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Abstract

Let G be a simple, finite, and undirected graph and H be a subgraph of GG. The graph G admits an
H-covering if every edge in G belongs to a subgraph isomorphic to H. A bijection f : V(G) U
E(G) — [1,n] is a magic total labeling if for every subgraphs H’ isomorphic to H, the sum of
labels of all vertices and edges in H' is constant. If there exists such f, we say G is H-magic. A
graph [ is said to be a forbidden subgraph of H-magic graphs if /' C G implies G is not an H-
magic graph. A set that contains all forbidden subgraph of H-magic is called forbidden family of
H-magic graphs, denoted by F(H ). In this paper, we consider F(P;,), where P, is a path of order
h. We present some sufficient conditions of a graph being a member of F(P,). Besides that, we
show the uniqueness of a minimal tree which belongs to F(P3) and characterize P3-(super)magic
trees.
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1. Introduction

Let G and H be finite, simple, undirected graphs. We write G' admits an H-covering if every
edge in the graph belongs to a subgraph H’ which is isomorphic to H. The graph G is called
H-magic if G admits H-covering and there exists total labeling f : V(G)U E(G) — [1,|V(G)| +
| E(G)|] such that there exists positive integer k which w(H') = 3 () f(0)+ 2 ccpiury fe) =
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k, for each subgraph H' = H of (G. Furthermore, if f also have extra property f(V(G)) =
[1,|V(G)]], then G is H-supermagic. A special case of K,-supermagic graphs is called edge-
supermagic graphs. Some results concering H-(super)magic graphs can be seen in [1], [5], [9].
For more information about (super)magic labeling and its variations, readers may consult to [3].
A graph Fis called a forbidden subgraph of H-magic if F' C G implies G is not H-magic. Let
F(H) be a set containing every graph admitting H-covering which is not allowed to be a subgraph
of any H-magic graph. We call such set as forbidden family 7 ( H ). Known studies about forbidden
subgraph in magic labeling may be seen in [4], [6], [7], [8]. We adopt these results in our notation.

Theorem 1.1. [4] Let h > 3 be positive integer. We have C, € F(Fy).

A (n, k)-tadpole is a graph constructed by identifying an end vertex of P, with a vertex of C,,.
Maryati et al. [7] write C;'! 2 (n, 1)-tadpole.

Theorem 1.2. [7] Let h > 4 be positive integer. We have {C;[_ll, C}ﬁl} C F(Py).
Moreover, Maryati et al. [6, 7] defined H,, graph with a vertex and edge set

V(H,) = {vi,ve | i € [1,2n+ 1]},
E(H,) = {v1,01,i41,V2,V2,i41 | © € [1,2n]} U {v1 4102041}

They determined that this graph is also a forbidden subgraph of F;.
Theorem 1.3. [6, 7] Let h > 3 be positive integer. We have Hy, € F(Py,).

This paper is written as follows. In Section 2 and 3 we investigate sufficient conditions for a
graph which belongs to F(P,). Section 2 mainly deals with tree graphs, while Section 3 deals
with unicyclic graphs. Furthermore, we found that there is no tree other than A; which belongs to
F(P3) of small order in Section 4.

2. Trees in F(P,)

We define Dt(v,u) as a set of every length of possible paths formed with endpoints of v, u.
Clearly, d(v,u) € Dt(v,u) and for u, v vertices in trees we have Dt(v,u) = {d(v,u)}. To start,
two supplementary lemmas are provided which arose from the implications of graphs being F-
magic. The first lemma tells us that some parts in every paths having length more than / in a graph
will induce constant sums.

Lemma 2.1. Letn > 3,m € [1, |25} ]] be integers. Let G be a graph that has f as a Py-magic
labeling of G. If there exists u,v € V(G) withn € Dt(u,v), then there exists consecutive vertices
Ty Ty eeey Loy = W and Yo, Y1, ..., Ym = v such that

m m m m

Z fai) + Z flaiam) =Y fly) + Z fWim1yi).
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Proof. Since n € Dt(u,v), then there exists consecutive vertices u = 21, 29, 23, ..., Zn41 = V. By
taking weights of two subgraphs from consecutive vertices 21, 2,...,2,—m+1 and
Zima1y Zm42y -y Zni1 WE have

n—m-+1 n—m-+1 n+1 n+1

S FE)+ D flmazm) = > [+ Y flram),

=1 =2 1=m+1 i=m+2
which implies

m+1 n+1 n+1

Z Zi +Zf %i1%) = Z f(z) Z f(zic12:).

