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Abstract

We consider the following list coloring with separation problem: Given a graphG and integers a, b,
find the largest integer c such that for any list assignment L of G with |L(v)| = a for any vertex v
and |L(u)∩L(v)| ≤ c for any edge uv of G, there exists an assignment φ of sets of integers to the
vertices of G such that φ(u) ⊂ L(u) and |φ(v)| = b for any vertex u and φ(u) ∩ φ(v) = ∅ for any
edge uv. Such a value of c is called the separation number of (G, a, b). Using a special partition
of a set of lists for which we obtain an improved version of Poincaré’s crible, we determine the
separation number of the complete graph Kn for some values of a, b and n, and prove bounds for
the remaining values.
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1. Introduction

Let a, b, c be integers and let G be a graph. A a-list assignment L of G is a function which
associates to each vertex a set of a integers. The list assignment L is c-separating if for any
uv ∈ E(G), |L(u) ∩ L(v)| ≤ c. The graph G is (a, b, c)-choosable if for any c-separating a-list
assignment L, there exists an (L, b)-coloring of G, i.e. a coloring function φ on the vertices of G
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that assigns to each vertex v a subset of b elements from L(v) in such a way that φ(u) ∩ φ(v) = ∅
for any uv ∈ E(G).

The list coloring problem with restrictions on the list intersections has been introduced by Kra-
tochvı́l, Tuza and Voigt [14]. Notice that Kratochvı́l et al. [14, 15] defined (a, b, c)-choosability a
bit differently, requiring for a c-separating a-list assignment L that the lists of two adjacent ver-
tices u and v satisfy |L(u) ∩ L(v)| ≤ a − c. Among the first results on the topic, a complexity
dichotomy was presented [14] and general properties given [15]. These first papers were followed
by a series of papers considering choosability with separation of planar graphs, mainly for the
case b = 1 [3, 4, 5, 6, 7, 13, 18]. While the fact that planar graphs are (4, 1, 2)-choosable was
proved very recently [19], a still open question is whether all planar graphs are (3, 1, 1)-choosable
or not. Other recent papers concern balanced complete multipartite graphs and k-uniform hyper-
graphs (for the case b = 1) [11]; bipartite graphs (for the case b = c = 1) [10]; a study with an
extended separation condition [16], and cycles and outerplanar graphs for arbitrary b [12]. Many
other variations of list coloring have been introduced, for instance flexibility [9] and total weight
choosability [17].

In this paper, we concentrate on choosability with separation of complete graphs. As a (a, b, c)-
choosable graph is also (a, b, c′)-choosable for any c′ < c, our aim is to determine, for given a, b,
a ≥ b, the largest c such that G is (a, b, c)-choosable. Following our previous work on cycles [12],
we define the (list) separation number sep(G, a, b) of G as

sep(G, a, b) = max{c : G is (a, b, c)-choosable}.

Notice that we have 0 ≤ sep(G, a, b) ≤ a for any graph G and a ≥ b, hence this parameter is
well defined.

In our setting, we know that any planar graph G satisfies sep(G, 5, 1) = 5 (Thomassen’s Theo-
rem), sep(G, 4, 1) ≥ 2 [19] ; but we do not know if sep(G, 3, 1) ≥ 1 holds for all planar graphs G.
For the complete graph, Kratochvı́l et al. [15] proved that sep(Kn, ⌊

√
n− 11/4 + 3/2⌋, 1) ≥ 1.

Moreover, the separation number of the cycle is determined and bounds are given for catuses and
outerplanar graphs [12].

The following Hall-type condition that we call the amplitude condition is necessary for a graph
G to be (L, b)-colorable:

∀H ⊂ G,
∑
k∈C

α(H,L, k) ≥ b|V (H)|,

where C =
⋃

v∈V (H) L(v) and α(H,L, k) is the independence number of the subgraph of H in-
duced by the vertices containing k in their color list. Notice that H can be restricted to be a
connected induced subgraph of G. As shown by Cropper et al. [8] (in the more general context of
weighted list coloring), this condition is also sufficient when the graph is a complete graph or a
path (or some other specific graphs).

For a list assignment L on a graph G of order n with vertex set V (G) = {v1, v2, . . . , vn} and
for S ⊂ [1, n], we write ΣS(L) =

∑
k∈C α(H,L, k), where H is the subgraph of G induced by

{vi, i ∈ S}.
Remark that if G is a complete graph, then α(H,L, k) = 1 for any k. Hence the amplitude
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condition for Kn becomes

∀S ⊂ [1, n],ΣS(L) = | ∪i∈S L(xi)| ≥ b|S| (1)

Example 1. For the complete graph K4 with vertex set {v1, v2, v3, v4}, let L be the 3-separating
5-list assignment defined by:
L(v1) = {1, 2, 3, 4, 5}, L(v2) = {1, 2, 3, 6, 7}, L(v3) = {3, 4, 6, 7, 8}, and L(v4) = {4, 6, 8, 9, 10}.

We haveL(v1)∪L(v2)∪L(v3) = {1, 2, 3, 4, 5, 6, 7, 8}, hence Σ{1,2,3}(L) = |{1, 2, 3, 4, 5, 6, 7, 8}| =
8. Therefore K4 is not (L, 3)-colorable since Σ{1,2,3}(L) = 8 < 3b = 9. (Note that we also have
Σ[1,4](L) = 10 < 4b = 12 in this case.)

For the separation number of the complete graph, the following properties are easy to prove:

Property 1. Let a, b, n be integers. Then

• for fixed b, n, the function sep(Kn, a, b) is increasing with a;

• for fixed a, b, the function sep(Kn, a, b) is decreasing with n.

