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Abstract

Let G be a graph. A set D ⊆ V (G) is a global dominating set of G if D is a dominating set of G
and G. γg(G) denotes global domination number of G. A set D ⊆ V (G) is an outer independent
global dominating set (OIGDS) of G if D is a global dominating set of G and V (G) − D is an
independent set of G. The cardinality of the smallest OIGDS of G, denoted by γoig (G), is called
the outer independent global domination number of G. An outer independent global dominating
set of cardinality γoig (G) is called a γoig -set of G. In this paper we characterize trees T for which
γoig (T ) = γ(T ) and trees T for which γoig (T ) = γg(T ) and trees T for which γoig (T ) = γoi(T )
and the unicyclic graphs G for which γoig (G) = γ(G), and the unicyclic graphs G for which
γoig (G) = γg(G).
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1. Introduction

The usual graph theory notions not herein, refer to [15]. Let G = (V,E) be a graph with vertex
set V = V (G) and edge set E = E(G). The order of G is denoted by n(G) = |V |. A unicyclic
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graph is a connected graph with exactly one cycle. The open neighborhood of vertex u is denoted
by N(u) = {v ∈ V (G) : uv ∈ E(G)} and the closed neighborhood of vertex u is denoted by
N [u] = N(u) ∪ {u}. For A ⊆ V (G), the open neighborhood and closed neighborhood of A are
defined as N(A) =

⋃
u∈AN(u) and N [A] =

⋃
u∈AN [u]. Let u ∈ V (G) and A ⊆ V (G), then

d(u,A) = min{d(u, v) : v ∈ A}. A set D ⊆ V (G) of a simple graph G is a vertex cover of G if
every edge of G has at least one end in D. The covering number β(G) is the minimum cardinality
of a vertex cover in G. A set B ⊆ V (G) is an independent set of G if for every edge ab ∈ E(G)
, a /∈ B or b /∈ B. The cardinality of the maximum independent set of graph G, denoted by
α(G), is called independence number of G. The diameter of connected graph G is defined as
diam(G) = max{d(u, v) : u, v ∈ V (G)}. For a vertex u ∈ V (G), the eccentricity of u, defined
as ε(u) = max{d(u, v) : v ∈ V (G)}. The radius of a graph G defined as R(G) = min{ε(u) :
u ∈ V (G)}. The center of a graph G is defined as C(G) = {u ∈ V (G) : ε(u) = R(G)}.
Let G be a graph and B be a subset of V (G) and u ∈ B. We say that vertex v is a private neighbor
of u respected to B if N [v] ∩ B = {u} and we say that u is an isolated vertex respected to B if
N(u) ∩ B = ∅ [15]. A vertex v ∈ V (G) is called a leaf, if d(v) = 1. We denote the set of leaves
of graph G by L(G). A vertex u ∈ V (G) that is adjacent to a leaf is called a support vertex. We
denoted the set of support vertices of G by S(G). A set D ⊆ V (G) is a dominating set of G if
every vertex of V (G) − D is adjacent to at least one vertex of D. The cardinality of the smallest
dominating set of G, denoted by γ(G), is called the domination number of G. A dominating set
of cardinality γ(G) is called a γ-set of G [9]. For every u ∈ S(G) delete all the leaves from N(u)
except one, then the remaining graph is called the pruned of G and denoted by Gp. Further about
the pruned graphs and its application we refer to the reference [11]. A set S ⊆ V (G) is a global
dominating set of G if S is a dominating set of G and G. The cardinality of the smallest global
dominating set of G, denoted by γg(G), is called the global domination number of G [3, 6]. A
set D ⊆ V (G) is an outer independent dominating set (OIDS) of G if D is a dominating set of G
and V (G)−D is an independent set of G. The cardinality of the smallest OIDS of G, denoted by
γoi(G), is called the outer independent domination number ofG. An outer independent dominating
set of cardinality γoi(G) is called a γoi-set of G [10]. Also the global outer connected dominating
set of graphs has already been studied in [1].