=1 t=n—m-+2 t=n—m-+2
substituting x; = 2,,—;+1 and y; = 2,111 We got the result as desired. OJ

Next, constant sums may also appear in parts of a subgraph isomorphic to a certain tree with
three pendants.

Lemma 2.2. Letn > 3,m € [L”“J n— 1] be integers. Let G be a graph that has [ as a P,-magic
labeling of G. If there exists four vertices x1,w,y, z such that

1. there exists m satisfying m € Dt(w,y) and m € Dt(w, z),
2. there exists n satisfying so that m +n € Dt(x1,y),

then there exists a consecutive vertices X1, T, ..., Ty, = W, V1, V2, ..., U, = Y and T1,To, ..., Ty =
w, U, U, ..., Uy, = 2 such that

with x,, = vy = uy.
Proof. By taking two subgraph of consecutive vertices 1, ..., Ty, U1, ..., Uy and Ty, ..., Ty, Uy «evy Upy
we got

n—1 m m

Z flax;) + Z flaizipq) + Z f(vi) + Z J(vim1v;)

n—1 m m

= Z flz) + Z f(ziviga) + Z fu) + Z S (uizqus).

i=1 =1 =1

This implies
Zf(UZ) + Zf(vz lvz) = Zf(uz) + Zf(uz 1“@)
=1 =1 =1 =1
therefore the lemma holds. O
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One kind of a graph belonging to F(P,) is a new class of graph namely Tiara graphs. We
define a Tiara graph G = T, (p, q,r) as follows
V(G ={vilie[l,in=1)(g+ 1)+ 1} U{z; |be{l,(n—1)(g+1)+1},5 € [Lr]}
U {w(Q+1)k+1,l |k €[0,n—1],l € [1,pl]},
E(G) = {viviga [ i € [L, (n = 1)(¢ + D]}
Uwpes 2o [0 € {1, (n = 1)(g+1) + 1}, € [1,r = 1]}

U {U(q+1)k+1w(q+1)k+1,1aw(q+1)k+1,lw(q+1)k+1,l+1 |ke0,n—1],le[l,p—1]}.

An example of T'(1, 1, 3) is depicted in Figure 1. Theorem 2.1 and Theorem 2.2 deals with
tiara graphs which belongs to F(FP,).

e b

Figure 1. Tiara T'i4(1, 1, 3).

Theorem 2.1. Let h, s be positive integers with s > 2. For every s being a solution of h(s), the
following statements are true.

a) If h = 2s + 1, then T'iy(s,s — 1, s) € F(DPy).
b) If h = 2s, then Tis(s — 1,5 — 1,5) € F(Fy).

Proof. Let h be fixed. To prove part a) and b) simultaneously we set G = Tis(h—s—1,s — 1, s).
Suppose G is Pj,-magic with f as a P,-magic labeling for GG. In this proof, define w;y = v,
and w410 = Usp1. Consider x5, v, Up—s, Wy p—s—1. Notice that h — s — 1 € Dt(vy,vp—s),
h—s—1¢& Dt(vy, w1 p—s—1)and (h—s—1)+s=h—1¢€ Dt(xy,vs_s). Therefore, by Lemma
2.2 we have

flu) + f(viiv;) Z f(w,) Z fwyimqwy ;). (1)

Next, consider wy ,,_s—1 and w1 p—s—1. Since 2h —s — 2 € Dt(wy p—s—1, Ws+1,h—s—1), by Lemma
2.1 (setting m = h — s — 1) we have

h—s—1 h—s—1 h—s—1 h—s—1

Z f wlz Z f W1 i— lwlz Z f(ws+1,i)+ Z f(ws+1,i—1ws+1,i)- (2)
i=1 i=1 i=1

Then, consider %, s, Us+1V2542—h, Wst1,h—s—1. Notice that b — s € Dt(vsy1,Va512-1), h — s €
Dt(vsy1, Wst1,h—s—1) and (h — s) + s = h € Dt(Ts41.5,Vs41). Therefore, by Lemma 2.2 we have