Moreover, we observed (and will prove it in the case b ≤ a < 2b and (n− 1)b ≤ a < nb) that
for any a, b, n, sep(Kn, a+ 1, b) ≤ sep(Kn, a, b) + 2.

In Section 2, we introduce proper intersections of set systems and show some of their prop-
erties and use them to partition the lists of colors of the vertices of Kn, allowing to simplify the
computations. In Section 3, we propose a general coloring algorithm and two special types of
list assignments with nice properties that will be used mainly for finding good counter-examples.
Then in Section 4, we determine bounds and exact values for the separation number of the com-
plete graph Kn, depending on a, b and n, and finish with a conjecture. The algebra that allowed us
to find the counter examples of Section 4 is given in Appendix Appendix A.

2. Algebraic preliminaries on set systems intersections

2.1. Proper intersections and Poincaré’s crible improvement
Let n ≥ 1 be an integer and [n] = [1, n]. For sets of elements A1, A2, . . . , An, we define

the following: For any i ≥ 1 and Si = {α1, α2, . . . , αi} ⊂ [n], the proper intersection Ip(Si) of
Aα1 , Aα2 , . . . , Aαi

is given by

Ip(Si) =

(
i⋂

k=1

Aαk

)
\

 ⋃
β∈[n]\Si

Aβ

 .

Notice that for any set S ∈ [n], the whole n sets Ai are present in the formulae of the proper
intersection of S. For example, for n = 5, Ip({1}) = A1 \ (A2 ∪ A3 ∪ A4 ∪ A5) ; Ip({2, 3}) =
(A2 ∩ A3) \ (A1 ∪ A4 ∪ A5); Ip({1, 2, 5}) = (A1 ∩ A2 ∩ A5) \ (A3 ∪ A4); Ip({2, 3, 4, 5}) =
(A2 ∩ A3 ∩ A4 ∩ A5) \ A1 and Ip({1, 2, 3, 4, 5}) = A1 ∩ A2 ∩ A3 ∩ A4 ∩ A5.

Then the classical intersection can be described in terms of proper intersections:
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Property 2. For any S ⊂ [n], ⋂
i∈S

Ai =
⋃

S⊂S′⊂[n]

Ip(S
′).

Proof. The proof is by double inclusion. First, by construction, For any S ′ ⊃ S, any x in Ip(S ′)
is also an element of ∩i∈SAi. Next, if x ∈ ∩i∈SAi, then either x ∈ Ip(S) and we are done or
x ̸∈ Ip(S). In this latter case, let S be the set of indices j of [n] \ S for which x ∈ Aj . Then, by
construction, we have x ∈ Ip(S

′), for S ′ = S ∪ S.

Thanks to this property, we obtain the fact that the proper intersections form a partition of
∪n

i=1Ai.

Property 3. For any S, S ′ ⊂ [n] such that S ̸= S ′, we have

Ip(S) ∩ Ip(S ′) = ∅.

Proof. At least one of S − S ′ or S ′ − S is non empty. Let us say S − S ′ is not empty and let
s ∈ S − S ′. Let x ∈ Ip(S) ∩ Ip(S ′). Then x ∈ As, but x ∈ Ip(S

′) and s ̸∈ S ′. Hence x ̸∈ As, a
contradiction and therefore the intersection is empty.

We thus have the following à-la-Poincaré result:

Theorem 2.1.
n⋃

i=1

Ai =
⋃

S⊂[n],S ̸=∅

Ip(S).

Proof. By Property 2 for |S| = 1, we have Ai =
⋃

S′⊂[n]\{i} Ip({i} ∪ S ′). Therefore
⋃n

i=1Ai =⋃n
i=1

⋃
S′⊂[1,n]\{i} Ip({i} ∪ S ′) =

⋃
S⊂[n],S ̸=∅ Ip(S).

By Property 3 and Theorem 2.1, we obtain the following crible which can be seen as an improv-
ment of Poincaré’s crible as we only do additions (compared to Poincaré’s crible where additions
and substractions alternate):

Corollary 2.1. ∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ = ∑
S⊂[n],S ̸=∅

|Ip(S)|.

2.2. List assignments of Kn and proper intersections
We will use proper intersections on list assignments of Kn. Let V (Kn) = [n]. For a list

assignment L of Kn, we let Ai = L(i), for 1 ≤ i ≤ n.
In a basic way, L is a set of n lists of size a. Using proper intersection tools from the previous

subsection, the list assignment L can now be represented by the vector of proper intersections
cardinals V(L) of dimension 2n − 1 (ordered by set inclusion and alphanumeric order).

Then we have
∀i ∈ [n]

∑
S⊂[n],i∈S

|Ip(S)| = |L(i)|. (2)
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And the cardinality of the intersection between two lists is given by

∀i, j ∈ [n], i ̸= j,
∑

S⊂[n],i,j∈S

|Ip(S)| = |L(i) ∩ L(j)|. (3)

Moreover, thanks to Corollary 2.1, the total amplitude of L is given by

Σ[n](L) =
∑
S⊂[n]

|Ip(S)|. (4)

Example 2. For the complete graph K4 and the list assignment L defined in Example 1, we have:
Ip({1}) = {5}, Ip({4}) = {9, 10}, Ip({1, 2}) = {1, 2}, Ip({2, 3}) = {7}, Ip({3, 4}) = {8},
Ip({1, 2, 3}) = {3}, Ip({1, 3, 4}) = {4}, and Ip({2, 3, 4}) = {6}. Hence the vector V(L) =
(1, 0, 0, 2, 2, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0).

