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Abstract

For every graph G, the dominating partition dimension of G is either the same as its partition
dimension or one higher than its partition dimension. In this paper, we consider some general
connections among these three graph parameters: partition dimension, locating-chromatic number,
and dominating partition dimension. We will show that βp(G) ≤ ηp(G) ≤ χL(G) for any graph
G with at least 3 vertices. Therefore, we will derive properties for which graphs G have ηp(G) =
βp(G) or ηp(G) = βp(G) + 1.
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1. Introduction

The study of determining all coordinates of vertices in a graph has received extensive attention.
For example, Ore [8] defined dominating sets to determine the location of vertices in a graph by
considering the neighbors of each member of a set of vertices. Slater [9] defined the locating set
and locating number by assigning a unique distance coordinate for each vertex to a certain subset
of vertices. On the other hand, independently, Harary and Melter [6] also studied the same concept

Received: 3 July 2022, Revised: 23 August 2023, Accepted: 31 August 2023.

455



www.ejgta.org

The dominating partition dimension and locating-chromatic number of graphs | M. Ridwan et al.

but used different terms, namely resolving set and metric dimension. Chartrand, Salehi, and Zhang
[5] introduced the resolving partition and partition dimension of a graph as a new perspective in
determining the metric dimensions of graphs.

One of the studies to develop the concept of determining the coordinates of vertices in a graph
is by combining two well-known concepts. Slater [10] has proposed the idea of combining the
resolving set and the dominating set. Later, this study was enhanced by Brigham, et. al. [3] in
2003 and separately by Henning and Oellermann in 2004. Previously, Chartrand et. al. [4] defined
a locating-chromatic number, combining the concept of vertex partitioning with vertex coloring.
Following the idea of combining the concepts of resolving set and dominating set, Hernando,
Mora, and Pelayo [7] expanded the concept of resolving partition by defining dominating partition
and dominating partition dimension. They added a dominating condition to a resolving partition
of a graph and then called it as the resolving dominating partition of the graph. In this paper,
we consider some general connections among these three graph parameters: partition dimension,
locating-chromatic number and dominating partition dimension.

Let G be a simple and connected graph with vertex set V (G) and edge set E(G). The distance
between vertices u and w in G, denoted by d(u,w), is the length of a shortest path connecting u
and w in G. The distance between a vertex u ∈ V (G) and a subset S ⊆ V (G) is the minimum of
the distances between u and the vertices of S, that is, d(u, S) = min{d(u,w) : w ∈ S}. Denote
Ni(u) as the set of all vertices of G at distance i from u. The open neighborhood of vertex u is
N(u) = {w ∈ V (G) : uw ∈ E(G)}, and the closed neighborhood of u is N [u] = N(u) ∪ {u}.
The degree d(u) of a vertex u is |N(u)|. If d(u) = 1 then u is said to be a leaf of G. A vertex u of
G is called an earring of size l if u is adjacent to exactly l leaves.

Let Π = {S1, S2, · · · , Sk} be the ordered partition of V (G). The representation of a vertex
u ∈ V (G) with respect to Π is the vector consisting all distances from u to all elements of Π,
that is, r(u|Π) = (d(u, S1), d(u, S2), · · · , d(u, Sk)). The set Si is called resolves u,w ∈ V (G), if
d(u, Si) ̸= d(w, Si). A partition Π = {S1, S2, · · · , Sk} is called a resolving partition of G if for
any pair of distinct vertices u, v ∈ V (G), r(u|Π) ̸= r(v|Π), this is, if the set {u, v} is resolved
by some Si of Π. The partition dimension βp(G) of G is the minimum cardinality of a resolving
partition of G.

A partition Π = {S1, S2, · · · , Sk} is called a dominating partition of G if for every v ∈ V (G),
d(v, Sj) = 1, for some j ∈ {1, 2, · · · , k}. The partition Π is called a resolving dominating partition
of G, if it is both resolving partition and dominating partition. A resolving dominating partition
of G with minimum cardinality is called a minimum resolving dominating partition of G. The
cardinality of a minimum resolving dominating partition of G is called the dominating partition
dimension of G, denoted by ηp(G).

