)) might be greater than 2. Therefore, we
need to determine the bounds for the rainbow connection number of a connected inverse graph of
any finite group of even order.

Theorem 4.3. Let Γ be a group of even order and TΓ ̸= ∅ be a set of generators of Γ. Then

2 ≤ rc(IG(Γ)) ≤ |TΓ|+m+ 2

where m is the number of s ∈ SΓ that satisfy s ∗ t = t−1 ∗ s for all t ∈ TΓ. Furthermore, the lower
bound is tight.
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Proof. Let Γ be a group of even order and TΓ ̸= ∅ be a set of generators of Γ. Recall that if the
order of Γ is even, then |SΓ| is also even, and hence |SΓ| > 1. According to Theorem 3.2, since TΓ

is a set of generators of Γ, the inverse graph IG(Γ) is connected. Because Γ is a nontrivial group,
IG(Γ) is not a complete graph. Therefore, we get rc(IG(Γ)) ≥ 2. It is also known that in IG(Γ),
every element of TΓ is adjacent to the identity element e and every element of SΓ is not adjacent to
e. Since IG(Γ) is connected, there exist some s ∈ SΓ which is adjacent to some t ∈ TΓ. Therefore,
there exist some s ∈ SΓ such that s ∗ t ̸= t−1 ∗ s for some t ∈ TΓ.

Let S ′
Γ = {s ∈ SΓ|s∗ t ̸= t−1 ∗ s for some t ∈ TΓ} and S ′′

Γ = SΓ \S ′
Γ = {s ∈ SΓ|s∗ t = t−1 ∗ s

for all t ∈ TΓ}. According to its definition, every member of S ′
Γ is adjacent to some elements of

TΓ and their inverse elements in IG(Γ). Hence, every member of S ′
Γ is connected to e in IG(Γ)

because every element of TΓ is adjacent to e. Every s ∈ S ′′
Γ satisfies s ∗ t = t−1 ∗ s = (s ∗ t)−1 for

all t ∈ TΓ. Hence, every s ∈ S ′′
Γ is not adjacent to all t ∈ TΓ in IG(Γ). Because e ∗ s = s ∗ e = s

for every s ∈ S ′′
Γ, all s ∈ S ′′

Γ are not adjacent to e. Since IG(Γ) is a connected graph, every element
of S ′′

Γ is connected to all elements of S ′
Γ in IG(Γ).

Let |S ′′
Γ| = m. We color the edges of IG(Γ) as follows:

1. for each ti ∈ TΓ with i ∈ {1, 2, . . . |TΓ|}, the edge eti are colored by color i,
2. for every s ∈ S ′

Γ and t ∈ TΓ which is adjacent to s, the edge st is colored by color |TΓ| + 1
and the edge st−1 is colored by color |TΓ|+ 2,

3. for every path P that connects an sα ∈ S ′′
Γ to an s ∈ S ′

Γ, where α ∈ {1, 2, . . . ,m}, the edge
s̄sα in P is colored by color |TΓ|+2+α, where s̄ = s or s̄ is a member of S ′′

Γ whose distance
from s on P is dP (sα, s)–1,

4. the other edges in IG(Γ) are colored by one of the colors above.

By using this edge coloring, the edges of IG(Γ) are colored by |TΓ|+m+ 2 colors and every two
distinct vertices of IG(Γ) are connected by a rainbow path. Thus, rc(IG(Γ)) ≤ |TΓ| + m + 2.
According to Theorem 4.2, if s ∗ t = t ∗ s for every s ∈ SΓ and every t ∈ TΓ, then rc(IG(Γ)) = 2.
Therefore, the lower bound is tight.

Theorem 4.3 leads us to obtain the upper and lower bounds for the rainbow connection number
of the inverse graph of a direct product of some finite groups. The following corollary gives the
result.

Corollary 4.2. Let Γ = Γ1×· · ·×Γn be a direct product of finite groups with SΓ = SΓ1×. . .×SΓn ,
TΓ = Γ \ SΓ, and |Γi| is even for some i ∈ {1, 2, . . . , n}. If for every i ∈ {1, 2, . . . , n}, TΓi

is not
empty and generates Γi, then 2 ≤ rc(IG(Γ)) ≤ |TΓ| +m + 2, where m is the number of s ∈ SΓ

satisfying s ∗ t = t−1 ∗ s for all t ∈ TΓ. Furthermore, the lower bound is tight.

Proof. Let Γ = Γ1×· · ·×Γn be a direct product of finite groups, SΓ = SΓ1×· · ·×SΓn , TΓ = Γ\SΓ,
ei is the identity element of Γi, |Γi| is even for some i ∈ {1, 2, . . . , n}, and TΓi

̸= ∅ be a set of
generators of Γi for every i ∈ {1, 2, . . . , n}. Obviously, |Γ| is even. Since TΓi

is not empty for every
i ∈ {1, 2, . . . , n}, we get TΓ1 ×· · ·×TΓn is not empty. It is obvious that TΓ1 ×· · ·×TΓn is a subset
of TΓ = Γ \ SΓ. Therefore, TΓ is not empty. Consider a subset T̄Γ = {(γ1, . . . , γn) ∈ TΓ|γi ∈ TΓi

for exactly one i ∈ {1, 2, . . . , n}, and γj = ej for j ∈ {1, 2, . . . , n} where j ̸= i}. Each member of
T̄Γ is in the form (t1, e2, . . . , en), (e1, e2, . . . , tn), or (e1, . . . , ei−1, ti, ei+1, . . . , en), where ti ∈ TΓi
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for i ∈ {1, 2, . . . , n}. Since TΓi
generates Γi, every element of Γi is a finite product of some

elements of TΓi
. Hence, every element of Γ is a finite product of some elements of T̄Γ. Therefore,

T̄Γ is a set of generators of Γ. It is clear that T̄Γ is a subset of TΓ. Thus, we get that TΓ is
also a set of generators of Γ, and IG(Γ) is a connected graph.By applying Theorem 4.3, we get
2 ≤ rc(IG(Γ)) ≤ |TΓ|+m+2, where m is the number of s ∈ SΓ which satisfy s ∗ t = t−1 ∗ s for
all t ∈ TΓ, and the lower bound is tight.

5. Conclusion

In this paper, we presented some findings on the inverse graph of a finite group and its rainbow
connection number. For a group Γ of finite order, the inverse graph IG(Γ) is connected if and only
if Γ has a minimal set of generators whose all members are non-self-invertible. If Γ is a group
of odd order, then rc(IG(Γ)) = 2. If Γ is a group of even order, TΓ ̸= ∅, and s ∗ t = t ∗ s for
every s ∈ SΓ and every t ∈ TΓ, then rc(IG(Γ)) = 2. For any group Γ of even order whose set
of generators is TΓ, we obtained that 2 ≤ rc(IG(Γ)) ≤ |TΓ| +m + 2, where m is the number of
s ∈ SΓ which satisfy s ∗ t = t−1 ∗ s for all t ∈ TΓ, and the lower bound is tight.
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