Consequently, from these equations, we obtain an ILP-formulation of the problem of finding
smallest counter examples (c-separating a-list assignments L of Kn for which no (L, b)-coloring
exists): For S ⊂ [n], we consider the variable xS = |Ip(S)|. Then the goal is to minimize c subject
to the constraints:

∀i ∈ [n],
∑

S⊂[n],i∈S

xS = a, (5)

∀i, j ∈ [n], i ̸= j,
∑

S⊂[n],i,j∈S

xS ≤ c, (6)

and ∑
S⊂[n]

xS < nb.

This formulation allows to use ILP-solvers to help us finding counter-examples.

Remark 2.1. Assuming that the colors are taken from the set {1, . . . , na} (this is always possible,
up to a color renumbering), we can count the number of different list assignments associated to
the same vector of proper intersections V(L): Considering any ordering S1, S2, . . . , S2n−1 of the
non-empty subsets of [n], this number of list assignments is given by

2n−1∏
i=1

(
na−

∑
j<i |Ip(Sj)|

|Ip(Sj)|

)
=

(na)!

(na−
∑

i |Ip(Si)|)!(
∏

i |Ip(Si)|!)
.

For instance, if all proper intersections are equal to zero except Ip([n]) = a, then we obtain(
na
a

)
lists.

2.3. Counting list assignments up to proper intersection equivalence
In order to compute the gain of working with proper intersections instead of list assignments,

we are now going to count the total number of a-list assignments up to proper intersection equiv-
alence. Let L(n, a) be the set of all a-list assignments on n vertices up to proper intersection.
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The cardinal of L(n, a) can be compared with the total number of a-list assignments on na colors,
which is

(
na
a

)n.
For n = 2, it is easy to see that there are only a + 1 different lists up to proper intersections,

hence |L(2, a)| = a+ 1. We define L(n, a, [n] = 0) as the subset of L(n, a) for which Ip([n]) = ∅
and L(n, a, [n] > 0) as the subset of L(n, a) for which |Ip([n])| > 0.

Lemma 2.1. For integers a ≥ 1, n ≥ 1, we have:

|L(n, a)| = |L(n, a− 1)|+ |L(n, a, [n] = 0)|.

Proof. It is easily seen that L(n, a) = L(n, a, [n] > 0)∪L(n, a, [n] = 0). Now, note that there is a
trivial isomorphism between lists of L(n, a, [n] > 0) and that of L(n, a− 1). To see this, represent
each list by the vector of the cardinals of their proper intersections, ordered by the size. Then since
the last element of each vector is positive, its value can be decreased by one, obtaining a vector
corresponding with a list assignment of L(n, a− 1).

Remark that any element of L(n, a) must satisfy Equation 5 for each vertex and reciprocally
any solution of this set of n equations gives a list assignment L(n, a). Hence the set of all solutions
is a subspace of dimension 2n − 1− n of a vectorial space of this equation set.

Lemma 2.2. For all S = {a1, a2, . . . , ai} ⊂ [n], |S| ≥ 2, the vectors vS = eS −
∑i

j=1 eaj form a
canonical base of L(n, a).

Proof. As we have 2n−1 proper intersections, then the space is of dimension 2n−1. But we have n
linear equations (Equation 5) and since they are linearly independent, thus L(n, a) is of dimension
2n − 1− n. It then suffices to prove that the family of vS is free. For any S ⊂ [n], |S| ≥ 2, let αS ,
such that

∑
αSvS = 0. We have

∑
αSvS =

∑n
i=1 βiei+

∑
|S|≥2 αSeS = 0. As the eS are vectors

of the canonical base, then αS = 0 for every S. Hence the family is free.

There exists a trivial solution to the set of equations, it is the list assignment with vector T =
(a, a, . . . , a, 0, . . . , 0) with n values equal to a. Then any list assignment solution can be written
as the trivial solution plus a linear combination of these base vectors eS . Hence a list assignment
solution can be identified by a linear sum of base vectors. We therefore only have to work on linear
sums of base vectors. But, as the entries of a solution have to be non negative, we only have a finite
number of solutions. We define the set of list assignments L(n,= a) as the set of list assignments
such that there exists some i ∈ [n] for which the sum of coefficients αS over all S containing i in
the linear combination is equal to a in the vectorial representation (i.e., such that Ip({i}) = ∅) and
for which Ip([n]) = ∅.

Lemma 2.3.
|L(n, a, [n] = 0)| = |L(n, a− 1, [n] = 0)|+ |L(n,= a)|.

Proof. The set L(n, a, [n] = 0) trivially decomposes into the set A of list assignments for which
all the first n entries of the vector are strictly positive and the set of which there is at least a zero
in the first n entries of the vector, i.e., L(n,= a). But there is a natural bijection between A and
L(n, a− 1, [n] = 0), hence the recursion formulae.
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Lemma 2.4.
|L(3,= a)| =

{
3/4a2 + 3/2a+ 1, a even,
3/4a2 + 3/2a+ 3/4, a odd.

Proof. For n = 3, we have only 3 vectors: S = (1, 2), (1, 3), and (2, 3). Hence any solution can
be represented by a triplet of vectors (α1, α2, α3). Starting from (a, 0, 0), we count the triplets by
equivalence classes such that the first coefficient is maximum, the second one is greater than or
equal to the third one and then we count the number of elements in the class of equivalence. We
then have three cases: if the three numbers are different then there are 3! = 6 different combina-
tions; if exactly two numbers are different then we have 3 combinations and only one if the three
numbers are all identical. Hence each solution is of the form (a − x, x, y) with 0 ≤ x ≤ a/2 and
y ≤ x. Therefore, we obtain the following formulae:

|L(3,= a)| =
{

1 + 3a/2 +
∑a

i=a/2+1(3 + 6(a− i)), a even,∑a
i=(a+1)/2(3 + 6(a− i)), a odd.

Hence, using simple calculations, we obtain the formulae of the lemma.