h—s—1 h—s—1 s s+1
Z f(ws—i—l,i) + Z f(ws—l—l,i—lws—i-l,i) = Z f(Uz‘) + Z f(Ui—ﬂ)z‘)- (3)
i=1 i=1 i=2s+2—h i=2s+s—h+1
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From (1), (2) and (3), we have

h—s h—s s s+1
)+ foimv) = > f)+ > floimaw).
=2 =2 1=2s+2—h 1=2s+2—h+1

If h = 2s + 1, this would imply f(v;) = f(vs41). On the other hand, h = 2s implies f(vyvs)
f(vsvs11). The contradictions of injectivity of f in both cases are implying Tis(h—s—1,s—1, s)
F(Py).

COm |l

Theorem 2.2. Let h, s, t be positive integers. For every pair s,t being a solution of h = s(t+3)+1,
then

Ti(t+3)(8, s—1, S(t + 2)) € .F(Ph)

Proof. Let h be fixed. Suppose G = Ti(;13)(s, s — 1, s(t 4 2)) is P,-magic with a magic labeling
f. In this proof, define x; o = v, = wy forevery k € [1,h — s] (note that h — s = (t + 2)s + 1).
First, consider vy,_s, v1, 1 5, w1 . Notice that s € Dt(vy, 1), s € Dt(vy,wy ) and s+ s(t +2) =
s(t + 3) € Dt(vp_s, 71 5). Hence, by Lemma 2.2, we have

Z flx1,) + Z f(x1im121,) = Z flwi,) + Z flwii—1wyy;). “4)
i=1 i=1 i=1 i=1

Then, considering w; s and wy,_g s with s(t +4) € Dt(w; 5, wy—s ) by Lemma 2.1 (setting m = s)
we have

Z flwi,) + Z flwiimqwi,) = Z flwn—s;) + Z f(Wh—si—1Wh—s)- (5)

Next, consider vy, vj,_s, Th—s s, Wh—s,s. We can see that s € Dt(vj,—s, Th—ss), S € Dt(Vh_s, Wh_s )
and s + s(t + 2) = s(t + 3) € Dt(v1, vp—s ). Therefore, by Lemma 2.2 implies

Z flwp—si) + Z fwp—si1wp—s;) = Z f(@h_s;i) + Z f(Th—si1Th—s)- (6)
=1 =1 =1 i—1

Combining (4),(5) and (6), we got

s

Z f(x1) + Z f@riciz) = Z f(@h-si) + Z J(@h—si-1Th—s)- (7)
=1 =1 i=1

=1

Let j € [1,t + 1]. Considering 1 4(;42—;) and wgj41,s With s(t +4) € Dt(x1 s¢442—j), Wsjt1,s)> DY
Lemma 2.1 (setting m = s) we have

s(t+2—7) s(t+2—7) s

Z f(z1;) + Z f(@rimiz1,) = Z flwsje1) + Z f(Wsjt1,i-1Wsj+14)- (8)

i=s(t+1—j)+1 i=s(t+1—4)+1 i=1 i=1
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Similarly, considering xj,_ s;+1 and wgj41 s With s(t +4) € Dt(x_s sj4+1, Wsj11,5), by Lemma 2.1
(setting m = s) we got

s s s(j+1) s(j+1)
Z fwgjq1) + Z f(Wsjt1,im1Wsj414) = Z f(@h-s;) Z f(@hosi1Th-si).  (9)
=1 =1 i=sj+1 i=sj+1
Combining (8) and (9) for every j yields
s(t+2—7) s(t+2—7) s(j+1) s(3+1)
zg: f(xld)_% jg: f($1jflx1z z{: .f Th— EX) *‘ jg: .f Th— S,0— 1Th— sz)
=s(t+1—j)+1 i=s(t+1—7)+1 i=sj+1 i=sj+1

(10)