One of many applications of global domination have been given in [2], which relates to a
communication network modeled by a graph G, where subnetworks are defined by some matching
Mi of cardinality k. The necessity of these subnetworks could be due for reason of security,
redundancy or limitation of recipients for different classes of messages. For this practical case,
the global domination number represents the minimum number of master stations needed such
that a message issued simultaneously from all masters reaches all desired recipients after traveling
over only one communication link. We note that Carrington [4] gave two other applications of
global dominating sets for graph partitioning commonly used in the implementation of parallel
algorithms.
If D ⊆ V (G) and G − D is an independent set, then D is a vertex cover of G. For every graph
G without isolate vertices we have β(G) = γoi(G). All connected graphs G with γ(G) = β(G)
have been characterized in [12, 16]. Actually they characterized the connected graph G with equal
domination number and outer independent domination number. Therefore we maybe use for a
graph G, γoi(G) instead of β(G).
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In this article we are going to define and study outer independent global dominating set of trees
and unicycles.

2. Preliminaries results

Let τ denote the class of trees with n ≥ 2 vertices and either radius one (that is, stars) or radius
two having a vertex u with d(u) ≥ 2 and d(v) ≥ 3 for all v ∈ N(u) [3].
Let M be the family of trees T with diam(T ) = 4 and C(T ) ⊆ S(T ) and N be the family of trees
T with diam(T ) = 4 and C(T ) * S(T ).

Definition 2.1. Let u and v be two distinct vertices of tree T . We define DT (u, v) = D(u, v) as
follows: D(u, v) = k if dT (u, v) = k and non of the internal vertices of the path between u and v
is a support vertex, and D(u, v) = 0 if at least one of the internal vertices of the path between u, v
is a support vertex.

Stracke in [13] has shown the following result that has been stated in [14] too.

Proposition 2.1. ([14], Corollary 2.7) For any tree T , γ(T ) = β(T ) if and only if T ∗ = T −
N [L(T )] = ∅ or each component of T ∗ is an isolated vertex or a star, where the center of these
stars are not adjacent to a vertex of S(T ).

We will prove an equivalent theorem (Theorem 2.2), using notation D(u, v).

Proposition 2.2. [8] For every nontrivial connected graph G, γoi(G) = n(G)− α(G).

The following results has a straightforward proof and it is left.

Observation 2.1. If T is a nontrivial tree then, γoi(T ) ≤ n(T )
2

.

The next result can be found in [9].

Theorem 2.1. ([9] Theorem 1.1) A dominating set A is a minimal dominating set of G if and only
if for each vertex u ∈ A, one of the following two conditions holds:
(a) u is an isolate vertex of A,
(b) u has a private neighbor with respect to A.

Observation 2.2. If A is a global dominating set of G, then N [u]
⋂
A 6= ∅ and A − N(u) 6= ∅,

for every u ∈ V (G).

If A is a domination set (OIDS) of G, then every leaf or it’s support vertex belongs to A, so we
have the bellow observation.

Observation 2.3. Let T 6= P2 be a tree and A be a γ-set (γoi-set) of T . Then the set (A∪S(T ))−
L(T ) is a γ-set (γoi-set) of T , too.

Lemma 2.1. Let T be a tree and γoi(T ) = γ(T ). Let A be a γoi-set of T and D(u, v) > 1,
u, v ∈ S(T ). Let P = ux1x2...xk−1v be the path between u and v in T . If ab ∈ E(P ), then a /∈ A
or b /∈ A.
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Proof. On the contrary let a, b ∈ A. Since D(u, v) > 1, so a /∈ S(T ) or b /∈ S(T ). Without lose of
generality let b /∈ S(T ). A is a minimal dominating set of T too, therefore by Theorem 2.1, b has
a private neighbor with respect to A like x. Since b /∈ S(T ), so x is not a leaf, therefore x has a
neighbor like y that y /∈ A, thus the vertices x, y are two adjacent vertices in V (T )− A, therefore
A is not an OIDS of T , that is a contradiction.

The following result characterizes the tree T with γoi(T ) = γ(T ) other than point of view of
what Stracke do in Proposition 2.1.

Theorem 2.2. Let T be a tree. Then γoi(T ) = γ(T ) if and only if for every vertices u, v ∈ S(T ),
D(u, v) ∈ {0, 1, 2, 4}.

Proof. Let γoi(T ) = γ(T ) and A be a γoi(T )-set of T and D(u, v) > 1, u, v ∈ S(T ). Let P =
ux1x2...xk−1v be the path between u and v in T . By Observation 2.3 without lose of generality we
have S(T ) ⊆ A. By Lemma 2.1, if k is odd then, it will be contradiction.
Now let D(u, v) = k ≥ 6, and k is even.