Proposition 2.1. For n = 3, we have

|L(n, a)| = 1

16
(a4 + 8a3 + 24a2 + 32a+ 16− ϵ(a)),

where ϵ(a) = 1 if a is odd and ϵ(a) = 0 otherwise.

Proof. Combining the two recursion formulas of Lemmas 2.1 and 2.3, we obtain the formulae for
the residue, allowing to find the general polynomial.

Conjecture 1. |L(n, a)| is a polynomial in a of degree n + 1, with coefficients being functions of
Bernouilli’s numbers.

Proposition 2.1 (and Conjecture 1, if true) says that using proper intersections allows to go
from an exponential number of list assignments to treat to a polynomial number.

3. (a, b, c)-choosability of Kn

3.1. General coloring algorithm
We provide an algorithm that, given a list assignment L of Kn, produces a multi-coloring. We

conjecture that this algorithm is optimal (i.e., produces an (L, b)-coloring ifKn is (L, b)-colorable).

Algorithm ColorSym:. Taking an arbitrary list-assignment L as input, we consider at each step the
vector w = (w1, . . . , wn), with wi = being the number of colors given to vi so far.

Step 1. Color every proper intersections of sets of size 1 : vi gets |Ip({i})| colors. Thus
wi = |Ip({i})|.

Step i ≥ 2. If wi ≥ b for each i or i = n+1, then Stop. Otherwise, for each set S with |S| = i,
consider |Ip(S)| and let j ∈ S be the index for which w(j) is minimum (if more than one j with
minimum w, then take the smallest index). Remove a color from Ip(S) and assign it to vj . Goto
Step i until Ip(S) is empty.
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3.2. Symetrical list assignments on Kn

Let L be a a-list assignment on Kn. We say that L is symetrical if for any i, 1 ≤ i ≤ n, and
any S, S ′ ⊂ [n] such that |S| = |S ′|, we have |Ip(S)| = |Ip(S ′)|. For such a list assignment, we let
xi = |Ip(S)| for S ⊂ [n], |S| = i and x(L) = (x1, x2, . . . , xn).

Considering symetrical list assignments allows to reduce the number of variables in the linear
program from 2n − 1 to n and to simplify Equation 5 into

n∑
i=1

(
n− 1

i− 1

)
xi = a, (7)

and Equation 6 into
n∑

i=2

(
n− 2

i− 2

)
xi ≤ c, (8)

and for the total amplitude:
n∑

i=1

(
n

i

)
xi ≥ nb. (9)

As we will see, symetrical list assignments have the nice property that Equation 9 is sufficient
to guarantee an (L, b)-coloring ofKn. We will first prove how to find a balanced coloring of a set of
subsets of [n]. We define P(i, n) as the set of all subsets of cardinality i of the set {1, . . . , n}. Ob-
serve that |P(i, n)| =

(
n
i

)
. Let also P(n) = ∪n

i=1P(i, n). For a weight vector w = (w1, . . . , wn),
with wi ≥ 0 for all i, 1 ≤ i ≤ n, let P(n)w be the multiset obtained from the empty set by adding
to it wi times the set P(i, n) for any i, 1 ≤ i ≤ n.

A partition (or coloring) P1, . . . , Pn of a subset S of P(n)w is balanced if for any i, j, 1 ≤ i ̸=
j ≤ n, ||Pi| − |Pj|| ≤ 1 and for any X ∈ Pj , j ∈ X .

Lemma 3.1. For any integer n ≥ 3 and any weight vector w of size n, there exists a balanced
partition of P(n)w.

Proof. Observe that P(n)w is the union of sets P(i, n). Let Sn be the group of permutations of n
elements. Remark that Sn acts on P(i, n). Let g be the n-elements cycle. Hence P(i, n) can be
viewed as the set of its orbits by g and P(n)w as a multiset of orbits.

The general idea to prove the lemma is to color P(n)w by coloring each orbit of each set P(i, n)
one after the other in any order while ensuring that at each step, the partial coloring is balanced.
The key idea for showing this is possible is the following observation:
Claim 1. For any integers i and j, 1 ≤ i, j ≤ n, any orbit O of P(i, n) can be colored with colors
j, j + 1, . . . , j + |O| (with n+ 1 = 1).
proof. Observe first that all elements of [n] are present at least once in O. Hence, there exists
oj ∈ O such that oj contains j. Color oj by color j and color each remaining element gk(oj) of O
with color j + k for k ∈ {1, . . . , n− 1} (j + k − n if j + k > n).

The algorithm for obtaining a balanced coloring φ consists in coloring the orbits of P(n)w

in any order and, when coloring the elements of a new orbit, to start with the color j such that
|φ−1(j)| < |φ−1(j − 1)| if such a j exists and j = 1 otherwise and use Claim 1. After each such
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step, we can observe that the (partial) coloring φ remains balanced. Therefore, after having colored
the last element of the last orbit, φ is a balanced coloring of P(n)w.

Corollary 3.1. Let L be a symetrical list assignment of Kn. If Kn is (L, b)-colorable, then Algo-
rithm ColorSym produces an (L, b)-coloring.

Proof. To any symetrical list assignment L, we can make correspond a set S ⊂ P(n)x (each set
S ⊂ [n], |S| = i, is present xi times in S). Hence by Lemma 3.1, there exists a balanced coloring of
S, and thus a coloring φ from L which is balanced, i.e., for any i, j ∈ [n], ||φ(vi)| − |φ(vj)|| ≤ 1.
Therefore the amplitude condition has only to be verified globally, i.e., it suffices to show that
Equation 9 is satisfied in order Kn to be (L, b)-colorable. As Equation 9 is a necessary condition,
if an (L, b)-coloring of Kn exists then Algorithm ColorSym ends up with such a coloring.