Let σ be a proper k-coloring of G, which mean that any two adjacent vertices in G have
distinct colors. Recall that a proper k-coloring σ is equivalent to a partition Π = {S1, S2, · · · , Sk}
of V (G) where Si is the set of vertices receiving color i for 1 ≤ i ≤ k. Let u ∈ V (G) and Π be
a partition of V (G) induced by σ. The color code σΠ(u) of a vertex u is defined as the ordered k-
tuple (d(u, S1), (u, S2), · · · , (u, Sk)). The proper k-coloring σ (or partition Π) is called a locating-
chromatic k-coloring of G, locating k-coloring for short, if all vertices of G have distinct color
codes. The locating-chromatic number χL(G) of G is the smallest k such that G has a locating
k-coloring, and this locating k-coloring is called a minimum locating coloring of G.
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2. Main Results

For any graph G of order n ≥ 3, Hernando et al. [7] showed the dominating partition dimension
of G is equal to either the partition dimension of G or the partition dimension of G plus one.

Theorem 2.1. [7] For any graph G of order n ≥ 3, βp(G) ≤ ηp(G) ≤ βp(G) + 1.

Based on Theorem 2.1, we can classify all graphs G depending on the value of its dominating
partition dimension. A graph G is said to be of type DP1 if ηp(G) = βp(G), otherwise we call G
as a graph of type DP2 (if ηp(G) = βp(G) + 1).

In this paper, we would like to classify which graphs G of type DP1 or type DP2. Before classi-
fying these graphs, let us consider some general connections between these three graph parameters:
partition dimension, locating-chromatic number, and dominating partition dimension.

Theorem 2.2. For any connected graph G, every locating coloring of G is also a resolving domi-
nating partition of G.

Proof. Let G be a graph. Let σ be any locating coloring of G and Π := {S1, S2, · · · , Sk} be the
partition of V (G) induced by σ. Since σ is a locating coloring of G, then for any two distinct
vertices x and y in G there exists Si for some i ∈ [1, k] such that d(x, Si) ̸= d(y, Si). So, r(x|Π) ̸=
r(y|Π) and Π is a resolving partition of G. Now, since every coloring of G is also a proper coloring,
then for every two adjacent vertices x, y in G, we have σ(x) ̸= σ(y). So, this implies that x and
y belong to different partition classes of Π. This fact yields that every vertex x is dominated by
some partition class Si for some i ∈ [1, k]. Thus, Π is a dominating partition of G. Therefore, Π is
a resolving dominating partition of G.

The converse of Theorem 2.2 is not always true. The following graph G in Figure 1 has
ηp(G) = βp(G) = 4, but χL(G) = 5. A resolving partition as well as a resolving dominating
partition of G with minimum cardinality is shown in Figure 1(a). A locating coloring of G with a
minimum number of colors is shown in Figure 1(b).

(a) (b)

Figure 1. Graph G with ηp(G) = βp(G) = 4, but χL(G) = 5.

Corollary 2.1. For any graph G of order n ≥ 3, βp(G) ≤ ηp(G) ≤ χL(G).

Proof. The first inequality (βp(G) ≤ ηp(G)) follows directly from the definition of a resolving
dominating partition of G. The second inequality (ηp(G) ≤ χL(G)) follows from Theorem 2.2.
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The difference between the dominating partition dimension and the locating-chromatic number
can vary. The following theorem shows the existence of a graph G with ηp(G) = a and χL(G) = b
for any integers a and b with 3 ≤ a < b ≤ 2(a− 1).

Theorem 2.3. For any integers a and b with 3 ≤ a < b ≤ 2(a − 1), there exists a graph G with
βp(G) = ηp(G) = a and χL(G) = b.

Proof. Consider the graph G in Figure 2. A minimum locating coloring of G is shown in Figure
2(a). In Figure 2 (b), the partition gives a minimum resolving partition as well as a minimum
resolving dominating partition of G. Hence, we have βp(G) = ηp(G) = a and χL(G) = b.