By Lemma 2.1 we have {u, x2, x4, ..., xk−2, v} ⊆ A. Let A1 = (A − {x2, x4}) ∪ {x3}.
We show that A1 is a global dominating set of T at size γoi(T ) − 1, that is contradiction. If
dT (x2) = dT (x4) = 2, then it is clear that A1 is a dominating set of T . If d(x2) > 2 and
y ∈ N(x2)−A, then since x2 /∈ S(T ), so d(y) ≥ 2. Let z ∈ N(y)−{x2}. Since A is an OIDS of
T , so z ∈ A, therefore y is dominated by A1. If d(x4) > 2 and w ∈ N(x4)− A, then by a similar
proof we find that w is dominated by A1. Therefore A1 is a dominating set of T .
Conversely, let T be a tree and for every vertices u, v ∈ S(T ) we have D(u, v) = k, k ∈
{0, 1, 2, 4}. Let A be a γoi-set of T . By Observation 2.3 we can consider S(T ) ⊆ A. Let
H = {u ∈ V (T ) : d(u, S(T )) = 2}. By Lemma 2.1, H ⊆ A. Since S(T ) ∪ H is an OIDS
of T , so A = S(T )∪H . Now let B be an arbitrary γ-set of T . By Observation 2.3 we can consider
S(T ) ⊆ B. For every disjoint vertices c1, c2 ∈ H it is clear that c1, c2 /∈ N [S], d(c1, c2) ≥ 4, so
corresponding to every vertex c ∈ H there exists a vertex ac ∈ B − S(T ) that dominates c and
does’t dominate any vertex of H − {c}. So |B| ≥ |S(T ) ∪H| = |A|, thus γoi(T ) = γ(T ).

3. OIGDS of trees

We begin this section with a definition.

Definition 3.1. A set D ⊆ V (G) is an outer independent global dominating set (OIGDS) of G if
D is a global dominating set of G and V (G)−D is an independent set of G.

The cardinality of the smallest OIGDS of G, denoted by γoig (G), is called the outer indepen-
dent global domination number OIGDN of G. An outer independent global dominating set of
cardinality γoig (G) is called a γoig -set of G.

Lemma 3.1. [7] For any graph G, if R(G) ≥ 3, then every dominating set of G is a dominating
set of G.

Corollary 3.1. For any graph G, if R(G) ≥ 3, then
a) γg(G) = γ(G) and
b) γoig (G) = γoi(G).
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Proof. a) Let A be a γ-set of G. Then by Lemma 3.1 A is a dominating set of G, too . So A is a
global dominating set of G and therefore γg(G) ≤ γ(G). By inequality γ(G) ≤ γg(G) we have
γg(G) = γ(G).
b) Let A be a γoi-set of G. A is a dominating set of G. Thus A is a global dominating set of G
and therefore A is an OIGDS of G, so γoig (G) ≤ γoi(G). By inequality γoi(G) ≤ γoig (G) we have
γoig (G) = γoi(G).

Proposition 3.1. For any tree T , R(T ) = ddiam(T )
2
e.

Proof. Let diam(T ) = k and P = u0u1...uk be a path at length k in T . d(u0, ud k
2
e) = dk2e. Since

the path between two vertex of T is unique, if there exist a vertex v such that d(v, ud k
2
e) > dk2e

then d(u0, v) > k or d(uk, v) > k that is contradiction.

Corollary 3.2. If T is a tree and diam(T ) ≥ 5, then γg(T ) = γ(T ) and γoig (T ) = γoi(T ).

Theorem 3.1. Let T be a tree. Then γoig (T ) = γg(T ) if and only if one of the following conditions
holds:
a) diam(T ) ∈ {0, 1, 2, 3}
b) T ∈M
c) T ∈ N ∩ τ
d) diam(T ) ≥ 5 and D(u, v) ∈ {0, 1, 2, 4}, for every u, v ∈ S(T ).

