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Abstract

For a given finite poset P, La(n, P) denotes the largest size of a family F of subsets of [n] not
containing P as a weak subposet. We exactly determine La(n, P) for infinitely many P posets.
These posets are built from seven base posets using two operations. For arbitrary posets, an
upper bound is given for La(n, P) depending on | P| and the size of the longest chain in P. To
prove these theorems we introduce a new method, counting the intersections of F with double
chains, rather than chains.

Keywords: excluded subposet, Lubell’s function, double chain
Mathematics Subject Classification : 05D05

1. Introduction

Let [n] = {1,2,...,n} be a finite set. We investigate families F of subsets of [n] avoiding
certain configurations of inclusion.

Definition Let P be a finite poset, and F be a family of subsets of [n]. We say that P is
contained in F if there is an injective mapping f : P — F satisfying a <, b = f(a) C f(b)
for all a,b € P. Fis called P-free if P is not contained in it.

Let La(n, P) = {max |F| | F contains no P}

Note that we do not want to find P as an induced subposet, so the subsets of F can satisfy more
inclusions than the elements of the poset P.
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We are interested in determining La(n, P) for as many posets as possible. The first theorem
of this kind was proved by Sperner. Later it was generalized by Erdés.

Theorem 1.1 (Sperner). [1] Let F be a family of subsets of [n], with no member of F being the

subset of an other one. Then
n
< 1
71 (g W

Theorem 1.2 (Erdds). [2] Let F be a family of subsets of [n|, with no k + 1 members of F
satisfying Ay C Ay C -+ C Agy1 (kK < n). Then |F| is at most the sum of the k biggest
binomial coefficients belonging to n. The bound is sharp, since it can be achieved by choosing
all subsets F with |24 | < |F| < | =L,

Since choosing all the subsets with certain sizes near n/2 is the maximal family for many
excluded posets, we use the following notation.

n+m—1
L
2

Notation Y (n,m) = Z (n> denotes the sum of the m largest binomial coefficients
1

i:Ln—rgn+1J

belonging to n.

Now we can reformulate Theorem 1.2. Let Pj; be the path poset with k£ 4 1 elements.
Then
La(”? Pk—i—l) = E(?’L, k) (2)

We give here a proof of Theorem 1.2 to illustrate the chain method introduced by Lubell [3].

Proof. (Theorem 1.2) A chain is n + 1 subsets of [n] satisfying Lo C L; C Ly C --- C L, and
|L;| =i foralli =0,1,2,...n. The number of chains is n!. We use double counting for the
pairs (C, F') where C'is a chain, F' € C'and F' € F.
The number of chains going through some subset ' € F is |F'|!(n — |F|)!. So the number

of pairs is

> IF(n — | F])!

FeF
One chain can contain at most k£ elements of F, otherwise a Py, poset would be formed. So
the number of pairs is at most & - n!. It implies

S IP|i(n— |F|)! < k- nl (3)

FeF
1
<k @
2

FeF \|F|

Fixing | F|, the left side takes its minimum when we choose the subsets with sizes as near to
n/2 as possible. Choosing all $(n, k) subsets with sizes |25+ | < |F| < |2E=L| we have
equality. So we have

La(n, Pyq) = X(n, k) ®)

]

La(n, P) is determined asymptotically for many posets, but its exact value is known for
very few P. (See [4] and [5])
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2. The method of double chains

The main purpose of the present paper is to exactly determine La(n, P) for some posets
P. Our main tool is a modification of the the chain method, double chains are used rather than
chains.

Definition LetC': Lo C Ly C Ly C --- C L, be a chain. The double chain assigned to C'is a
set D ={Lo,Lq,..., Ly, My, My, ... M, 1}, where M; = L; 1 U (L;11\Ly).

Note that | M;| = |L;| = 1,
Z'<j:LiCLj7 LZ‘CM]‘, MiCLjandi+1<j:>M,-CMj.

{Lo, L1, ..., Ly} is called the primary line of D and {M;, M, ..., M, } is the secondary
line.

D denotes the set of all n! double chains.