Figure 2. (a) χL(G) = b, (b) ηp(G) = βp(G) = a.

There are many classes of graphs with these three parameters having the same values. An
example of a graph G with a small order and βp(G) = χL(G) = ηp(G) is given in Figure 3. A
resolving partition of G with minimum cardinality is shown in Figure 3(a). A resolving dominating
partition of G with minimum cardinality is shown in Figure 3(b).

(a) (b)

Figure 3. Graph G with ηp(G) = βp(G) = χL(G) = 3.

In the following two remaining sections, the graphs which are of type DP1 will be presented in
section 3. In Section 4, we will further provide some classes of graphs of type DP2. In particular,
we classify some class graphs of type DP1 or type DP2 with small parameters: partition dimen-
sion and dominating partition dimension. Before going to the next section, some known results
regarding these parameters are shown.
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Theorem 2.4. [5, 7] Let G be a graph on n vertices. Then,

(a) βp(G) = 2 if and only if G is a path Pn of order n ≥ 2.
(b) ηp(G) = 2 if and only if G is isomorphic to K2.
(c) If G is either a path or a cycle of order n ≥ 3, then ηp(G) = 3.

3. Graphs of type DP1

In this section, we will further derive some graphs G of type DP1, namely graphs G with
ηp(G) = βp(G). We begin by giving some graphs of type DP1 with a small dominating partition
dimension. By Theorem 2.4 point (a) and (b), we have that if ηp(G) = 2, then the only graph G
with ηp(G) = βp(G) = 2 is a complete graph K2.

Theorem 3.1. Let Cn be a cycle on n ≥ 3 vertices then Cn is a graph of type DP1 with ηp(G) =
βp(G) = 3.

Proof. Let Cn be a cycle of order n ≥ 3 with V (Cn) = {v1, v2, v3, . . . , vn} and E(Cn) =
{v1v2, v2v3, . . . , vn−1vn, vnv1}. Consider the sets of vertices: L1 = {v1}, L′

1 = {v1, v2}, L2 =
{vi ∈ V (Cn)|even i}, L′

2 = {vi ∈ V (Cn)|i ̸= 2, even}, and L3 = {vi ∈ V (Cn)|odd i}.
It is easy to verify that Π = {L1, L2, L3} is both resolving and dominating partition of Cn

if n is odd and that Π′ = {L′
1, L

′
2, L3} is both resolving and dominating partition of Cn if n is

even. Thus, βp(Cn) = ηp(G) ≤ 3. According to Theorem 2.4 point (a) and (c), βp(Cn) ≥ 3 and
ηp(Cn) ≥ 3. This implies that ηp(G) = βp(G) = 3. Therefore, Cn is a graph of type DP1

Now, in the following theorems, we will derive graphs G of type DP1 with ηp(G) = 3. This
means that G has also βp(G) = 3. To date, there is no complete characterization regarding all
graphs with partition dimension three. However, there is a complete characterization on graphs
with locating-chromatic three. Let T be a set of all trees T on n vertices (n ≥ 3) with locating-
chromatic number three. Baskoro and Asmiati (2013) characterized all the members of such a set
T as follows.

Theorem 3.2. [2] A tree T is in T if and only if T is any subtree of one of the trees (A), (B) or (C)
in Figure 4 containing vertices X , Y and Z, with a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0, e ≥ 0, f ≥ 0, k ≥
0, p ≥ 0; g ≥ 1, h ≥ 1; e = f and k = p.

For graphs other than trees, Asmiati and Baskoro [1] have also characterized all such graphs G
with χL(G) = 3. Such graphs are stated in the following theorem.

Theorem 3.3. [1] Let G be a graph other than a tree with χL(G) = 3. Then,

1. If G is bipartite then G is isomorphic to any subgraph of the graph in Figure 5 (A) containing
at least all blue edges.

2. If G is not bipartite then G is isomorphic to any subgraph of either the graph (B), (C), (D),
or (E) in Figure 5 containing the smallest odd blue cycle Cm.
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Figure 4. All trees T with χL(T ) = 3 and with a minimum locating coloring.