Proof. If diam(T ) = 0 or 1 or 2, then the proof is clear. If diam(T ) = 3, then let us observe that
S(T ) is a γoig -set and γg-set of T .
Now let diam(T ) = 4. If T ∈ M , then let us observe that S(T ) is a γoig -set and γg-set of T and if
T ∈ N ∩ τ , then let us observe that S(T )∪C(T ) is a γoig -set and γg-set of T . If T ∈ N but T /∈ τ ,
then T has a support vertex like x that d(x) = 2. Let y be the leaf that is adjacent to x. The set
(S(T )−{x})∪{y} is a γg-set of T but the set S(T )∪C(T ) is a γoig -set of T , so γoig (T ) = γg(T )+1.
Now let diam(T ) ≥ 5. By Theorem 2.2, γoi(T ) = γ(T ) if and only if D(u, v) ∈ {0, 1, 2, 4}, for
every u, v ∈ S(T ). By Corollary 3.2 the proof is completed.

Observation 3.1. Let G be a graph. If dG(u) 6= γoi(G) for every vertex u ∈ V (G), then γoig (G) =
γoi(G).

Proof. Let γoig (G) 6= γoi(G) and A be a γoi-set of G. Then there exist a vertex x ∈ V (G) − A
such that x is adjacent to all vertices of A and x is not adjacent to any vertex of V (G) − A, so
dT (x) = |A| = γoi(G), that is contradiction.

Theorem 3.2. Let T be a tree.Then γoig (T ) = γoi(T ) if and only if T 6= P2 and T /∈ N and T is
not a star.

Proof. If T = P2 or T ∈ N or T is a star, then it is clear that γoig (T ) = γoi(T ) + 1. We show
that for other trees T we have γoig (T ) = γoi(T ). For T = P1 we have γoig (T ) = γoi(T ). If
T ∈ M or diam(T ) = 3, then S(T ) is a γoig -set and γoi-set of T , so γoig (T ) = γoi(T ). Now let
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γoig (T ) 6= γoi(T ) and diam(T ) ≥ 5. Let A be a γoi-set of T . Since A is not a γoig -set of T , so there
exists a vertex x ∈ V (T ) − A such that x is adjacent to all vertices of A. Since T is not a star so
V (T ) − A − {x} 6= ∅. Since every vertex of V (T ) − A − {x} is adjacent to some vertices of A
and all the vertices of A are adjacent to x, so diam(T ) = 3 or 4. that is contradiction.

Theorem 3.3. Let T be a tree.Then γoig (T ) = γ(T ) if and only if one of the following conditions
holds.
a) diam(T ) = 0 or 3
b) T ∈M
c) diam(T ) ≥ 5 and D(u, v) ∈ {0, 1, 2, 4} for every u, v ∈ S(T ).

Proof. It is easy to see that γoig (T ) = γ(T ) if diam(T ) = 0 or 3 or T ∈M and γoig (T ) = γ(T )+ 1
if diam(T ) = 1 or 2 or T ∈ N . If diam(T ) ≥ 5 and D(u, v) ∈ {0, 1, 2, 4} for every u, v ∈ S(T ),
then by Corollary 3.2, γoig (T ) = γoi(T ) and by Theorem 2.2 we have γoi(T ) = γ(T ), so γoig (T ) =
γ(T ). If diam(T ) ≥ 5 and D(u, v) /∈ {0, 1, 2, 4} for some u, v ∈ S(T ), then by Theorem 2.2 we
have γoi(T ) 6= γ(T ), and by Corollary 3.2 we have γoig (T ) = γoi(T ), so γoig (T ) 6= γ(T ).

4. Unicyclic graphsG with γoi
g (G) = γ(G)

Observation 4.1. For every graph G, G−N [L(G)] = Gp −N [L(Gp)].

Volkmann denoted by c(x) the distance from x to cycle C.

Theorem 4.1. [14] Let G be a unicyclic graph, G∗ = G − N [L(G)], and C the only cycle of G.
Then β(G) = γ(G) if and only if one of the following conditions holds:
(1) G = C4.
(2) C is adjacent to an end vertex, and the graph G∗ = ∅ or each component of G∗ is an isolated
vertex or a star, where the centers of these stars are not adjacent to a vertex of N(L(G)).
(3) C = C4, c(x) ≥ 3 for all x ∈ L(G), min{(d(a), d(b)} = 2 for all pairs of adjacent vertices
a, b ∈ V (C), and all components T1, ..., Tk of the subgraph G0 = G − V (C) are trees with
β(Ti) = γ(Ti) for i = 1, ....k such that no minimum dominating set of Go contains a vertex from
N(V (C))

⋂
V (G0).

