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Abstract

For a given finite poset P , La(n, P ) denotes the largest size of a family F of subsets of [n] not
containing P as a weak subposet. We exactly determine La(n, P ) for infinitely many P posets.
These posets are built from seven base posets using two operations. For arbitrary posets, an
upper bound is given for La(n, P ) depending on |P | and the size of the longest chain in P . To
prove these theorems we introduce a new method, counting the intersections of F with double
chains, rather than chains.
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1. Introduction

Let [n] = {1, 2, . . . , n} be a finite set. We investigate families F of subsets of [n] avoiding
certain configurations of inclusion.

Definition Let P be a finite poset, and F be a family of subsets of [n]. We say that P is
contained in F if there is an injective mapping f : P → F satisfying a <p b ⇒ f(a) ⊂ f(b)
for all a, b ∈ P . F is called P -free if P is not contained in it.

Let La(n, P ) = {max |F| | F contains no P}

Note that we do not want to find P as an induced subposet, so the subsets of F can satisfy more
inclusions than the elements of the poset P .
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We are interested in determining La(n, P ) for as many posets as possible. The first theorem
of this kind was proved by Sperner. Later it was generalized by Erdős.

Theorem 1.1 (Sperner). [1] Let F be a family of subsets of [n], with no member of F being the
subset of an other one. Then

|F| ≤
(

n

bn/2c

)
(1)

Theorem 1.2 (Erdős). [2] Let F be a family of subsets of [n], with no k + 1 members of F
satisfying A1 ⊂ A2 ⊂ · · · ⊂ Ak+1 (k ≤ n). Then |F| is at most the sum of the k biggest
binomial coefficients belonging to n. The bound is sharp, since it can be achieved by choosing
all subsets F with bn−k+1

2
c ≤ |F | ≤ bn+k−1

2
c.

Since choosing all the subsets with certain sizes near n/2 is the maximal family for many
excluded posets, we use the following notation.

Notation Σ(n,m) =

bn+m−1
2
c∑

i=bn−m+1
2
c

(
n

i

)
denotes the sum of the m largest binomial coefficients

belonging to n.

Now we can reformulate Theorem 1.2. Let Pk+1 be the path poset with k + 1 elements.
Then

La(n, Pk+1) = Σ(n, k) (2)

We give here a proof of Theorem 1.2 to illustrate the chain method introduced by Lubell [3].

Proof. (Theorem 1.2) A chain is n + 1 subsets of [n] satisfying L0 ⊂ L1 ⊂ L2 ⊂ · · · ⊂ Ln and
|Li| = i for all i = 0, 1, 2, . . . n. The number of chains is n!. We use double counting for the
pairs (C,F ) where C is a chain, F ∈ C and F ∈ F .

The number of chains going through some subset F ∈ F is |F |!(n − |F |)!. So the number
of pairs is ∑

F∈F

|F |!(n− |F |)!

One chain can contain at most k elements of F , otherwise a Pk+1 poset would be formed. So
the number of pairs is at most k · n!. It implies∑

F∈F

|F |!(n− |F |)! ≤ k · n! (3)

∑
F∈F

1(
n
|F |

) ≤ k (4)

Fixing |F|, the left side takes its minimum when we choose the subsets with sizes as near to
n/2 as possible. Choosing all Σ(n, k) subsets with sizes bn−k+1

2
c ≤ |F | ≤ bn+k−1

2
c, we have

equality. So we have
La(n, Pk+1) = Σ(n, k) (5)

La(n, P ) is determined asymptotically for many posets, but its exact value is known for
very few P . (See [4] and [5])
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2. The method of double chains

The main purpose of the present paper is to exactly determine La(n, P ) for some posets
P . Our main tool is a modification of the the chain method, double chains are used rather than
chains.

Definition Let C : L0 ⊂ L1 ⊂ L2 ⊂ · · · ⊂ Ln be a chain. The double chain assigned to C is a
set D = {L0, L1, . . . , Ln,M1,M2, . . . ,Mn−1}, where Mi = Li−1 ∪ (Li+1\Li).

Note that |Mi| = |Li| = i,
i < j ⇒ Li ⊂ Lj, Li ⊂Mj, Mi ⊂ Lj and i + 1 < j ⇒Mi ⊂Mj .
{L0, L1, . . . , Ln} is called the primary line of D and {M1,M2, . . . ,Mn−1} is the secondary

line.
D denotes the set of all n! double chains.

Figure 1. The double chain assigned to the chain ∅ ⊂ {2} ⊂ {2, 3} ⊂ {1, 2, 3} ⊂ {1, 2, 3, 4}.