Figure 5. All graphs G other than trees with χL(G) = 3 and with a minimum locating coloring.

The next corollary gives all graphs of type DP1 with the locating-chromatic number three.
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Corollary 3.1. Let G be a graph other than a path with χL(G) = 3. Then G belongs type DP1.

Proof. Let G be a graph other than a path with χL(G) = 3. Then, G must be isomorphic to one of
the graphs characterized in Theorem 3.2 or Theorem 3.3. By Corollary 2.1, βp(G) ≤ ηp(G) ≤ 3.
Since the only graph with partition dimension two is a path, then βp(G) ≥ 3. This implies that
βp(G) = ηp(G) = 3. Thus, G is a graph of type DP1 with χL(G) = 3.

4. Graphs of type DP2

In this section, we determine graphs on n vertices of type DP2, namely the graphs G with
ηp(G) = βp(G) + 1. We start this section with a corollary showing that any path with n ≥ 3
vertices is a graph of type DP2.

Corollary 4.1. Pn on n ≥ 3 vertices is a graph of type DP2.

Proof. From Theorem 2.4 part (a) we have that βp(Pn) = 2. By Theorem 2.4 part (c), we conclude
that ηp(Pn) = 3 = βp(Pn) + 1. Therefore, Pn on n ≥ 3 vertices is a graph of type DP2.

Theorem 4.1. If G is a graph on n ≥ 5 vertices having a unique earring of size k, with ⌈n
2
⌉ ≤

k ≤ n− 3, then G is of type DP2 with ηp(G) = χL(G) = k + 1 and βp(G) = k.

Proof. Let G be a graph on n ≥ 5 vertices with an earring x of size k (⌈n
2
⌉ ≤ k ≤ n − 3). Let

x1, x2, · · · , xk be the leaves adjacent to earring x in G, and a1, a2, · · · , an−k−1 are the remaining
vertices of G. Assume that βp(G) = k− 1 and Π is a resolving partition of G with (k− 1)-classes.
Since k leaves hanging from x, there are two leaves, w.l.o.g we may assume x1 and x2, to be
included in the same partition class of Π. Note that d(x1, v) = d(x2, v) for all v ∈ V (G)\{x1, x2},
this implies that r(x1|Π) = r(x2|Π), a contradiction. Therefore βp(G) ≥ k. Furthermore, let σ be
a locating-coloring of G. Each locating-coloring σ of G assigns distinct colors to these k leaves.
Since x is adjacent to these leaves, it must be colored a different color than the k colors that have
been used on the leaves. Therefore, χL(G) ≥ k + 1.

Next, we show that βp(G) = k, χL(G) = k + 1, and ηp(G) ≤ k + 1. Now, define Π1 :=
{{x, x1}, {x2, a1}, {x3, a2}, . . . , {xn−k, an−k−1}, {xn−k+1}, · · · , {xk}} and Π2 := {{x}, {x1},
{x2, a1}, {x3, a2}, . . . , {xn−k, an−k−1}, {xn−k+,1}, . . . , {xk}}. It is easy to verify that Π1 is a
resolving partition of G with minimum cardinality and Π2 is a locating-chromatic of G with a
minimum number of colors. It means that βp(G) ≤ k and χL(G) ≤ k + 1. Therefore, βp(G) = k
and χL(G) = k + 1. It implies that ηp(G) ≤ k + 1 by Theorem 2.1 and Corollary 2.1.

Now, if ηp(G) = k then there exists a resolving partition Π of cardinality k. Since there are k
leaves hanging from x, then each leaf hanging from x is in a different partition class of Π. Thus,
there is a partition class of Π that contains both x and a leaf hanging from x. It implies that Π is
not dominating partition. Hence, ηp(G) ≥ k + 1, and then ηp(G) = k + 1.