It is clear that if G is a unicyclic graph, then γoi(G) = β(G).

Theorem 4.2. Let G be a unicyclic graph, G∗ = G − N [L(G)], and C the only cycle of G. Then
γoig (G) = γ(G) if and only if one of the following conditions holds:
a) G satisfies the condition (3) of Theorem 4.1.
b) R(G) ≥ 3 and G satisfies the condition (2) of Theorem 4.1.
c) Gp is one of the following graphs:

126



www.ejgta.org

Outer independent global dominating set | D. A. Mojdeh and M. Alishahi

e
e

e
e

e
e

@
@
@ �

�
�

W2

e
e
e

e

e

e

e
@
@
@ �

�
�

�
��

W4

e
e
e

e

e

e

e
e

e
@
@
@ �

�
�

A
AA

A
AA

�
��

...

W5

e
e
e

e
e

e

e

e
@
@
@ �

�
�

�
��

W6

e
e
e

e
e

e

e

e
e

e
@
@
@ �

�
�

A
AA

A
AA

�
��

...

W8

e
e
e

e
e
e

e

W12

e
e
e

e
e

e
e���

W14

e
e
e

e
e

e
e

e
e A

AA

A
AA

�
��

...

W15

e
e
e

e
e
e

e

e

e���

W17

e
e
e

e
e
e

e

e

e
e

e A
AA

A
AA

�
��

...

W19

e
ee

e
e

e
e

A
AA

�
��

W20

e
ee

e

e
e

A
AA

�
��

W21

e
e

e���

e
ee

e

e
e

A
AA

�
��

W22

eAAA
A
AA

e
e e

e���
...

Figure 1. Pruned graphs of some unicyclic with equal OIGDN and DN.

Proof. In this proof we denote the vertex in γ-set and the vertex in γoig -set by bold circle • and
empty square � respectively in the Figure 2. We show that any unicyclic graph G that satisfies
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condition (a) or (b) or (c) has equal γoig (G) and γ(G), and any unicyclic graph G that does not
satisfy in the conditions (a), (b) and (c), γoig (G) 6= γ(G)

In Figure 2 we have the pruned of all unicyclesG such thatR(G) ≤ 2 andG satisfies condition
(2) of Theorem 20.
Let U be the family of all unicycles and V be the family of all unicycles satisfy in condition (1) or
(2) or (3) of theorem 20 and W be the family of unicycles satisfy in condition (a) or (b) or (c). It
is well known that W ⊆ V ⊆ U . Let G ∈ W . If G satisfies condition (a) or (b), then R(G) ≥ 3
and γoig (G) = γoi(G). Now γoi(G) = γ(G) implies that γoig (G) = γ(G). If G satisfies condition
(c), then according to the γ-sets and γoig -sets of unicycles in Figure 1 that presented in Figure (2)
we have γoig (G) = γ(G).
Now let G ∈ U − W . If G ∈ U − V , then by Theorem 20, γoi(G) > γ(G), so γoig (G) ≥
γoi(G) > γ(G), therefor γoig (G) 6= γ(G). If G ∈ V − W , then G = C4 or G = Wi, i ∈
{1, 3, 7, 9, 10, 11, 13, 16, 18}. For G = C4 we have γoig (G) 6= γ(G) and for G = Wi, i ∈
{1, 3, 7, 9, 10, 11, 13, 16, 18} according to the γ-sets and γoig -sets presented in Figure (2) we have
γoig (G) 6= γ(G).
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Figure 2. Pruned unicyclic graphs with R(G) ≤ 2.
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5. Unicyclic graphsG with γoi
g (G) = γg(G)

Observation 5.1. Let G be a graph and A be a global dominating set of G and A ∩ L(G) = ∅.
Then A is a global dominating set of Gp.

Proof. For every u ∈ V (Gp) it is clear that NGp [u] ∩ A = NG[u] ∩ A 6= ∅ and A − NGp(u) =
A−NG(u) 6= ∅. Therefore by Observation 2.2, A is a global dominating set of Gp, too.

Observation 5.2. Let G be a graph and A be a global dominating set of Gp and A ∩ L(Gp) = ∅.
Then A is a global dominating set of G.