Finally, consider two paths of length /2 with the consecutive vertices £ j,—s_1, ..., T1,1, V1, W11, ..., W16
and Tp,—s h—s—1, -y Thes,1, Vh—s, Wh—s.1, ---, Wh—s 5. SiNce G is Py-magic, we have

h—s h—s
f($1,2)+2f(f1z 121,7) +Zf (w1, +Zf (wy,i—1w1,) (11)
- T
= flan—s;) + Z f(@h—si1Th—s;i) + Z flwn—s;) + Z f(Wh—si=1Wh—s). (12)
i=0 i=1 i=1 i=1

Applying (10) for every j in (11), proceeded by (5) and (7), we have
f(@10) = f(@n-s0)

which is a contradiction of f being a P,-magic labeling. Therefore, G € F(Fy). ]

Another class of graphs belonging to F(P,) are bandana graphs. Here, we define bandana
graphs G = Bd(p, q,r,n) as follows

V(G) =Avi |ie[1,2¢g+ 1]} U{xpj,wp, | b€ {1,2¢+1},5 € [1,r],l € [1,p]}
LJ{yk|ke D?nl}a
E(G) = {vivig1 |1 € [1,2q]} U{wpzp 1, xp 241 | 0 € {1,2¢ + 1}, 5 € [1,r — 1]}
U {vpwp 1, wpiwei41 | b€ {1,2¢+ 1}, 1€ [1,p — 1} U {vgr1v1, YY1 | kK € [1,n — 1]}

An example of bandana graph is illustrated in Figure 2. The proceeding theorem are some
bandana graphs which belongs to F(F;).

_I_L

Figure 2. Bandana Bd(1,1, 3, 2).
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Theorem 2.3. Let h, s,t be positive integers. For every pair s,1 being a solution of h = 4s + {,
then

Bd(2s —1,s,2s +t,3s — 1) € F(Py)

Proof. Let h be fixed. Suppose G = Bd(2s — 1,s,2s + t,3s — 1) is P,-magic with a magic
labeling f. In this proof, define x1 o = v1 = w1 and Tog11,0 = Vag+1 = Wag41,0- First, consider
T1,2s+t, U1, W1,25—1, V2s- We can see that 2s — 1 € Dt(’Ul,ngs_l),QS -1 € Dt(Ul,Ugs) and
(2s+1t) + (2s — 1) =4s+t — 1 € Dt(x1 254+, W1 25—1). Therefore, using Lemma 2.2 yields

2s—1 2s—1

2s 2s
Z f(v;) + Z fvimv;) = Z flwi,) + Z f(wyimqw ;). (13)
i=2 i=2 i=1 i=1

Then, considering wy 95—1 and Ta,41 2544—1 With 65+t —2 € Dt(w1 25-1, Tag+1,25+¢—1), by Lemma
2.1 (and setting m = 2s — 1) we have

25—1 25—1 2s5+t—1 2s5+t—1
Z fwi) + Z flwriqw ;) = Z f(@2g41,4) + Z f(T2g41i-1%2g414).  (14)
i=1 i=1 i=t+1 i=t+1

Next, consider zo441254¢—1 and yss—1. Since 65 +t — 2 € Dt(2og41 25+1-1, Y3s—1), by Lemma 2.1
(and setting m = 25 — 1) we got

2s+t—1 2s+t—1 3s—1 35—1
Z f(@ag41,) + Z f(T2g41,i-1T2g114) = Z fyi) + Z fWi-1yi)- (15)
i=t+1 i=t+1 i=s+1 i=s+1

Similarly, considering yss—1 and xy 25441 With 65 +t — 2 € Dt(y3s—1, ¥1,251+—1), by Lemma 2.1
(and setting m = 2s — 1) we have

3s—1 3s—1 2s+t—1 25+t—1
Z flyi) + Z f(Wi1yi) = Z f(x1;) + Z f(@1im1214). (16)
i=s+1 i=s+1 i=t+1 i=t+1

Again, consider x; 55441 and wog41,25—1 With 65 + ¢ — 2 € Dt(2 95_¢+1, Wagt1,25—1), by Lemma
2.1 (setting m = 2s — 1) we got

2s+t—1 2s+t—1 2s—1 2s—1
Z fz1q) + Z flxriim) = Z fwageri) + Z f(wagyriawagias).  (17)
i=t+1 i=t+1 i=1 i=1