3.3. Quasi-symetrical list assignments
Let L be a a-list assignment on Kn. We say that L is quasi-symetrical if for any i, 1 ≤ i ≤ n,

and any S, S ′ ⊂ [n] such that |S| = |S ′|, we have −1 ≤ |Ip(S)| − |Ip(S ′)| ≤ 1.
The vector of cardinality-support cs(S) of a set S = {S1, S2, . . . , Sk} of subsets of [n] is

defined by cs(S) = (β1, . . . , βn), with βi = |{i ∈ Sj, j ∈ {1, . . . , k}}|.

Lemma 3.2. For any n, k with n ≥ 4, k ≥ 2 and n ≥ (2k − 1 +
√
8k + 1)/2, there exist a set

of k + 1 k-subsets {S ′
1, S

′
2, . . . , S

′
k+1} of [n] and a set of k (k + 1)-subsets {S1, S2, . . . , Sk} of [n]

having the same cardinality-support vector.

Proof. Let n, k be as in the statement of the Lemma. We consider two cases : 2 ≤ k ≤ n/2 and
n/2 < k ≤ n− 2.

Case 1. 2 ≤ k ≤ n/2. For 1 ≤ i ≤ k, set S ′
i = {1, . . . , k, k + i}

For 1 ≤ j ≤ k, set Sj = S ′
j \ {j} and Sk+1 = {1, . . . , k}.

By construction, they have the same cardinality support vector that starts with k times the entry
k and k times the entry 1, i.e., cs(S) = (k, k, ..., k, 1, ..., 1, 0, ..., 0).

Case 2. k ≥ n/2. For 1 ≤ i ≤ k, set S ′
i = {1, . . . , k − 1, xi, yi}, with {xi, yi} ⊂ [k, n]

and xi ̸= yi. We choose for each S ′
i a different couple. This is always possible since there are(

n− k + 1

2

)
such couples and we have

(
n− k + 1

2

)
≥ k since n ≥ (2k − 1 +

√
8k + 1)/2.

For 1 ≤ j ≤ k − 1, Sj = S ′
j \ {j} and Sk = S ′

k \ {xk} and Sk+1 = {1, . . . , k − 1, xk}. Again,
by construction, both families of sets have the same cardinality support vector.

Proposition 3.1. Let a, b, n, x be integers such that x ≤ n and a = xb is a multiple of
(
n−1
x−1

)
. Then

Kn is not (a, b, ax−1
n−1

+ 1)-colorable.

Proof. Let a = p
(
n−1
x−1

)
for some p ≥ 1. We first construct a symetrical list assignment L by setting

|Ip(Sx)| = p for every set Sx ⊂ [n] with |Sx| = x and |Ip(S)| = 0 for |S| ≠ x.

We check that for every j ∈ [n], |L(j)| = a and that
∑

(L) = nb. In fact, there are
(
n

x

)
x-subsets of [n] and

(
n− 1

x− 1

)
of them containing some j ∈ [n]. Hence |L(j)| = p

(
n− 1

x− 1

)
= a
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and Σ(L) = p

(
n

x

)
= p

(
n− 1

x− 1

)
n
x
= an

x
= bn. Moreover, observe that for any i, j ∈ [n], we have

|L(i) ∩ L(j)| = p

(
n− 2

x− 2

)
= p

(
n− 1

x− 1

)
x−1
n−1

= ax−1
n−1

.

Now, by Lemma 3.2, there exists a set of x + 1 x-subsets of [n] and a set of x (x + 1)-subsets
of [n] with the same cardinality support vector cs. Let S and S ′, respectively, be such sets as
defined in the proof of Lemma 3.2. Hence, we can decrease |Ip(S)| by one for every S ∈ S (hence
|Ip(S)| = p− 1 for such set) and increase |Ip(S ′)| by one for every S ′ ∈ S ′ (hence |Ip(S ′)| = 1 for
such set). Let L′ be the quasi-symetrical resulting list assignment. Since the cardinality support
vector is the same for S and S ′, L′ is a a-list assignment. We now prove that the amplitude of L′

is
∑

(L′) = nb − 1 and that L′ is c′-separating, with c′ = ax−1
n−1

+ 1. For the amplitude, we have

Σ(L′) = p

(
n

x

)
− (x+ 1) + x = p

(
n

x

)
− 1 = Σ(L)− 1 = nb− 1. For the separation condition,

if i ∈ [n] such that cs(i) = 0, then we have, for any j ∈ [n], |L′(i) ∩ L′(j)| = |L(i) ∩ L(j)| ≤ c.
Otherwise, if i, j ∈ [n] are such that cs(i) > 0 and cs(j) > 0, then we are going to prove that
|L′(i)∩L′(j)| ≤ |L(i)∩L(j)|+1 ≤ c+1. First, consider the case 2 ≤ x ≤ n/2. If 1 ≤ i, j,≤ x,
then, by the construction of the proof of Lemma 3.2, there are x−2+1 = x−1 sets in S and x sets
in S ′ containing i, j, hence |L′(i)∩L′(j)| = |L(i)∩L(j)| − (x− 1)+ x = |L(i)∩L(j)|+1 = c′.
Otherwise (i > x or j > x), then |L′(i)∩L′(j)| = |L(i)∩L(j)|. Second, consider the case x > n/2.
If 1 ≤ i, j,≤ x−1, then, by the construction of the proof of Lemma 3.2, there are x−2+1 = x−1
sets in S and x sets in S ′ containing i, j, hence |L′(i) ∩ L′(j)| = |L(i) ∩ L(j)| − (x − 1) + x =
|L(i) ∩ L(j)| + 1 = c′. Otherwise, if 1 ≤ i ≤ x − 1 and j ≥ x, then there is one more set in S ′

than in S containing both i and j, hence |L′(i)∩L′(j)| = |L(i)∩L(j)|+1 = c′. Otherwise (i ≥ x
and j ≥ x), we have |L′(i) ∩ L′(j)| = |L(i) ∩ L(j)|.