Proof. Let u be an arbitrary vertex of G. If u ∈ V (Gp), then it is clear that NG[u]∩A = NGp [u]∩
A 6= ∅ and A − NG(u) = A − NGp(u) 6= ∅. If u /∈ V (Gp), then u ∈ L(G). Let w be the
support vertex of u and v ∈ NGp(w) ∩ L(Gp). It is clear that NG[u] ∩ A = NGp [v] ∩ A 6= ∅ and
A−NG(u) = A−NGp(v) 6= ∅. Therefore by Observation 2.2, A is a global dominating set of G,
too.

For every v ∈ V (G) and A ⊆ V (G) we define Lv = L(G) ∩N(v) and Av = Lv ∩ A.

Theorem 5.1. Let G be a graph. Then γg(Gp) ≤ γg(G).

Proof. If L(G) = ∅, then Gp = G and the result holds. Let L(G) 6= ∅ and A be a γg-set of G and
u ∈ S(G). If |Au| ≥ 3 and x, y, z ∈ Au, then the set (A∪{u})−{y, z} is a global dominating set of
G that is contradiction, so |Au| ∈ {0, 1, 2}. If |Au| = 2 and x, y ∈ Au , then the set (A∪{u})−{y}
is a global dominating set of G, too, therefore there exists a global dominating set of G like B,
such that |Bu| = 0 or 1 for every u ∈ S(G). We can construct Gp from G such that B ⊆ V (Gp).
Therefore for any v ∈ V (Gp), NGp [v]∩A = NG[v]∩A 6= ∅ and A−NGp(v) = A−NG(v) 6= ∅.
By Observation 2.2 A is a global dominating set of Gp and so γg(Gp) ≤ γg(G).

Corollary 5.1. Let G be a graph and Gp has a γg-set like A such that A ∩ L(Gp) = ∅. Then
γg(Gp) = γg(G).

Proof. By Observation 5.2, A is a global dominating set of G, so γg(G) ≤ γg(Gp). By Theorem
5.1 the result holds.

Observation 5.3. Let G be a graph and A be an OIGDS of G and A ∩ L(G) = ∅. Then A is an
OIGDS of Gp.

Proof. Since A is a global dominating set of G, so by Observation 5.1, A is a global dominating
set of Gp, too. Since E(Gp) ⊆ E(G), if E(〈Gp − A〉) 6= ∅ then E(〈G − A〉) 6= ∅, that is
contradiction. Therefore A is an outer independent set of Gp, too.

Observation 5.4. Let G be a graph and A be an OIGDS of Gp and A∩L(Gp) = ∅. Then A is an
OIGDS of G.
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Proof. Since A is a global dominating set of Gp, so by Observation 5.2, A is a global dominating
set of G, too. Now we show that E(〈G − A〉) = ∅. On the contrary, let e ∈ E(〈G − A〉) and
e = uv.
If u, v ∈ V (Gp), then e ∈ E(〈GP − A〉) that is contradiction. If u, v /∈ V (Gp), then u, v ∈ L(G)
that is contradiction. If u /∈ V (Gp) and v ∈ V (Gp), then u ∈ L(G) and v ∈ S(G), therefore v ∈
S(Gp). Let w be the leaf of Gp that is adjacent to v. Since A∩L(Gp) = ∅, so vw ∈ E(〈Gp−A〉),
that is contradiction.

Theorem 5.2. Let G be a graph. Then γoig (Gp) ≤ γoig (G).

Proof. If L(G) = ∅, then Gp = G and the result holds. Let L(G) 6= ∅ and A be a γoig -set of G
and u ∈ S(G). If |Au| ≥ 3 and x, y, z ∈ Au, then the set (A∪{u})−{y, z} is an OIGDS of G that
is contradiction, so |Au| ∈ {0, 1, 2}. If |Au| = 2 and x, y ∈ Au, then the set (A∪ {u})− {y} is an
OIGDS of G, too, therefore there exists an OIGDS of G like B, such that |Bu| = 0 or 1 for every
u ∈ S(G). We can construct Gp from G such that B ⊆ V (Gp). Therefore for any v ∈ V (Gp),
NGp [v] ∩ A = NG[v] ∩ A 6= ∅ and A − NGp(v) = A − NG(v) 6= ∅. By Observation 2.2 A is a
global dominating set of Gp. Since E(V (Gp) − A) ⊆ E(V (G) − A) = ∅, so A is an OIGDS of
Gp, therefore γoig (Gp) ≤ γoig (G).