Ls={1,2,3,4} = [n]
Ls={1,2,3} M3 ={2,3,4}
Ly ={2,3} My ={1,2}
Ly = {2} M = {3}
Ly=0

Figure 1. The double chain assigned to the chain ) C {2} C {2,3} C {1,2,3} C {1,2,3,4}.

Lemma 2.1. Let F be a family of subsets of [n| (n > 2), and let m be a positive real number.
Assume that

Y |FnD|<2m-n! (6)
DeD
Then
n
!flﬁm(m/%) (7

If m is an integer and m < n — 1, we have the following better bound:
|F| < E(n,m) (8)

Proof. First we count how many double chains contains a given subset F' C [n]. () and [n] are
contained in all n! double chains. Now let F' ¢ {0, [n]}. F is contained in the primary line of
|F'|!(n — | F'|)! double chains. Now count the double chains containing F in the secondary line.
Letting F' = Mg, we have |F| - (n — | F|) possibilities to choose L/, since we have to replace
one element of M p with a new one. M| and L | already define Lz, and Lp4;. We have
(|IF| — 1)!and (n — |F| — 1)! possibilities for the first and last part of the primary line, so the
number of double chains containing F' in the secondary line is |F'|(n— |F|)(|F| —1)!(n— | F| —
! = |F|l(n — |F|)!. It gives a total of 2| F'|!(n — | F'|)! double chains containing F'.
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Lett = |F N {0, [n]}|. Double counting the pairs (D, F') where D € D, F € Dand F € F
we have

tenl+ > 2[Fi(n—|F)! < 2m-nl 9)
FeF\{0,[n]}
t-1+ Z L (10)
2 my T

FeF\{0,[n]} (\F\)

Since (Ln72 j) is the biggest binomial coefficient, and (LnT/L2 J) > 2 we have
Fl o (11)
(Ln/2 J)

It proves (7). If m is an integer, and m < n — 1, considering | F| fixed, the left side of (10) is
minimal when we choose subsets with sizes as near to n/2 as possible. Choosing all ¥ (n, m)
subsets with such sizes, we have equality in (10). It implies |F| < ¥(n,m), so (8) is proved.

O

Definition The infinite double chain is an infinite poset with elements L;, ¢ € Z and M;, ¢ € Z.
The defining relations between the elements are

i<j= L CL; L;CM,, MCL;

Ly i My
L, My
Ly M,
L, : M_,

Figure 2. The infinite double chain.

Note that the poset formed by the elements of any double chain with the inclusion as relation
is a subposet of the infinite double chain.

Lemma 2.2. Let m be an integer or half of an integer and P be a finite poset. Assume that
any subset of size 2m + 1 of the infinite double chain contains P as a (not necessarily induced)
subposet. Let F be a family of subsets of [n| such that F does not contain P. Then

A<, y) (12

If m is an integer and m < n — 1 we have the following better bound:

|F| < X(n,m) (13)
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Proof. Since the poset formed by the elements of any double chains is a subposet of the infinite
double chain,
|F N D| < 2m for all double chains D. There are n! double chains, so

Z|]—"F‘|D|§2m-n! (14)
DeD
holds. Now we can use Lemma 2.1 and finish the proof. [

3. An upper estimate for arbitrary posets

Definition The size of the longest chain in a finite poset P is the largest integer L(P) such that
for some ay, ag, ...,arp) € P, a1 <, az <p -+ <, arp) holds.

Figure 3. A poset with | P| = 10 elements and longest chain of length L(P) = 4.

Theorem 3.1. Let P be a finite poset and let F be a P-free family of subsets of [n|. Then

s (10,1

If % — 1 is an integer and w < n we have the following better bound:

P|+ L(P
Proof. We want to use Lemma 2.2 with m = w — 1. So the only thing we have to prove
is the following lemma. O

Lemma 3.2. Let P be a finite poset. Then any subset S of size |P| + L(P) — 1 of the infinite
double chain contains P as a (not necessarily induced) subposet.

Proof. We prove the lemma using induction on L(P). When L(P) = 1, we have a subset of
size | P| in the infinite double chain. We can choose them all, we get the poset P, since there
are no relations between its elements. Assume that we already proved the lemma for all posets
with longest chain of size [ — 1, and prove it for a poset P with L(P) = [.