Finally, consider T2g+1,2s+t> V2g+1; W2g+1,25—1, V2. Notice that 2s — 1 € Dt(’l]qurl, w2q+1725,1), 2s —
1 € Dt(vag+1,v2) and (2s+1) + (2s — 1) = ds+t — 1 € Dt(xog41.25+1, Wag+1,2s—1). Hence, using
Lemma 2.2 yields

25—1 25—1 2s 2s5+1
D flwagrna) + ) flwzgrrimrwegrn) = Y f(i) + Y flvimavy). (18)
=1 i=1 =2 =3
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Solving (13) to (18) we have

2s+1

Z fv) + Z fviv) = Z fv) + Z f(vic1v;)

which implies f(v1v9) = f(v2sv2511). This contradiction of injectivity of f implies G € F(Fy).
0
3. Unicyclic graphs in F(P,)

A result of [7] which states that (n, 1)-tadpole € F (P, 1) may be generalized into the follow-
ing theorem.

ntl |

Theorem 3.1. Letn > 3, p > 1, and n, p be an integer, and m = L 5

a) (n,p)-tadpole € F(P,.,),
b) (n,p)-tadpole € F(Pp+p).
Proof. Forn > 3,p > 1,let G = (n, p)-tadpole be a graph that has a vertex set
V(G) = A{vi,w; [ i € [1,n],j € [1,p]},
and an edge set
E(G) = {wjwj,vivi |1 € [1,p],5 € [1,n]}

with wg = vy and vg = v,,.

First, we want to prove (n,p)-tadpole € F(P,.,). Suppose G is a P, ,-magic graph and
f is a P, ,-magic labeling of G. By taking P,, subgraph of G with consecutive vertices
Wy, Wp—1, vy W1, V1, V2, ..., Uy @D Wy, Wp_1, ..., W1, V1, Uy, Vp—1, ..., U2, WE have

p n p—1 n—1
Z flw;) + Z fv) + Z fwawir) + f(wivr) + Z f(vivigr)
i—1 i—1 i—1 i—1

p n p—1 n—1
= Z J(w;) + Z fv) + Z fwawiy) + f(wivr) + Z f(vivigr) + f(vivn)
i—1 i—1 i—1 i—2

this implies f(v1v2) = f(v1v,) which is a contradiction from a fact that f is injective.
Next, we will show G = (n,p)-tadpole € F(P,,4,). Suppose G is a P,,,-magic graph.
Consider w, and v,,1 withm +p — 1 € Dt(w,, vy,41). Using Lemma 2.1, we have

flwp) + fwprwy) = f(Vmi1) + f(0mUmi1). (19)

Similarly, considering w,, and v,,, with m +p — 1 € Dt(w,, v,,), applying Lemma 2.1 yields

f(wp) + f(wp—lwp) = f(vn—m-l-l) + f(vn—m+1vn—m+2)- (20)
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Therefore, (19) and (20) yields

f(vm—i-l) + f(vmvm-i—l) = f(vn—m—i-l) + f(vn—m—i-lvn—m—i-Q)' (21)

Now, divide the problem into cases based on parity of n.

Case 1. n is even

If n is even, let n = 24, then m = L"T“J = L%

J = ¢ implying
n—m=m.

Plugging this into (21) yields

f(Uerl) + f(UmUm+1) = f(Uerl) + f(vm+lvm+2)

which implies f (v vm+1) = f(Umi+1Ums2) and this leads to a contradiction.

Case 2. n is odd
If nisodd, letn = 2¢ + 1, thenm = L”T“J = L%J = 7 + 1 which means

n—m+1=m.
Plugging this into (21) giving us

fWmi1) + f(omvmi1) = f(om) + f(UmVmi1)
implying f(v,11) = f(v,,) and this also leads to a contradiction. O

In general, most graphs containing cycles belongs to F(F;,). The proceeding theorem provide
some sufficient conditions to determine whether a given graph belongs to F(F,).

Theorem 3.2. Let h > 3,n > 2 and v;,i € [1,n] denotes leaves in a given graph G. If these
conditions are satisfied for graph G:

a) h € Dt(v;,v;11) for everyi € [1,n)],
b) 2h — 1 € Dt(vy,v,) or 2h € Dt(vy, vy,),
then G € F(P,).