Corollary 5.2. Let G be a graph and Gp has a γoig -set like A such that A ∩ L(Gp) = ∅. Then
γoig (Gp) = γoig (G).

Proof. By Observation 5.4, A is an OIGDS of G, so γoig (G) ≤ γoig (Gp). By Theorem 5.2 the result
holds.

Theorem 5.3. Let G be a unicyclic graph, G∗ = G − N [L(G)], and C the only cycle of G. Then
γoig (G) = γg(G) if and only if one of the following conditions holds:
i) G satisfies one of the conditions (a) or (b) or (c) of Theorem 4.2.
ii) Gp is one of the below graphs:
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Figure 3. Pruned graphs of some unicyclic with equal OIGDN and GDN.
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iii) G is one of the below graphs:
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Figure 4. Some unicyclic graphs with equal OIGDN and GDN.
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Proof. In this proof we denote the vertex in γg-set and the vertex in γoig -set by bold circle • and
empty square � respectively in the Figures 5,6,...,21. Let U be the set of all unicyclic graphs and
A, B and C are the set of all unicyclic graphs satisfying conditions (i), (ii) and (iii), respectively.
It is clear that A, B and C are disjoint sets. For every G ∈ U we will show that γoig (G) = γg(G) if
G ∈ A ∪ B ∪ C and γoig (G) 6= γg(G) if G ∈ U − (A ∪ B ∪ C). Let G ∈ A. Then by Theorem
4.2, γoig (G) = γ(G). Because of the inequality γ(G) ≤ γg(G) ≤ γoig (G) we have γoig (G) = γg(G).
Now let G ∈ U − A. Then by Theorem 4.2, γoig (G) 6= γ(G). If R(G) ≥ 3, then γg(G) = γ(G),
therefore γoig (G) 6= γg(G). If R(G) ≤ 2, then Gp is one of the graphs in Figure 5. The pruned of
all unicyclic graphs G with R(G) ≤ 2 which are not in Figure 1 are presented in Figure 5.
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Figure 5. Unicyclic graphs with R(G) ≤ 2 which are not in Figure 1.

By Corollary 5.1, if Gp = Ui, i ∈ {1, 2, ..., 42} − {2, 6, 7, 10, 13, 15, 16, 21, 23, 28, 35, 41},
then γg(Gp) = γg(G) and by Corollary 5.2, if Gp = Ui, i ∈ {1, 2, ..., 42}, then γoig (GP ) = γoig (G).
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According to the presented γg-sets and γoig -sets in Figure 5, γoig (G) = γg(G) if Gp = Ui, i ∈
{1, 5, 29, 30, 32} (G ∈ B) and γoig (G) 6= γg(G) if Gp = Ui, for
i ∈ {3, 4, 8, 9, 11, 12, 14, 17, 18, 19, 20, 22, 24, 25, 26, 27, 31, 33, 34, 36, 37, 38, 39, 40, 42}. ForGp =
Ui, i ∈ {2, 6, 7, 10, 13, 15, 16, 21, 23, 28, 35, 41} we verify γg(G) and γoig (G) in all possible cases.

If Gp = U2, then G = U2 or G is the graph bellow:
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Figure 6. Graphs G with Gp = U2.

If Gp = U6, then G = U6 or G is one of the below graphs:
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Figure 7. Graphs G with Gp = U6.

If Gp = U7, then the set S(G) ∪ C(G) is a γoig -set of G. If G has a vertex u ∈ S(G) such
that there is only one leaf, x, adjacent to u, then the set (S(G) ∪ {x}) − {u} is a γg-set of G, so
γoig (G) = γg(G) + 1. If every vertex u ∈ S(G) is adjacent to at least two leaves (Figure 8), then
the set S(G) ∪ C(G) is a γg-set of G, so γoig (G) = γg(G).
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Figure 8. Graphs G with Gp = U7 and every support vertex has at least two leaves

If Gp = U10, then G = U10 or G is one of the below graphs:
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Figure 9. Graphs G with Gp = U10.

