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Abstract

In this paper, we show that in the class of connected graphs G of order n ≥ 3 having girth at
least equal to k, 3 ≤ k ≤ n, the unique graph G having minimum general sum-connectivity index
χα(G) consists of Ck and n−k pendant vertices adjacent to a unique vertex of Ck, if−1 ≤ α < 0.
This property does not hold for zeroth-order general Randić index 0Rα(G).
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1. Introduction

Let G be a simple graph having vertex set V (G) and edge set E(G). Let Gn denote the set of
connected graphs of fixed order n and size m ≥ n. The girth of a graph G ∈ Gn will be denoted
g(G). The degree of a vertex u ∈ V (G) is denoted d(u) and N(u) is the set of vertices adjacent
with u. If d(u) = 1 then u is called pendant; a pendant edge is an edge containing a pendant
vertex. The minimum and maximum degrees of G are denoted δ(G) and ∆(G), respectively. For
A ⊂ E(G), G − A denotes the graph deduced from G by deleting the edges of A and the graph
obtained by the deletion of an edge uv ∈ E(G) is denoted G − uv. Conversely, if A ⊂ E(G),
G + A is the graph obtained from G by adding the edges of A. If x ∈ V (G), G − x denotes the
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subgraph of G obtained by deleting x and its incident edges.
For n ≥ 3 and 3 ≤ k ≤ n, let Ck,n−k denote the graph of order n consisting of a cycle Ck and
n − k pendant edges attached to a unique vertex of Ck. For other notations in graph theory, we
refer [1].

The general sum-connectivity index of graphs was proposed by Zhou and Trinajstić [10]. It is
denoted by χα(G) and defined as

χα(G) =
∑

uv∈E(G)

(d(u) + d(v))α,

where α is a real number. A particular case of the general sum-connectivity index is the harmonic
index, denoted by H(G) and defined as

H(G) =
∑

uv∈E(G)

2

d(u) + d(v)
= 2χ−1(G).

The zeroth-order general Randić index, denoted by 0Rα(G) is defined as

0Rα(G) =
∑

u∈V (G)

d(u)α,

where α is a real number. For α = 2 this index is also known as first Zagreb index (see [4]).
For −1 ≤ α < 0 Du, Zhou and Trinajstić [2] showed that among the set of n-vertex unicyclic

graphs with n ≥ 5, C3,n−3 is the unique graph with the minimum general sum-connectivity index
and Tomescu and Kanwal [6] showed that in the same set of graphs having girth k ≥ 4 the unique
extremal graph is Ck,n−k. Zhong [9] proved that in the set of connected graphs of order n and m
edges, where m ≥ n, with girth g(G) ≥ k (3 ≤ k ≤ n), minimum harmonic index H(G) is
reached only for Ck,n−k. Other extremal properties of the general sum-connectivity index for trees
were proposed in [3, 5].

In this paper, we study the minimum general sum-connectivity index χα(G) in the class of
connected graphs G of fixed order n ≥ 3 and size m ≥ n with girth g(G) ≥ k. Theorem 3.1
extends the above result of Zhong for every −1 ≤ α < 0 (including the case of the harmonic
index, when α = −1), Corollary 3.3 those of Du, Zhou and Trinajstić, and Corollary 3.2 the result
of Tomescu and Kanwal (which holds for unicyclic graphs, when m = n). In section 2 we state
some parametric inequalities which will be used in the last section. In section 3 we determine the
connected graphs G of order n ≥ 3 with girth at least k (3 ≤ k ≤ n) having minimum χα(G) for
−1 ≤ α < 0.

2. Some preliminary results

Let g(n, k) = (n−k)(n−k+3)α+2(n−k+4)α+(k−2)4α. Note that g(n, k) = χα(Ck,n−k).

Lemma 2.1. [8] The function f(n, k) = k(k+3)α+2(k+4)α+(n−k−2)4α is strictly decreasing
in k ≥ 0 for −1 ≤ α < 0.
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Since g(n, k) = f(n, n− k) we deduce the following property.

Corollary 2.1. The function g(n, k) is strictly increasing in k, 3 ≤ k ≤ n for −1 ≤ α < 0.

Lemma 2.2. [8] The function

ψ(x) = 2(x+ 5)α + (x− 1)(x+ 4)α − x(x+ 3)α

defined for x ≥ 0 and −1 ≤ α < 0 is strictly decreasing.