Let Mt+1 be a tree of order t + 1 with 2 ≤ t ≤ n
2

for any integers n and t. Let Tn be a tree
of order n obtained by connecting n − t − 1 new vertices to a vertex that is not an earring in the
Mt+1. Syofyan et al. [11] characterized all trees of order n ≥ 6 with locating-chromatic number
n− t. The characterization is as follows.
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Theorem 4.2. [11] Let Tn be a tree of order n with n ≥ 6. Then, χL(Tn) = n− t where 2 ≤ t < n
2

if and only if Tn has exactly one earring of size n− t− 1.

Now, we characterize all trees on n vertices with dominating partition dimension n−t for some
t.

Theorem 4.3. Let Tn be a tree of order n with n ≥ 6. Then, ηp(Tn) = n− t for some 2 ≤ t < n
2

if
and only if Tn has exactly one earring of size n− t− 1.

Proof. Let Tn be a tree of order n with n ≥ 6. If Tn has exactly one earring of size n − t − 1 for
some fixed 2 ≤ t < n

2
, then by Theorem 4.1, ηp(Tn) = n− t.

Now, conversely, assume that ηp(Tn) = n − t for some fixed 2 ≤ t < n
2
. Then, by Corollary

2.1, χL(Tn) ≥ ηp(Tn) = n− t. Let χL(Tn) = n− t′ > n− t with t′ < t. Then, by Theorem 4.2, Tn

has exactly one earring of size n−t′−1. Thus, by Theorem 4.1, ηp(Tn) = χL(Tn) = n−t′ > n−t,
a contradiction. Therefore, the theorem follows.

Theorem 4.4. For any integers n ≥ 6 and t with 2 ≤ t < n
2
, the only trees Tn on n vertices of type

DP2 with ηp(Tn) = n− t are the ones with exactly one earring of size n− t− 1.

Proof. This follows from Theorem 4.3 and the fact that βp(Tn) = n − t − 1, by using a partition
Π := {{x2}, {x3}, · · · , {xn−t−1}, {x, x1} ∪ B}, where {x1, · · · , xn−t−1} are all the vertices of
degree one adjacent to earring x and B is the set of all the remaining vertices in Tn.

If G is not a tree and G is of type DP2 with ηp(G) = k for some integer k ≥ 3, then G does
not necessarily contain an earring of size k − 1. For any integers m, t ≥ 3, let us consider a graph
G having one earring of size 2 as depicted in Figure 6. We will show that this graph G is of type
DP2 as stated in the following theorem. The number of these graphs G are infinite since m and t
can be arbitrary integers greater than or equal to 3.

Figure 6. Graph G with βp(G) = 3 and ηp(G) = χL(G) = 4.

Theorem 4.5. If G is the graph in Figure 6, then G is a graph of type DP2.

Proof. Let G be the graph in Figure 6 for some integers m ≥ 3 and t ≥ 3. Notice that, G
contains an earring x1 of size 2 with the vertices w1 and v1 as leaves hanging at x1. To prove that
G is a graph of type DP2, we must show first that βp(G) = 3. Since G is not a path, then by
Theorem 2.4 part (a) we have βp(G) ≥ 3. Now, take an ordered partition Γ = {S1, S2, S3} where
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S1 = {v1, x1, x2, . . . , xt}, S2 = {w1, w2, . . . , wm}, and S3 = {u1, u2, . . . , um−1, v2, v3, . . . , vt}.
Note that, S3 resolves v1 and xi, for every i ∈ {1, 2, . . . , t}, and S2 resolves every pair of vertices
of S1 \ {v1}. Now, S3 resolves the pair w1, wj for every j ∈ {2, 3, . . . ,m}, and S1 resolves every
pair of vertices of S2 \ {w1}. Next, S1 and S2 resolves every pair of vertices of {u1, u2, . . . , um−1}
and {u1, v2, v3, . . . , vt}, respectively. For every i ∈ {2, 3, . . . ,m − 1} and j ∈ {2, 3, . . . , t}, the
set {ui, vj} is resolved by both S1 and S2. Hence, the partition Γ is a resolving partition of G and
we conclude that βp(G) = 3.