Lemma 2.1. Let F be a family of subsets of [n] (n ≥ 2), and let m be a positive real number.
Assume that ∑

D∈D

|F ∩D| ≤ 2m · n! (6)

Then

|F| ≤ m

(
n

bn/2c

)
(7)

If m is an integer and m ≤ n− 1, we have the following better bound:

|F| ≤ Σ(n,m) (8)

Proof. First we count how many double chains contains a given subset F ⊂ [n]. ∅ and [n] are
contained in all n! double chains. Now let F 6∈ {∅, [n]}. F is contained in the primary line of
|F |!(n− |F |)! double chains. Now count the double chains containing F in the secondary line.
Letting F = M|F |, we have |F | · (n− |F |) possibilities to choose L|F |, since we have to replace
one element of M|F | with a new one. M|F | and L|F | already define L|F |−1 and L|F |+1. We have
(|F | − 1)! and (n − |F | − 1)! possibilities for the first and last part of the primary line, so the
number of double chains containing F in the secondary line is |F |(n−|F |)(|F |−1)!(n−|F |−
1)! = |F |!(n− |F |)!. It gives a total of 2|F |!(n− |F |)! double chains containing F .
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Let t = |F ∩ {∅, [n]}|. Double counting the pairs (D,F ) where D ∈ D, F ∈ D and F ∈ F
we have

t · n! +
∑

F∈F\{∅,[n]}

2|F |!(n− |F |)! ≤ 2m · n! (9)

t · 1

2
+

∑
F∈F\{∅,[n]}

1(
n
|F |

) ≤ m (10)

Since
(

n
bn/2c

)
is the biggest binomial coefficient, and

(
n
bn/2c

)
≥ 2 we have

|F|(
n
bn/2c

) ≤ m (11)

It proves (7). If m is an integer, and m ≤ n − 1, considering |F| fixed, the left side of (10) is
minimal when we choose subsets with sizes as near to n/2 as possible. Choosing all Σ(n,m)
subsets with such sizes, we have equality in (10). It implies |F| ≤ Σ(n,m), so (8) is proved.

Definition The infinite double chain is an infinite poset with elements Li, i ∈ Z and Mi, i ∈ Z.
The defining relations between the elements are

i < j ⇒ Li ⊂ Lj, Li ⊂Mj, Mi ⊂ Lj

Figure 2. The infinite double chain.

Note that the poset formed by the elements of any double chain with the inclusion as relation
is a subposet of the infinite double chain.

Lemma 2.2. Let m be an integer or half of an integer and P be a finite poset. Assume that
any subset of size 2m+ 1 of the infinite double chain contains P as a (not necessarily induced)
subposet. Let F be a family of subsets of [n] such that F does not contain P . Then

|F| ≤ m

(
n

bn/2c

)
(12)

If m is an integer and m ≤ n− 1 we have the following better bound:

|F| ≤ Σ(n,m) (13)
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Proof. Since the poset formed by the elements of any double chains is a subposet of the infinite
double chain,
|F ∩D| ≤ 2m for all double chains D. There are n! double chains, so∑

D∈D

|F ∩D| ≤ 2m · n! (14)

holds. Now we can use Lemma 2.1 and finish the proof.

3. An upper estimate for arbitrary posets

Definition The size of the longest chain in a finite poset P is the largest integer L(P ) such that
for some a1, a2, . . . , aL(P ) ∈ P , a1 <p a2 <p · · · <p aL(P ) holds.

Figure 3. A poset with |P | = 10 elements and longest chain of length L(P ) = 4.

Theorem 3.1. Let P be a finite poset and let F be a P -free family of subsets of [n]. Then

|F| ≤
(
|P |+ L(P )

2
− 1

)(
n

bn/2c

)
(15)

If |P |+L(P )
2

− 1 is an integer and |P |+L(P )
2

≤ n we have the following better bound:

|F| ≤ Σ

(
n,
|P |+ L(P )

2
− 1

)
(16)

Proof. We want to use Lemma 2.2 with m = |P |+L(P )
2

− 1. So the only thing we have to prove
is the following lemma.

Lemma 3.2. Let P be a finite poset. Then any subset S of size |P | + L(P ) − 1 of the infinite
double chain contains P as a (not necessarily induced) subposet.

Proof. We prove the lemma using induction on L(P ). When L(P ) = 1, we have a subset of
size |P | in the infinite double chain. We can choose them all, we get the poset P , since there
are no relations between its elements. Assume that we already proved the lemma for all posets
with longest chain of size l − 1, and prove it for a poset P with L(P ) = l.