Lemma 2.3. [7] Let uv be an edge of a graph G such that d(u)+d(v) is minimum. If−1 ≤ α < 0
then χα(G− uv) < χα(G).

Lemma 2.4. [8] a) Let x > 0. If α < 0 or α > 1 then (1 + x)α > 1 + αx.
b) Let x > 0. If α < 0 or 1 < α < 2 then (1 + x)α < 1 + αx + α(α−1)

2
x2 (for α = 2 equality

holds).

Lemma 2.5. The function g(n, k) is strictly subadditive in n for −1 ≤ α < 0, i.e.,

g(n1 + n2, k) < g(n1, k) + g(n2, k), (1)

where n1, n2 ≥ k ≥ 3.

Proof. By letting n1 + n2 = n ≥ 2k, n1 = x we deduce n2 = n− x and (1) leads to

g(x, k) + g(n− x, k) > g(n, k)

for every k ≤ x ≤ n− k. Using formula for g(n, k) this inequality is equivalent to

(x−k)(x−k+3)α+2(x−k+4)α+(n−x−k)(n−x−k+3)α+2(n−x−k+4)α+(k−2)4α

> (n− k)(n− k + 3)α + 2(n− k + 4)α. (2)

Let

η(x) = (x− k)(x− k+ 3)α + 2(x− k+ 4)α + (n− x− k)(n− x− k+ 3)α + 2(n− x− k+ 4)α.

We have η(x) = η(n− x); we can write η(x) = γ(x) + γ(n− x), where

γ(x) = (x− k)(x− k + 3)α + 2(x− k + 4)α.

We get

γ′′(x) = α(α− 1)(x− k)(x− k + 3)α−2 + 2α(x− k + 3)α−1 + 2α(α− 1)(x− k + 4)α−2

< α(α− 1)(x− k)(x− k + 3)α−2 + 2α(x− k + 3)α−1 + 2α(α− 1)(x− k + 3)α−2

= α(x− k + 3)α−2((α + 1)(x− k + 2) + 2) < 0.
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Similarly, γ′′(n−x) < 0, so η′′(x) < 0, hence η(x) is a concave function. Because η(x) = η(n−x)
where k ≤ x ≤ n − k, so the minimum of η(x) is reached at x = k and x = n − k. Replacing
x = k in (2) yields

k4α + (n− 2k)(n− 2k + 3)α + 2(n− 2k + 4)α > (n− k)(n− k + 3)α + 2(n− k + 4)α.(3)

In order to prove (3) we shall consider a new variable x = n ≥ 2k and the function

ϕ(x) = (x− 2k)(x− 2k + 3)α + 2(x− 2k + 4)α − (x− k)(x− k + 3)α − 2(x− k + 4)α

defined for x ≥ 2k ≥ 6. We deduce

ϕ′(x) = (x− 2k + 3)α−1((x− 2k)(α + 1) + 3) + 2α(x− 2k + 4)α−1

−(x− k + 3)α−1((x− k)(α + 1) + 3)− 2α(x− k + 4)α−1 > (x− 2k + 3)α−1(x(α + 1)

−2k(α + 1) + 3 + 2α)− (x− k + 3)α−1(x(α + 1)− k(α + 1) + 3)− 2α(x− k + 4)α−1

= E(x, k, α)(x− k + 4)α−1.

We have

E(x, k, α) =

[
1 +

k + 1

x− 2k + 3

]1−α
[x(α + 1)− 2k(α + 1) + 3 + 2α]

−
[
1 +

1

x− k + 3

]1−α
[x(α + 1)− k(α + 1) + 3]− 2α.

By Lemma 2.5 we get

E(x, k, α) >

[
1 +

(1− α)(k + 1)

x− 2k + 3

]
[x(α + 1)− 2k(α + 1) + 3 + 2α]

−
[
1 +

1− α
x− k + 3

+
α(α− 1)

2(x− k + 3)2

]
[x(α + 1)− k(α + 1) + 3]− 2α

= −αk(1 + α) + α(α− 1)F (x, k, α),

where

F (x, k, α) =
(1 + α)(k − x)− 3

2(x− k + 3)2
− 3

x− k + 3
+

k + 1

x− 2k + 3
.