If Gp = U13 (Figure 10), then the set S(G) ∪ {a} is a γoig -set of G.
If there exists i ∈ {1, 2, ..., k} such that dG(xi) = 2 and yi is the leaf adjacent to xi, then the

set (S(G) ∪ {yi}) − {xi} is a γg-set of G, so γoig (G) = γg(G) + 1. If for every i ∈ {1, 2, ..., k},
dG(xi) > 2, then the set S(G) ∪ C(G) is a γg-set of G, so γoig (G) = γg(G) (Figure 11).
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Figure 11. Graphs G with Gp = U13.

If Gp = U15 (Figure 12), then the set S(G) ∪ C(G) is a γoig -set of G.
If there exists i ∈ {1, 2, ..., k} such that dG(xi) = 2 and yi is the leaf adjacent to xi, then the

set (S(G) ∪ {yi}) − {xi} is a γg-set of G, so γoig (G) = γg(G) + 1. If for every i ∈ {1, 2, ..., k},
dG(xi) > 2, then the set S(G) ∪ C(G) is a γg-set of G, so γoig (G) = γg(G) (Figure 13).
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Figure 13. Graphs G with Gp = U15.

If Gp = U16, then the set S(G) ∪ C(G) is a γoig -set of G. If G has a vertex u ∈ S(G) such
that there is only one leaf, x, adjacent to u, then the set (S(G) ∪ {x}) − {u} is a γg-set of G, so
γoig (G) = γg(G) + 1. If every vertex u ∈ S(G) is adjacent to at least two leaves (Figure 14), then
the set S(G) ∪ C(G) is a γg-set of G, so γoig (G) = γg(G).

u
e

u
u
e

@
@
@ �

�
�

H13

2

2

2

e
22

......

... u
e eu

ee
@
@

@
@

�
�

�
�

e
@
@

... e
�
�
...

Figure 14. Graphs G with Gp = U16 and every support vertex has at least two leaves.
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If Gp = U21, then G = U21 or G is one of the below graphs:
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Figure 15. Graphs G with Gp = U21.

If Gp = U23, then the set S(G) ∪ C(G) is a γoig -set of G. If G has a vertex u ∈ S(G) such
that there is only one leaf, x, adjacent to u, then the set (S(G) ∪ {x}) − {u} is a γg-set of G, so
γoig (G) = γg(G) + 1. If every vertex u ∈ S(G) is adjacent to at least two leaves (Figure 16), then
the set S(G) ∪ C(G) is a γg-set of G, so γoig (G) = γg(G).
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Figure 16. Graphs G with Gp = U23 and every support vertex has at least two leaves.

If Gp = U28, then the set S(G) ∪ C(G) is a γoig -set of G. If G has a vertex u ∈ S(G) such
that there is only one leaf, x, adjacent to u, then the set (S(G) ∪ {x}) − {u} is a γg-set of G, so
γoig (G) = γg(G) + 1. If every vertex u ∈ S(G) is adjacent to at least two leaves (Figure 17), then
the set S(G) ∪ C(G) is a γg-set of G, so γoig (G) = γg(G).
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Figure 17. Graphs G with Gp = U28 and every support vertex has at least two leaves.

If Gp = U35 (Figure 18), then the set S(G) ∪ {a} is a γoig -set of G.
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If dG(u) = 2 and y is the leaf adjacent to u, then the set (S(G)∪{y})−{u} is a γg-set of G, so
γoig (G) = γg(G) + 1. If dG(u) > 2, then the set S(G) ∪C(G) is a γg-set of G, so γoig (G) = γg(G)
(Figure 19).
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Figure 19. Graphs G with Gp = U35 and d(u) ≥ 3.
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If Gp = U41 (Figure 20), then the set S(G) ∪ {a} is a γoig -set of G.
If there exists i ∈ {1, 2, ..., k} such that dG(xi) = 2 and yi is the leaf adjacent to xi, then the

set (S(G) ∪ {yi}) − {xi} is a γg-set of G, so γoig (G) = γg(G) + 1. If for every i ∈ {1, 2, ..., k},
dG(xi) > 2, then the set S(G) ∪ C(G) is a γg-set of G, so γoig (G) = γg(G) (Figure 21).
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Figure 21. Graphs G with Gp = U41 and d(xi) ≥ 3, (1 ≤ i ≤ k).

According to the presented γg-sets and γoig -sets for graphs G = Hi, i = 1, 2, ..., 23, we have
γoig (Hi) = γg(Hi) only for i = 2, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15, 16, ..., 23 (G ∈ C).
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