In conclusion, we have built a c′-separating a-list assignment L′ for which the amplitude con-
dition is not fulfilled and thus sep(Kn, a, b) < c′.

Proposition 3.2. For integers a, b, n such that a ≥ 2b and a is a multiple of ⌊ a2

2b(n−1)
⌋, Kn is

(a, b, ⌊ a2

2b(n−1)
⌋)-choosable.

Proof. Let c = ⌊ a2

2b(n−1)
⌋ and L be a c-separating a-list assignment with a = λc for some λ ≥ 1.

Let S be an i-subset of [n]. We are going to show that the amplitude condition is satisfied for S.
We consider two cases.

If i ≤ λ, then since L is c-separating, the amplitude satisfies

ΣS(L) ≥ a+ (a− c) + . . .+ (a− (i− 1)c) = ia− 1

2
i(i− 1)c.

Since ic ≤ λc ≤ a and a ≥ 2b, we obtain ΣS(L) ≥ ia− 1
2
(i− 1)a = 1

2
(i+ 1)a ≥ ib.

If i > λ, then the amplitude satisfies

ΣS(L) ≥ a+ (a− c) + . . .+ (a− λc) = (λ+1)a− 1

2
λ(λ+1)c = (λ+1)a− 1

2
λa =

1

2
(λ+1)a.

Since c = ⌊ a2

2b(n−1)
⌋ ≤ a2

2b(n−1)
, then λ = a

c
≥ 2b(n−1)

a
.
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The above inequality with a ≥ 2b induces

ΣS(L) ≥
1

2
(λ+ 1)a ≥ 2b(n− 1) + a

2a
a = bn+

a− 2b

2
≥ bn.

Therefore the amplitude condition is satisfied and thus Kn is (L, b)-colorable.

4. Separation number of Kn

For K2, it is easily seen that sep(K2, a, b) = a− b if a ≤ 2b and sep(K2, a, b) = a if a ≥ 2b.
For K3 = C3, the separation number follows from results about the cycle from [12]:

Theorem 4.1 ( [12]). For any p ≥ 1 and any a, b such that a ≥ b ≥ 1,

sep(C2p+1, a, b) =


a− b, b ≤ a < 2b,
b+ (p+ 1)(a− 2b), 2b ≤ a ≤ 2b+ b

p
,

a, a ≥ 2b+ b
p
.

Hence for K3 = C3 we have:

Corollary 4.1.

sep(K3, a, b) =


a− b, b ≤ a < 2b,
2a− 3b, 2b ≤ a < 3b,
a, a ≥ 3b.

For arbitrary values of n, we are (only) able to prove some bounds and two exact results for the
remaining cases.

First, combining Propositions 3.1 and 3.2 allows to obtain the following bounds for the sep-
aration number when 2b ≤ a ≤ nb (note the (roughly) factor two between the lower and upper
bound):

Proposition 4.1. For integers a, b, n, x such that a = xb is a multiple of both
(
n−1
x−1

)
and ⌊ a2

2b(n−1)
⌋,

we have ⌊
a

x

2(n− 1)

⌋
≤ sep(Kn, a, b) ≤ a

x− 1

n− 1
.

Proof. Proposition 3.1 gives sep(Kn, a, b) ≤ ax−1
n−1

and Proposition 3.2 with x = a/b gives the
lower bound.

Proposition 4.2. For any n ≥ 3 and , a, b such that b ≤ a ≤ 2b, we have sep(Kn, a, b) = ⌊2(a−b)
n−1

⌋.

Proof. Let a, b such that b ≤ a ≤ 2b and let c = ⌊2(a−b)
n−1

⌋. Consider a c-separating a-list assignment
L of Kn, for n ≥ 3.

From the hypothesis, we have (n− 1)c ≤ 2(a− b) < a.
By the separation condition, the amplitude of L on vertices from S ⊂ [n], |S| = i, satisfies

ΣS(L) ≥ a+ (a− c) + . . .+ (a− (i− 1)c) = ia− 1

2
i(i− 1)c.
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Therefore, as c ≤ 2(a− b)/(n− 1), we obtain

ΣS(L) ≥ ia− 1

2
i(i− 1)

2(a− b)

n− 1
= ia

n− i

n− 1
+ ib

i− 1

n− 1
≥ ib.

Hence the amplitude condition is satisfied for any i, 1 ≤ i ≤ n and thus Kn is (L, b)-colorable.
For proving the upper bound, we construct counter-examples to show that, for c′ = c+1, there

exists c′-separating a a-list assignment L′ that do not satisfy the amplitude condition, hence for
which no (L′, b)-coloring exists.

First, if a ≥ (n − 1)c′, then L′ is the quasi-symetrical list assignment constructed by setting
for any i ∈ [n], |Ip({i})| = a − (n − 1)c′ and for any i, j ∈ [n], i ̸= j, |Ip({i, j})| = c′, the other
proper intersections being empty.

Then, by Equation 1 and Corollary 2.1, we have

Σ[n](L
′) =

∑
i∈[n]

|Ip({i})|+
∑

i,j∈[n],i<j

|Ip({i, j})| = na− n(n− 1)c′ + n
n− 1

2
c′ = na− n

n− 1

2
c′.

As c′ = c+ 1 > 2(a− b)/(n− 1), we obtain

Σ[n](L
′) < na− n

n− 1

2

2(a− b)

n− 1
= nb.