Arrange the elements of the infinite double chain as follows:

. . . L−1,M−1, L0,M0, L1,M1, L2,M2 . . .
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Assume that P has k minimal elements, and choose the k first elements of S for them according
to the above arrangement. Note that all remaining elements of S, except for at most one, are
greater in the infinite double chain than all the k elements we just chose. If there is such an
exception, delete that element from S. Now we have at least |P |+L(P )− k− 2 elements of S
left, all greater than the k we chose for the minimal elements. Denote the set of these elements
by S ′.

Let P ′ be the poset obtained by P after deleting its minimal elements. It has |P ′| = |P | − k
elements and a longest chain of size L(P ′) = L(P ) − 1. By the inductive hypothesis P ′ is
formed by some elements of S ′, since |S ′| ≥ |P | + L(P ) − k − 2 = |P ′| + L(P ′) − 1.
Considering these elements together with the first k, they form P as a weak subposet in S.

Remark The previously known upper bound for maximal families not containing a general P
as weak subposet was Σ(n, |P | − 1). We can get it from Theorem 1.2 since P is a subposet of
the path poset P|P |. The new upper bound, Σ

(
n, |P |+L(P )

2
− 1
)

is better since L(P ) ≤ |P |, and
equality occurs only when P is a path poset.

4. Exact results

In this section we will describe infinitely many posets for which Theorem 3.1 provides a
sharp bound.

Definition For a finite poset P , e(P ) is the maximal m such that the family formed by all
subsets of [n] of size k, k + 1, . . . , k + m− 1 is P -free for all n and k.

We will prove that La(n, P ) = Σ(n, e(P )) if n is large enough for infinitely many P ,
verifying the following conjecture for these posets.

Conjecture [6] For every finite poset P

La(n, P ) = e(P )

(
n

bn/2c

)
(1 + O(1/n)) (17)

In [6] Bukh proved the conjecture for all posets whose Hasse-diagram is a tree.

Notation
b(P ) =

|P |+ L(P )

2
− 1, the bound used in Theorem 3.1 (18)

Lemma 4.1. Assume that e(P ) = b(P ) for a finite poset P and n ≥ b(P ) + 1. Then

La(n, P ) = Σ(n, e(P )) = Σ(n, b(P )) (19)

Proof. The family of subsets of size bn−e(P )+1
2
c ≤ |F | ≤ bn+e(P )−1

2
c has Σ(n, e(P )) elements

and is P -free by the definition of e(P ). On the other hand, Theorem 3.1 states that a P -free
family has at most Σ(n, b(P )) elements.

Now we show some posets satisfying e(P ) = b(P ).
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Definition (See figure 4).
E is the poset with one element.
The elements of the following posets are divided into levels so that a is greater than b in the
poset if and only if a is in a higher level than b.
B is the butterfly poset, a poset with 2 elements on each level.
D3 is the 3-diamond poset, a poset with respectively 1, 3 and 1 element on its levels.
Q is a poset with respectively 2, 3 and 2 elements on its levels.
R is a poset with respectively 1, 4, 4 and 1 element on its levels.
S is a poset with respectively 1, 4 and 2 elements on its levels.
S ′ is a poset with respectively 2, 4 and 1 element on its levels.

Figure 4. 7 small posets satisfying e(P ) = b(P ).

Lemma 4.2. For all P ∈ {E,B,D3, Q,R, S, S ′}, e(P ) = b(P ) holds.

Proof. b(P ) is an integer for all the above posets. Assume that e(P ) ≥ b(P ) + 1. Then for
n ≥ b(P ) + 1 there would be a P -free family F of subsets of [n] with |F| = Σ(n, b(P ) + 1) >
Σ(n, b(P )), contradicting Theorem 3.1. So e(P ) ≤ b(P ). We will show that for every poset
P ∈ {E,B,D3, Q,R, S, S ′} and integers n, k the family formed by all subsets of [n] of size
k, k + 1, . . . , k + b(P )− 1 is P -free. It gives us e(P ) ≥ b(P ), and completes the proof.