Second, we will show that ηp(G) = χL(G) = 4. Notice that G is not isomorphic to any
subgraph of a graph stated in Theorem 3.3, then χL(G) ≥ 4. Now, define a proper 4-coloring σ on
the vertices of G such that σ(xi) = 1 for all i ∈ {1, 2, . . . , t}, σ(wj) = 2 for all j ∈ {1, 2, . . . ,m},
σ(uk) = σ(vl) = 3 for all k ∈ {1, 2, . . . ,m − 1} and l ∈ {2, 3, . . . , t}, and σ(v1) = 4. Clearly, σ
is a locating coloring of G and χL(G) ≤ 4. Therefore, χL(G) = 4.

Based on the above results and Corollary 2.1, we have that 3 ≤ ηp(G) ≤ 4. Next, we will
show that ηp(G) ≥ 4. For a contradiction, let Π = {C1, C2, C3} be a resolving dominating
partition of V (G) induced by a 3-coloring c. Note that c must be not a proper coloring, since
otherwise χL(G) = 3. Therefore, r(y|Π) must have at least one ordinate ’1’ for any y ∈ V (G).
Since d(w1, y) = d(v1, y) for every y ∈ V (G) \ {w1, v1} and d(w1, z) = d(v1, z) ≥ 2 for every
z ∈ V (G′) \ {x1}, it follows that c(x1), c(w1), and c(v1) must be distinct. We may assume
that x1 ∈ C1, w1 ∈ C2 and v1 ∈ C3. Thus, r(x1|Π) = (0, 1, 1), r(w1|Π) = (1, 0, 2), and
r(v1|Π) = (1, 2, 0).

Next, let M = {u1, v2, w2} and define the multiset c(M) = {c(u1), c(v2), c(w2)}. Since Π is
a resolving dominating partition, then c(M) ̸= {1, 1, 1}, c(M) ̸⊇ {2, 2} or c(M) ̸⊇ {3, 3}. This
implies that c(M) contains exactly one or two ’1’s.

Case 1. c(M) contains exactly one ’1’. Then, c(M) = {1, 2, 3}. This forces that the represen-
tations of all members of M must be (1, 0, 1), (1, 1, 0) and one of {(0, 1, 2), (0, 2, 1)}. This implies
that:

(i) c(v2) = 1 and {c(u1), c(w2)} = {2, 3}, or
(ii) c(u1) = 1 and {c(w2), c(v2)} = {2, 3}, or

(iii) c(w2) = 1 and {c(u1), c(v2)} = {2, 3}.

If (i) holds and let c(w2) = 3 then c(x2) /∈ {2, 3}. Since otherwise r(x2|Π) = r(w1|Π) or
r(x2|Π) = r(w2|Π), a contradiction. Hence c(x2) = 1. On other hand, we must have c(x3) = 3,
since otherwise v2 is not dominated or r(v2|Π) = r(x2|Π). Next, let us consider c(v3). If c(v3) ∈
{2, 3} then r(v3|Π) = r(u1|Π) or r(x2|Π) = r(x1|Π), a contradiction. Thus c(v3) = 1. But, this
implies that r(v3|Π) = r(v2|Π) or r(v3|Π) = r(x1|Π), a contradiction. It is similar if c(w2) = 2.

If (ii) holds and let c(w2) = 2, then c(u2) = 3 (to get r(w2|Π) = (1, 0, 1)), c(x3) = 2 (to get
r(v2|Π) = (1, 1, 0)) and c(x2) must be 1 (to get all distinct representations). This forces that c(w3)
must be 3. But, now r(w3|Π) = r(v1|Π) or r(w3|Π) = r(v2|Π), a contradiction. It is similar if
c(w2) = 3.