Hence the amplitude condition is not satisfied and Kn is not (L′, b)-colorable.
Now, if (n − 1)c ≤ a < (n − 1)c′, then let α such that a = (n − 1)c′ − α, with 1 ≤ α ≤

n − 1. Then L′ is the quasi-symetrical list assignment constructed by setting for any i ∈ [n],
|Ip({i})| = a − (n − 1)c + α and for any i, j ∈ [n], i ̸= j, |Ip({i, j})| = c′ if i < j ≤ i + α and
|Ip({i, j})| = c′ − 1 otherwise, the other proper intersections being empty.

It is easy to observe that each vertex has a list of a−(n−1)c′+α+α(c′−1)+(n−1−α)c′ = a
colors and that the list assignment is c′-separating. But, the amplitude of the full list is

Σ[n](L
′) =

∑
i∈[n]

|Ip({i})|+
∑

i,j∈[n],i<j

|Ip({i, j})| = na−n(n−1)c′+nα+
n

2
(c′−1)α+

n

2
(n−1−α)c′

= na− n

2
(n− 1)c′ − n

2
α.

As c′ = c+ 1 > 2(a− b)/(n− 1), we obtain

Σ[n](L
′) < na− n

2
(n− 1)

2(a− b)

n− 1
− n

2
α = nb− n

2
α.

Hence the amplitude condition is not satisfied and Kn is not (L′, b)-colorable.

Proposition 4.3. For any n ≥ 3 and , a, b such that (n − 1)b ≤ a ≤ nb, we have sep(Kn, a, b) =
2a− nb.
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Proof. Let a, b such that (n − 1)b ≤ a ≤ nb and c = 2a − nb. Consider a c-separating a-list
assignment L of Kn, for n ≥ 3.

By the separation condition, the amplitude of L on vertices from S ⊂ [n], |S| = 2, satisfies

ΣS(L) ≥ a+ (a− c) = 2a− c = 2a− 2a+ nb = nb.

Hence, for any S ⊂ [n], |S| ≥ 1, ΣS(L) ≥ |S|b and the amplitude condition is satisfied.
Now, we construct a counter example for c′ = c + 1 = 2a − nb + 1 of a c′-separating a-list

assignment L′ for which no (L, b)-coloring exists. Let L′ be constructed by setting for any i ∈ [n],
|Ip([n] \ {i})| = a− c′ and |Ip([n])| = (n− 1)c′ − (n− 2)a, the other proper intersections being
empty. Note that (n− 1)c′ − (n− 2)a = (n− 1)(2a− nb+1)− (n− 2)a = a(2n− 2− n+2)−
(n− 1)(nb− 1) = n(a− (n− 1)b) + n− 1 ≥ 0 since a ≥ (n− 1)b by the hypothesis. Then, by
Equation 1 and Corollary 2.1, we have

Σ[n](L
′) = n(a− c′) + (n− 1)c′ − (n− 2)a = 2a− c′ = 2a− 2a+ nb− 1 = nb− 1 < nb.

Thus the amplitude condition is not satisfied and Kn is not (L′, b)-colorable.

Remark that Corollary 4.1 can also be deduced from Propositions 4.2 and 4.3.
Putting all the partial results together and the computations made, we propose the following

conjecture:

Conjecture 2. for any n ≥ 4, a, b, p with 2 ≤ p ≤ n− 2 and pb ≤ a < (p+ 1)b, we have

sep(Kn, a, b) =

⌈
2pa− p(p+ 1)b

n− 1

⌉
+ ϵ,

with ϵ ∈ {−1, 0}.

Let us explain how we arrive to this conjecture: First, as the degree of every vertex in Kn is
n−1, then, for a balanced distribution of colors among vertices, they should be grouped by packets
of n− 1. Hence the separation number must be (the ceiling of) a certain function of a, b, p divided
by n− 1. By Property 1, this function must also be close to an affine function. Second, supported
by Proposition 3.1, we conjecture that when a = pb, then sep(Kn, a, b) = a(p − 1)/(n − 1). All
this together lead us to propose the above conjecture, with ϵ being the correcting term depending
on a, b, n.

In particular, for n = 4, the following refinement is conjectured, where only the case 2b ≤ a <
3b remains to be verified:

Conjecture 3.

sep(K4, a, b) =


⌊2(a−b)

3
⌋, b ≤ a < 2b,

⌈4a−6b−1
3

⌉, 2b ≤ a < 3b,
2a− 4b, 3b ≤ a < 4b,
a, a ≥ 4b.
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Appendix A. Vectorial solution of the ILP problem for symetrical list assignments

In this section, we show how the counter examples can be found using an algebraic formulation.
Let e1, . . . , en be a canonical base of the vectorial space of dimension n.
We define the vector

a =
n∑

i=1

(
n− 1

i− 1

)
ei.

We can remark that a is symetrical. For a vector x ∈ Rn, we define the linear application
φa(x) = a× x.

We also define the antisymetrical vectors ∀i ∈ [1, ⌊n
2
⌋],

as(i) = ei − en+1−i and, ∀i ∈ [3, ⌈n
2
⌉], the Pascal’s triangle vectors

tp(i) = ei + ei−1 −
(

n
i−1

)
e1.

Lastly, we define the binomial vector bn =
∑n

i=1 ei − 2n−1e1.

Lemma 1. The kernel ker (φa) has {{as(i)}, {tp(i)},bn} as basis and is thus of dimension n−1.

Proof. By construction, it is easy to observe that Fa = {{as(i)}, {tpi},bn} ⊂ ker (φa). As the
number of elements of Fa is equal to the dimension of ker (φa), it suffices to show that Fa is a
family of free vectors. We consider two cases depending on the parity of n.