Arrange the elements of the infinite double chain as follows:

.- -L—17M—17L07M07L17M17L27M2 cee
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Assume that P has £ minimal elements, and choose the £ first elements of S for them according
to the above arrangement. Note that all remaining elements of S, except for at most one, are
greater in the infinite double chain than all the k£ elements we just chose. If there is such an
exception, delete that element from S. Now we have at least | P| + L(P) — k — 2 elements of S
left, all greater than the £ we chose for the minimal elements. Denote the set of these elements
by S’

Let P’ be the poset obtained by P after deleting its minimal elements. It has |P'| = |P| — k
elements and a longest chain of size L(P') = L(P) — 1. By the inductive hypothesis P’ is
formed by some elements of S’, since |S’| > |P| + L(P) — k —2 = |P/| + L(P') — 1.
Considering these elements together with the first &, they form P as a weak subposetin .S. [

Remark The previously known upper bound for maximal families not containing a general P
as weak subposet was Y(n, |P| — 1). We can get it from Theorem 1.2 since P is a subposet of

the path poset Pp|. The new upper bound, X (n, w - 1) is better since L(P) < |P|, and
equality occurs only when P is a path poset.
4. Exact results

In this section we will describe infinitely many posets for which Theorem 3.1 provides a
sharp bound.

Definition For a finite poset P, e(P) is the maximal m such that the family formed by all
subsets of [n] of size k,k + 1,...,k +m — 1is P-free for all n and k.

We will prove that La(n, P) = X(n,e(P)) if n is large enough for infinitely many P,
verifying the following conjecture for these posets.

Conjecture [6] For every finite poset P

n
La(n, P) = e(P)( ) (14+0(1/n)) (17)
[n/2]
In [6] Bukh proved the conjecture for all posets whose Hasse-diagram is a tree.
Notation Pla (P
b(P) = % — 1, the bound used in Theorem 3.1 (18)

Lemma 4.1. Assume that e(P) = b(P) for a finite poset P and n > b(P) + 1. Then
La(n, P) = X(n,e(P)) = X(n,b(P)) (19)
Proof. The family of subsets of size L#J <|F| < L%J has YX(n, e(P)) elements

and is P-free by the definition of e(P). On the other hand, Theorem 3.1 states that a P-free
family has at most X(n, b(P)) elements. O

Now we show some posets satisfying e(P) = b(P).
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Definition (See figure 4).

E'is the poset with one element.

The elements of the following posets are divided into levels so that a is greater than b in the
poset if and only if @ is in a higher level than b.

B is the butterfly poset, a poset with 2 elements on each level.

Ds is the 3-diamond poset, a poset with respectively 1, 3 and 1 element on its levels.

() is a poset with respectively 2, 3 and 2 elements on its levels.

R is a poset with respectively 1, 4, 4 and 1 element on its levels.

S is a poset with respectively 1, 4 and 2 elements on its levels.

S’ is a poset with respectively 2, 4 and 1 element on its levels.

Figure 4. 7 small posets satisfying e(P) = b(P).

Lemma 4.2. Forall P € {E, B,D3,Q, R, S, S'}, e(P) = b(P) holds.

Proof. b(P) is an integer for all the above posets. Assume that e(P) > b(P) + 1. Then for
n > b(P) + 1 there would be a P-free family F of subsets of [n] with |F| = X(n,b(P) + 1) >
¥ (n,b(P)), contradicting Theorem 3.1. So e(P) < b(P). We will show that for every poset
P e {E,B,D;,Q,R,S,S'} and integers n, k the family formed by all subsets of [n] of size
kk+1,...,k+b(P)—1is P-free. It gives us e(P) > b(P), and completes the proof.