If (iii) holds and c(u1) = 2 then r(w2|Π) = (0, 1, 2) and c(x2) ̸= 1. Now, consider c(x2) ∈
{2, 3}. Let c(x2) = 3, then c(x3) = 2 (to get r(v2|Π) = (1, 1, 0)). On other hand, since r(w2|Π) =
(0, 1, 2) then c(u2) ̸= 3. Next, consider c(u2) ∈ {1, 2}. If c(u2) = 2 then c(w3) ̸∈ {1, 3},
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since otherwise r(w3|Π) = r(w2|Π) or r(w3|Π) = r(x2|Π) or r(u2|Π) = r(u1|Π). But now, if
c(w3) = 2 then w3 is not dominated, r(w3|Π) = r(w1|Π) or r(w3|Π) = r(x3|Π), a contradiction.
Next, if c(u2) = 1 then c(w3) /∈ {1, 2, 3}, a contradiction. Hence, c(x2) ̸= 3. Now, let c(x2) = 2.
Then, c(w3) must be 3 (to get r(u1|Π) = (1, 0, 1)). But, now c(u2) ̸∈ {1, 3, 2}, since otherwise
r(w3|Π) = r(v2|Π) or r(u2|Π) = r(u1|Π) or r(u2|Π) = r(v1|Π), a contradiction. It is similar if
c(u1) = 3 and c(v2) = 2.

Case 2. c(M) contains exactly two ’1’s. There are 3 subcases to be considered: (i) c(u1) =
c(w2) = 1, (ii) c(u1) = c(v2) = 1, and (iii) c(w2) = c(v2) = 1.

Consider the first subcase, without loss of generality, we my assume c(v2) = 2. Note that,
either c(x2) = 3 or c(x3) = 3 to get r(v2|Π) = (1, 0, 1). Now, if c(x2) = 3 then c(u2) = 2, since
otherwise r(w2|Π) = r(u1|Π) or w2 is not dominated. But, now c(w3) ̸∈ {1, 2, 3}, a contradiction.
Hence, c(x3) = 3. Now, let us consider c(x2) ∈ {1, 2}. If c(x2) = 1 then c(v3) = 1, since
otherwise r(v3|Π) = r(v2|Π) or r(x2|Π) = r(x1|Π). On other hand c(w3) ̸∈ {1, 2, 3} since
otherwise u1 is not dominated, r(u1|Π) = r(x2|Π), or r(u1|Π) = r(v3|Π), a contradiction. But
now, if c(x2) = 2 then r(x2|Π) = r(w1|Π), a contradiction.

For the second subcase, without loss of generality, we can assume c(u1) = c(v2) = 1 and
c(w2) = 2. This implies that c(u2) = 3 (to get r(w2|Π) = (1, 0, 1). Since r(u1|Π) ̸= (0, 1, 1)
then c(w3) ̸= 3 and c(x2) ̸= 3. Furthermore, c(w3) ̸= 2 since otherwise r(w3|Π) = r(w2|Π).
Therefore, c(w3) = 1. Now, observe c(x2). Note that c(x2) /∈ 2, since otherwise r(v2|Π) =
r(u1|Π). Thus, c(x2) = 1. This implies that c(x3) ̸= 1 (to get v2 dominated). But, c(x3) is neither
2 nor 3, since otherwise r(v2|Π) = r(u1|Π) or r(v2|Π) = r(w3|Π), a contradiction.

Now, consider the third subcase, namely c(w2) = c(v2) = 1. Without loss of generality, we
may assume c(u1) = 2. Then, r(u1|Π) must be (1, 0, 1). This implies that either c(w3) = 3 or
c(x2) = 3. Now, let c(w3) = 3. Then, c(u2) = 1. Further, c(x2) ̸∈ {1, 2, 3} to get a distinct
representation, a contradiction. Next, let c(x2) = 3. Then c(x3) ̸= 2 (since otherwise r(v2|Π) =
r(x1|Π)). If c(x3) = 1 then whatever color of v3 yields a duplication of the representations of
vertices. Thus, c(x3) = 3. Next, let us consider c(v3). If c(v3) ̸= 3 then r(v3|Π) = r(v2|Π),
r(v3|Π) = r(x1|Π), or r(x3|Π) = r(x2|Π), a contradiction. But, if c(v3) = 3 then v3 is not
dominated or r(v3|Π) = r(v1|Π), or r(x3|Π) = r(v1|Π), a contradiction.

To conclude this proof, we obtain that ηp(G) = 4 and βp(G) = 3. Then G is a graph of type
DP2.
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