Finally,

F (x, k, α) >
k − x− 3

(x− k + 3)2
− 3

x− k + 3
+

k + 1

x− 2k + 3
= − 4

x− k + 3
+

k + 1

x− 2k + 3
> 0

since k ≥ 3 implies k+1
x−2k+3

> 4
x−k+3

.
Because ϕ′(x) > 0 it follows that ϕ(x) is strictly increasing and (3) holds if it holds for n = 2k
and k ≥ 3. Substituting n = 2k in (3) yields

(k + 2)4α > k(k + 3)α + 2(k + 4)α,

which is true because k ≥ 3.
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Lemma 2.6. Let G ∈ Gn such that g(G) ≥ k. We have ∆(G) ≤ n− k + 2 and the bound is tight.

Proof. Let v ∈ V (G) such that d(v) = ∆(G). Suppose that v belongs to a cycle in G and
denote by C a shortest cycle containing v. It follows that v is adjacent to exactly 2 vertices of C,
thus implying ∆(G) ≤ n − l + 2, where l denotes the length of C. Since l ≥ g(G) we obtain
∆(G) ≤ n− g(G) + 2 ≤ n− k + 2.
If v does not belong to any cycle in G, it follows that a shortest cycle of G contains at most one
vertex in the setN(v) and we deduce ∆(G)+1+g(G)−1 ≤ n, or ∆(G) ≤ n−g(G) < n−k+2.
The bound is reached because ∆(Ck,n−k) = n− k + 2.

3. Main Results

Theorem 3.1. Let G be a connected graph of order n ≥ 3 and size m ≥ n with girth g(G) ≥ k
(3 ≤ k ≤ n). If−1 ≤ α < 0 then χα(G) ≥ g(n, k) = (n−k)(n−k+3)α+2(n−k+4)α+(k−2)4α.
Equality holds if and only if G = Ck,n−k.

Proof. The proof is by induction on m + n. For n = 3 we have m = k = 3, G = C3 and in this
case the property holds. Also we can suppose that n ≥ k+ 1, since for n = k there exists a unique
graph, namely Cn,0 = Cn. Let m ≥ n ≥ 4. Suppose the property is true for smaller values of
m + n. Let G ∈ Gn having girth g(G) ≥ k such that χα(G) is minimum. We shall consider two
cases: A. δ(G) = 1 and B. δ(G) ≥ 2.

A. In this case there exists a pendant vertex u ∈ V (G) and let uv ∈ E(G). We have d(v) =
d ≥ 2 and let N(v)\{u} = {u1, . . . , ud−1}. Since G is a connected graph containing at least one
cycle, we get that there exists at least one vertex in {u1, . . . , ud−1} with degree at least 2. Suppose
there exists exactly one vertex in this set with degree at least 2, say w. Let d(w) = s ≥ 2 and let
N(w)\{v} = {v1, . . . , vs−1}. Define G1 = G− {wv1, . . . , wvs−1}+ {vv1, . . . , vvs−1}. It follows
that G1 ∈ Gn and g(G1) = g(G) ≥ k. We deduce

χα(G)− χα(G1) = (d− 1)[(d+ 1)α − (d+ s)α] +
s−1∑
i=1

[(d(vi) + s)α − (d(vi) + d+ s− 1)α] > 0

since d ≥ 2 and s ≥ 2. This contradicts the assumption about the minimality of G.
So we deduce that there exist at least two vertices in {u1, . . . , ud−1} with degree at least 2, thus
implying d ≥ 3. Let G2 = G− u. We have G2 ∈ Gn−1 and g(G2) = g(G) ≥ k.
It follows that

χα(G) = χα(G2) + (d+ 1)α +
d−1∑
i=1

[(d+ d(ui))
α − (d+ d(ui)− 1)α].

Since the function h(x) = (d+ x)α − (d+ x− 1)α has h′(x) > 0 for any α < 0, one has

d−1∑
i=1

[(d+ d(ui))
α − (d+ d(ui)− 1)α] ≥ 2[(d+ 2)α − (d+ 1)α] + (d− 3)[(d+ 1)α − dα],
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equality holds if and only if two degrees of u1, . . . , ud−1 are equal to 2, the remaining ones being
1.

By the induction hypothesis we obtain χα(G2) ≥ g(n− 1, k), which yields

χα(G) ≥ g(n− 1, k) + 2(d+ 2)α + (d− 4)(d+ 1)α − (d− 3)dα.