Case 1. n even. Let αi, 1 ≤ i ≤ n
2

and βj , 3 ≤ j ≤ n
2

and γ ∈ R such that

n/2∑
i=1

αias(i) +

n/2∑
j=3

βjtp(j) + γbn = 0.

For the k-th coordinate of the left side of the above equality, with k ∈ [n
2
+ 1, n], we have

−αn+1−k + γ = 0, thus γ = α1 = α2 = . . . = αn/2.
For k = 2, α2 + β3 + γ = 0 ⇒ β3 = −2γ.
For k ∈ [3, n

2
− 1], αk + βk + βk+1 + γ = 0 ⇒ β4 = . . . = βn/2 = 0.

For k = n/2, αk + βk + γ = 0 ⇒ αn/2 = −γ. But we have seen that αn/2 = γ, hence γ = 0.
Consequently, we obtain that all coefficients are equal to zero.
Case 2. n odd. Let αi, 1 ≤ i ≤ n−1

2
and βj , 3 ≤ j ≤ n+1

2
and γ ∈ R such that

(n−1)/2∑
i=2

αias(i) +

(n+1)/2∑
j=3

βjtp(j) + γbn = 0.

For the k − th coordinate of the left side of the above equality, k ∈ [n+3
2
, n − 1], we have

−αn+1−k + γ = 0. Thus γ = α1 = . . . = α(n−1)/2.
For k = (n+ 1)/2, βk + γ = 0 ⇒ β(n+1)/2 = −γ.
For k ∈ [3, n−1

2
− 1], αk + βk + βk+1 + γ = 0. Hence βk = −αk = −γ.

Finally, for k = 2, α2 + β3 + γ = 0 ⇒ γ = 0.
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Similarly, for the separation condition, we define the vector

c =
n∑

i=2

(
n− 2

i− 2

)
ei

and the linear application φc(x) = c× x.
We also define the vectors

• ∀i ∈ [2, ⌊n
2
⌋], asc(i) = ∆(i, n)as(1) + as(i),

with ∆(i, n) =
(
n−2
i−2

)
−
(

n−2
n−1−i

)
=
(
n−2
i−2

)
−
(
n−2
i−1

)
.

• ∀i ∈ [3, ⌈n
2
⌉], tpc(i) =

(
n−1
i−2

)
as(1) + tp(i).

• bnc = 2n−2as(1) + bn.

Lemma 2. The intersection of kernels ker (φa) ∩ ker (φc) has {{asc(i)}, {tpc(i)},bnc} as a
basis and is thus of dimension n− 2.

Proof. It is easy to see that Fac = {{asc(i)}, {tpc(i)},bnc} ⊂ ker (φa)∩ ker (φc) and has n− 2
vectors. Since the dimension of ker (φa) ∩ ker (φc) is equal to n − 2 too, it suffices to show that
Fac is a free family. We consider two cases depending on the parity of n.

• Case n even. Let αi, 2 ≤ i ≤ n
2

and βj , 3 ≤ j ≤ n
2

and γ ∈ R such that

n/2∑
i=2

αiasc(i) +

n/2∑
j=3

βjtpc(j) + γbnc = 0.

For k ∈ [n
2
+ 1, n− 1], −αn+1−k + γ = 0 ⇒ γ = α2 = α3 = . . . = αn/2−1 = αn/2.

For k = n/2, αk + βk + γ = 0 ⇒ βn/2 = −2γ.

For k ∈ [3, n
2
− 1], αk + βk + βk+1 + γ = 0 ⇒ β3 = . . . = βn/2−1 = 0.

Finally, for k = 2, α2 + β3 + γ = 0 ⇒ 2γ = 0 ⇒ γ = 0.

• Case n odd. Let αi, 2 ≤ i ≤ n+1
2

and βj , 3 ≤ j ≤ n+1
2

and γ ∈ R such that

(n+1)/2∑
i=2

αiasc(i) +

(n+1)/2∑
j=3

βjtpc(j) + γbnc = 0.

For k ∈ [n+3
2
, n− 1], −αn+1−k + γ = 0 ⇒ γ = α2 = α3 = . . . = α(n−1)/2.

For k = (n+ 1)/2, −α(n−1)/2 + βk + γ = 0 ⇒ β(n+1)/2 = 0.

For k ∈ [3, n−1
2

−1], αk+βk+βk+1γ = 0 ⇒ β(n−1)/2 = 2γ, β(n−3)/2 = 0, β(n−5)/2 = 2γ, . . ..

Finally, for k = 2, α2 + β3 + γ = 0 ⇒ β3 = −2γ. If (n + 1)/2 ≡ 3 mod 4 then γ = 0.
Otherwise ((n+ 1)/2 ̸≡ 3 mod 4), then 2γ = −2γ and thus γ = 0.
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In both cases, we have shown that all coefficients are equal to zero, proving that the set of vectors
forms a free family.

We defineψ =
∑n

i=1

(
n
i

)
ei which is the measure of the amplitude andE(a, c) = {x such that φa(x) =

a and φc(x) = c}.
Now, using the maximum principle, we define the two optimal solution vectors xi, i = 1, 2.

• If a ≥ (n− 1)c, we define x1 = (a− (n− 1)c)e1 + ce2.

We can observe that x1 ∈ E(a, c). In fact E(a, c) = x1 + ker(φa) ∩ ker(φc). This solution
corresponds to the counter-example used in proof of Proposition 4.2.

• If a ≤ n−1
n−2

c, x2 = (a− c)en−1 + ((n− 1)c− (n− 2)a)en.

We can observe that x2 ∈ E(a, c). In fact E(a, c) = x2 + ker(φa) ∩ ker(φc). This solution
corresponds to the counter-example used in proof of Proposition 4.3.
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