The statement is trivial for P = E since b(E) = 0.

b(B) = 2. The set of all subsets with k and k + 1 elements is B-free since two subsets of
size k + 1 can not have two different common subsets of size k.

b(D3) = 3. The set of all subsets with k, k£ + 1 and k& + 2 elements is Ds-free since for two
subsets A, B, |B| — |A| < 2 there are at most two subsets F' satisfying A C F' C B.

b(Q) = 4. Assume that () is formed by 7 subsets of size k, k + 1,k + 2 or k + 3. There are
at least 4 subsets in the lower 2 or the upper 2 levels. They should form a B poset, that is not
possible.

b(R) = 6. Assume that R is formed by 10 subsets of size k,k + 1,...,k + 5. Let A be
the least, and B be the greatest subset. Let U be the union of the 5 smaller subsets. At least 3
subsets in the second level are different from U, and contained in it. Similarly, at least 3 subsets
of the third level are different from U, and contain it. Since Dj is not formed by subsets of size
m,m+ 1and m + 2, |A| + 6 < |U| + 3 < |B|, a contradiction.

b(S) = 4. Assume that S is formed by 7 subsets of size k, k + 1,k +2or k + 3. Let VV be
the intersection of the two elements of the top level, then |V| < k + 2. V contains all elements
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of the middle level, and is different from at least 3 of them. These 3 elements together with the
least element and V' form a D3 from subsets of size k, £ + 1 and k + 2, and it is a contradiction.

A family is S’-free if and only if the family of the complements of its elements is S-free. It
gives e(S’") = e(.S) > b(S) = b(S"). [

We define two ways of building posets from smaller ones, keeping the property e(P) =
b(P).

Definition Let P, P, posets. P, & P; is the poset obtained by P; and P, adding the relations
a<bforalla € P,be Ps.

Assume that P, has a greatest element and P has a least element. P, ® P; is the poset
obtained by identifying the greatest element of P, with the least element of F.

Lemma 4.3. ¢(P, © P,) > e(P) +e(P) + 1. If P, ® P, is defined, then e(P, ® Py) >
G(Pl) + Q(PQ).

Proof. Inorder to find a P, we need at least e(P;)+1 levels, for a P, we need at least e( ) +1
levels. It follows from the properties of @ that the lowest level of P, is above the highest level
of P, in any occurrence of P, & P,, which thus needs at least e(P;) + 1 + e(P,) + 1 levels. In
the case of P, ® P», the same reasoning applies, noting that highest level of P, and the lowest
level of P, coincide. O

Lemma 4.4. Assume that P, and P, are finite posets such that e(P;) = b(Py) and e(P;) =
b(P,). Then
€<P1@P2):b(P1@P2> (20)

Assume that Py has a greatest element and P, has a least element. Then
6(P1®P2):b(P1®P2) (21)

Pl’OOf Notethat|P1€BP2| = |P1|+ ’PQ,L(Pl@PQ) = L(P1)+L(P2), ande(Pl@Pg) Z
e(P) + e(Py) + 1. Similarly, |P, @ Po| = |Pi| + || — 1, L(P, ® Po) = L(Py) + L(P) — 1,
and G(Pl & PQ) 2 €(P1) + €<P2).

From the above equations and (18) we have

and
€(P1®P2) Z€(P1>+€(P2) :b(P1)+b(P2> :b(P1®P2) (23)

if P, has a greatest element and P, has a least element. We have already seen that e(P) < b(P)
always holds. 0

The following theorem summarizes our results.

Theorem 4.5. Let P be a finite poset built from the posets E, B, D3, Q, R, S and S’ using the
operations @ and . (See figure 5 for examples.) For n. > b(P) + 1

La(n, P) = S(n,b(P)) = S(n, e(P)) (24)
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Figure 5. Posets built from E, B, D3, @, R, S and S using @ and ®. P, = S'"QD3s®B®B, P, = S® D3RO FE
andP3 :Q@D3®D3€BD3.

Proof. From Lemma 4.2 and Lemma 4.4 we have e(P) = b(P). Then Lemma 4.1 proves the
theorem. O]

Remark Theorem 4.5 is the generalization of the theorem of Erd6és (Theorem 1.2), and the
following two results.

Theorem 4.6 (De Bonis, Katona, Swanepoel). [7] For n > 3
La(n, B) = ¥(n, 2) (25)
Theorem 4.7 (Griggs, Li, Lu). (Special case of Theorem 2.5 in [8]) For n > 2

La(n, D3) = ¥(n, 3) (26)
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