Proof. Suppose G is P,-magic and has properties as stated in the theorem. For convience, denote
e, as an edge which is incident to a leaf v. For every i € [1.n], since h € Dt(v;,v;+1) then there
exists a vertex sequence v; = 1, T2,...,Tnt1 = V;y1 10 the graph. Using Lemma 2.1 (setting
m = 1), we have

f(ml) + f(x1x2) = f(anrl) + f(xnanrl)
f(vl) + f(e'Ui) = f(vi-f—l) + f(e'Ui+1)
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for all 2. Consequently, iterating ¢ from 1 to n — 1 yields

f(v1) + flew) = f(on) + flew,). (22)

Let r € {2h — 1,2h} such that r € Dt(vy,v,). Then, there exists a vertex sequence v; =

Y1, Y2, ---, Yr+1 = Uy. Take the subsequence y1, o, ..., Y1 and apply Lemma 2.1 (setting m = 1).
We have

fn) + fny2) = fyner) + f(WnYns)- (23)

Similarly, taking the subsequence v, 11, Yr—ni2, ---, Yrr1 and applying Lemma 2.1 (setting m = 1
yields

SWr—ns1) + fWr—nt1Yr—nt2) = [Wrs1) + FWrrs1)- (24)

From (22), (23) and (24), we have

fWns1) + f(Ynynia) =

If r = 2h — 1, then we got

fWni1) = f(yn)

which will contradicts the injectivity of f. Similarly, if » = 2h we have

FWnynt1) = f(Yr—n+1Yr—n+2)
which also contradicts the injectivity of f. We conclude that G € F(F,). O

In Figure 3, we give an example of a graph satisfying conditions in Theorem 3.2.

Figure 3. A graph G satisfying condition in Theorem 3.2 for h = 5. Hence G € F(Ps).
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4. Uniqueness of minimal tree in F ( Ps)

Let G be H-magic with its H-magic labeling f. Recall that K,-supermagic graphs is also
called edge-supermagic graphs. Enomoto et al. [2] suggests that there exists a supermagic labeling
for every given trees.

Conjecture 1. [2] All trees are edge-supermagic.

The implication of this conjecture is written as follows.
Remark 4.1. If Conjecture 1 is true, then there does not exist trees in F(K5).

Therefore, we want to do similar approach for trying to find trees in F(Ps). According to
Theorem 1.3, H; € F(Ps). Our goal is to find whether there exists other trees 7" € F(Ps) which
does not contain H; while also characterizing trees which are Ps-supermagic.

To characterize these trees, we need some theorems that have been established before to be used in
our proof. A sufficient condition for trees to have Pj,-supermagic has been presented by Maryati et
al. [6] with following theorem.

Theorem 4.1. [6] Let GG be a tree that admits Py-covering for some certain integer h > 2. If for
every subgraph Py, in G contains a fixed vertex c, then G is Pj,-supermagic.

For one class of the tree graph, which is a path, Gutiérrez and Llad6 [4] showed a sufficient
condition for paths P, to have P,-magic with a theorem as follows.

Theorem 4.2. [4] Let n > 1 be an integer, then a path P, is P,-supermagic for every integer
h € [2,n].

Next, we start to characterize trees of order n € [3, 9] which are P3-supermagic. Some labelings
are obtained by using the provided theorems.

Theorem 4.3. Every tree of order n € [3,9] is Ps-supermagic if and only if the tree is H,-free.

Proof. The forward direction is just a result from Theorem 1.3 by taking n to be small. To prove the
backward direction, we enumerate all trees of order n € [3,9] which is H;-free is P3-supermagic.
All graphs which satisfies the condition is shown to be Ps-supermagic by Figure 4. Hence, the
theorem holds.

]

Considering the theorems and results for Ps;-(super)magic labeling in these trees, we establish
a conjecture and its implication as a closure in this section.

Conjecture 2. Every Hi-free tree is Ps-(super)magic.

Remark 4.2. Tf Conjecture 2 is true, then T' € F(Ps) implies H; C T.
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5. Concluding Remarks
For future investigation, there are some problems which we found to be interesting.
Problem 1. Can Remark 4.2 be shown without using Conjecture 2?

Problem 2. What are forbidden subgraphs in F(H) for other kind of H?
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Figure 4. Ps-supermagic trees.
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