The statement is trivial for P = E since b(E) = 0.
b(B) = 2. The set of all subsets with k and k + 1 elements is B-free since two subsets of

size k + 1 can not have two different common subsets of size k.
b(D3) = 3. The set of all subsets with k, k + 1 and k + 2 elements is D3-free since for two

subsets A,B, |B| − |A| ≤ 2 there are at most two subsets F satisfying A ⊂ F ⊂ B.
b(Q) = 4. Assume that Q is formed by 7 subsets of size k, k + 1, k + 2 or k + 3. There are

at least 4 subsets in the lower 2 or the upper 2 levels. They should form a B poset, that is not
possible.

b(R) = 6. Assume that R is formed by 10 subsets of size k, k + 1, . . . , k + 5. Let A be
the least, and B be the greatest subset. Let U be the union of the 5 smaller subsets. At least 3
subsets in the second level are different from U , and contained in it. Similarly, at least 3 subsets
of the third level are different from U , and contain it. Since D3 is not formed by subsets of size
m,m + 1 and m + 2, |A|+ 6 ≤ |U |+ 3 ≤ |B|, a contradiction.

b(S) = 4. Assume that S is formed by 7 subsets of size k, k + 1, k + 2 or k + 3. Let V be
the intersection of the two elements of the top level, then |V | ≤ k + 2. V contains all elements
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of the middle level, and is different from at least 3 of them. These 3 elements together with the
least element and V form a D3 from subsets of size k, k + 1 and k + 2, and it is a contradiction.

A family is S ′-free if and only if the family of the complements of its elements is S-free. It
gives e(S ′) = e(S) ≥ b(S) = b(S ′).

We define two ways of building posets from smaller ones, keeping the property e(P ) =
b(P ).

Definition Let P1, P2 posets. P1 ⊕ P2 is the poset obtained by P1 and P2 adding the relations
a < b for all a ∈ P1, b ∈ P2.

Assume that P1 has a greatest element and P2 has a least element. P1 ⊗ P2 is the poset
obtained by identifying the greatest element of P1 with the least element of P2.

Lemma 4.3. e(P1 ⊕ P2) ≥ e(P1) + e(P2) + 1. If P1 ⊗ P2 is defined, then e(P1 ⊗ P2) ≥
e(P1) + e(P2).

Proof. In order to find a P1, we need at least e(P1)+1 levels, for a P2, we need at least e(P2)+1
levels. It follows from the properties of ⊕ that the lowest level of P2 is above the highest level
of P1 in any occurrence of P1 ⊕ P2, which thus needs at least e(P1) + 1 + e(P2) + 1 levels. In
the case of P1 ⊗ P2, the same reasoning applies, noting that highest level of P1 and the lowest
level of P2 coincide.

Lemma 4.4. Assume that P1 and P2 are finite posets such that e(P1) = b(P1) and e(P2) =
b(P2). Then

e(P1 ⊕ P2) = b(P1 ⊕ P2) (20)

Assume that P1 has a greatest element and P2 has a least element. Then

e(P1 ⊗ P2) = b(P1 ⊗ P2) (21)

Proof. Note that |P1 ⊕ P2| = |P1| + |P2|, L(P1 ⊕ P2) = L(P1) + L(P2), and e(P1 ⊕ P2) ≥
e(P1) + e(P2) + 1. Similarly, |P1 ⊗ P2| = |P1|+ |P2| − 1, L(P1 ⊗ P2) = L(P1) + L(P2)− 1,
and e(P1 ⊗ P2) ≥ e(P1) + e(P2).

From the above equations and (18) we have

e(P1 ⊕ P2) ≥ e(P1) + e(P2) + 1 = b(P1) + b(P2) + 1 = b(P1 ⊕ P2) (22)

and
e(P1 ⊗ P2) ≥ e(P1) + e(P2) = b(P1) + b(P2) = b(P1 ⊗ P2) (23)

if P1 has a greatest element and P2 has a least element. We have already seen that e(P ) ≤ b(P )
always holds.

The following theorem summarizes our results.

Theorem 4.5. Let P be a finite poset built from the posets E,B,D3, Q,R, S and S ′ using the
operations ⊕ and ⊗. (See figure 5 for examples.) For n ≥ b(P ) + 1

La(n, P ) = Σ(n, b(P )) = Σ(n, e(P )) (24)
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Figure 5. Posets built from E,B,D3, Q,R, S and S′ using⊕ and⊗. P1 = S′⊗D3⊕B⊕B, P2 = S⊕D3⊗R⊕E
and P3 = Q⊕D3 ⊗D3 ⊕D3.

Proof. From Lemma 4.2 and Lemma 4.4 we have e(P ) = b(P ). Then Lemma 4.1 proves the
theorem.

Remark Theorem 4.5 is the generalization of the theorem of Erdős (Theorem 1.2), and the
following two results.

Theorem 4.6 (De Bonis, Katona, Swanepoel). [7] For n ≥ 3

La(n,B) = Σ(n, 2) (25)

Theorem 4.7 (Griggs, Li, Lu). (Special case of Theorem 2.5 in [8]) For n ≥ 2

La(n,D3) = Σ(n, 3) (26)
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