Inequality g(n− 1, k) + 2(d+ 2)α + (d− 4)(d+ 1)α − (d− 3)dα ≥ g(n, k) is equivalent to

(n− k − 1)(n− k + 2)α + 2(d+ 2)α + (d− 4)(d+ 1)α − (d− 3)dα

≥ (n− k − 2)(n− k + 3)α + 2(n− k + 4)α. (4)

Let %(x) = 2(x + 2)α + (x − 4)(x + 1)α − (x − 3)xα. Since %(x) = ψ(x − 3), by Lemma 2.3
it follows that %(x) is strictly decreasing for x ≥ 3 and −1 ≤ α < 0. Note that by Lemma 2.7
we have d ≤ ∆(G) ≤ n − k + 2 since g(G) ≥ k. This leads to the inequality 2(d + 2)α + (d −
4)(d+ 1)α − (d− 3)dα ≥ 2(n− k + 4)α + (n− k − 2)(n− k + 3)α − (n− k − 1)(n− k + 2)α

and equality holds only for d = n− k + 2. In this case (4) becomes an equality. Summarizing, we
have χα(G) = g(n, k) only if G2 = Ck,n−1−k, d(v) = n − k + 2 and v is adjacent in G2 to k − 1
pendant vertices and to 2 vertices of degree 2. We have χα(G) ≥ g(n, k) and equality holds only
if G = Ck,n−k.

B. In this case δ(G) ≥ 2. We shall prove that χα(G) > g(n, k). Since δ(G) ≥ 2 we may
assume that m ≥ n + 1 because m = n implies G is 2-regular, hence G = Cn = Cn,0 and
χα(Cn) = g(n, n) > g(n, k) for every 3 ≤ k ≤ n− 1 by Corollary 2.2.

Let e = uv ∈ E(G) such that d(u) +d(v) is minimum. By Lemma 2.4 we have χα(G−uv) <
χα(G). Since m ≥ n+ 1, g(G− uv) ≥ k holds since the cyclomatic number of G is equal to two.
We shall consider two subcases B1 and B2, according to e is a cut-edge in G or not, respectively.

B1. e being a cut-edge, G − e has two components, say G1 and G2, where u ∈ V (G1)
and v ∈ V (G2). By denoting |V (Gi)| = ni for 1 ≤ i ≤ 2 we get n = n1 + n2. Because
δ(G) ≥ 2 and g(G) ≥ k we obtain that each Gi has at least one cycle and g(Gi) ≥ g(G) ≥ k,
which implies ni ≥ k for 1 ≤ i ≤ 2. By induction, since Gi ∈ Gni

for each i, we deduce
χα(G) > χα(G− e) = χα(G1) + χα(G2) ≥ g(n1, k) + g(n2, k) > g(n, k) by Lemma 2.6.

B2. In this case G − e is a connected graph of order n and size m − 1, with m − 1 ≥ n and
g(G− e) ≥ k. By induction χα(G− e) ≥ g(n, k), which implies χα(G) > g(n, k) and the proof
is complete.

Since extremal graph Ck,n−k has girth equal to k, we deduce the following corollary.

Corollary 3.1. Let G be a connected graph of order n ≥ 3 and size m ≥ n with girth g(G) = k
(3 ≤ k ≤ n). If −1 ≤ α < 0 then χα(G) ≥ g(n, k). Equality holds if and only if G = Ck,n−k.

Since H(G) = 2χ−1(G), the result also holds for the harmonic index.
If −1 ≤ α < 0 note that Ck,n−k is not extremal for zeroth-order general Randić index 0Rα(G).

If G1 denotes the graph consisting of Cn−2 and two pendant edges incident to two distinct vertices
of Cn−2, then we get 0Rα(G1) <

0 Rα(Cn−2,2). This inequality is equivalent to 2 · 3α < 2α + 4α,
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which is valid by Jensen’s inequality.
Because by Corollary 2.2 the minimum of the function g(n, k) is reached only for k = 3, an

extremal property deduced by other means for unicyclic graphs in [2] follows:

Corollary 3.2. If −1 ≤ α < 0, in the class of connected graphs G of fixed order n and variable
size m ≥ n, χα(G) is minimum if and only if G = C3,n−3.
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