

Electronic Journal of Graph Theory and Applications

On the general sum-connectivity index of connected graphs with given order and girth

Ioan Tomescu

Faculty of Mathematics and Computer Science, University of Bucharest, Str. Academiei, 14, Bucharest, Romania

ioan@fmi.unibuc.ro

Abstract

In this paper, we show that in the class of connected graphs G of order $n \ge 3$ having girth at least equal to $k, 3 \le k \le n$, the unique graph G having minimum general sum-connectivity index $\chi_{\alpha}(G)$ consists of C_k and n-k pendant vertices adjacent to a unique vertex of C_k , if $-1 \le \alpha < 0$. This property does not hold for zeroth-order general Randić index ${}^0R_{\alpha}(G)$.

Keywords:

Girth, pendant vertex, general sum-connectivity index, zeroth-order general Randić index, subadditive function, convex function, Jensen's inequality Mathematics Subject Classification : 05C35, 92E10, 05C22

DOI: 10.5614/ejgta.2016.4.1.1

1. Introduction

Let G be a simple graph having vertex set V(G) and edge set E(G). Let \mathcal{G}_n denote the set of connected graphs of fixed order n and size $m \ge n$. The girth of a graph $G \in \mathcal{G}_n$ will be denoted g(G). The degree of a vertex $u \in V(G)$ is denoted d(u) and N(u) is the set of vertices adjacent with u. If d(u) = 1 then u is called pendant; a pendant edge is an edge containing a pendant vertex. The minimum and maximum degrees of G are denoted $\delta(G)$ and $\Delta(G)$, respectively. For $A \subset E(G)$, G - A denotes the graph deduced from G by deleting the edges of A and the graph obtained by the deletion of an edge $uv \in E(G)$ is denoted G - uv. Conversely, if $A \subset E(\overline{G})$, G + A is the graph obtained from G by adding the edges of A. If $x \in V(G)$, G - x denotes the

Received: 20 July 2015, Revised: 30 November 2015, Accepted: 2 December 2015.

subgraph of G obtained by deleting x and its incident edges.

For $n \ge 3$ and $3 \le k \le n$, let $C_{k,n-k}$ denote the graph of order n consisting of a cycle C_k and n-k pendant edges attached to a unique vertex of C_k . For other notations in graph theory, we refer [1].

The general sum-connectivity index of graphs was proposed by Zhou and Trinajstić [10]. It is denoted by $\chi_{\alpha}(G)$ and defined as

$$\chi_{\alpha}(G) = \sum_{uv \in E(G)} (d(u) + d(v))^{\alpha},$$

where α is a real number. A particular case of the general sum-connectivity index is the harmonic index, denoted by H(G) and defined as

$$H(G) = \sum_{uv \in E(G)} \frac{2}{d(u) + d(v)} = 2\chi_{-1}(G).$$

The zeroth-order general Randić index, denoted by ${}^{0}R_{\alpha}(G)$ is defined as

$${}^{0}R_{\alpha}(G) = \sum_{u \in V(G)} d(u)^{\alpha},$$

where α is a real number. For $\alpha = 2$ this index is also known as first Zagreb index (see [4]).

For $-1 \le \alpha < 0$ Du, Zhou and Trinajstić [2] showed that among the set of *n*-vertex unicyclic graphs with $n \ge 5$, $C_{3,n-3}$ is the unique graph with the minimum general sum-connectivity index and Tomescu and Kanwal [6] showed that in the same set of graphs having girth $k \ge 4$ the unique extremal graph is $C_{k,n-k}$. Zhong [9] proved that in the set of connected graphs of order *n* and *m* edges, where $m \ge n$, with girth $g(G) \ge k$ $(3 \le k \le n)$, minimum harmonic index H(G) is reached only for $C_{k,n-k}$. Other extremal properties of the general sum-connectivity index for trees were proposed in [3, 5].

In this paper, we study the minimum general sum-connectivity index $\chi_{\alpha}(G)$ in the class of connected graphs G of fixed order $n \ge 3$ and size $m \ge n$ with girth $g(G) \ge k$. Theorem 3.1 extends the above result of Zhong for every $-1 \le \alpha < 0$ (including the case of the harmonic index, when $\alpha = -1$), Corollary 3.3 those of Du, Zhou and Trinajstić, and Corollary 3.2 the result of Tomescu and Kanwal (which holds for unicyclic graphs, when m = n). In section 2 we state some parametric inequalities which will be used in the last section. In section 3 we determine the connected graphs G of order $n \ge 3$ with girth at least k ($3 \le k \le n$) having minimum $\chi_{\alpha}(G)$ for $-1 \le \alpha < 0$.

2. Some preliminary results

Let $g(n,k) = (n-k)(n-k+3)^{\alpha} + 2(n-k+4)^{\alpha} + (k-2)4^{\alpha}$. Note that $g(n,k) = \chi_{\alpha}(C_{k,n-k})$.

Lemma 2.1. [8] The function $f(n,k) = k(k+3)^{\alpha} + 2(k+4)^{\alpha} + (n-k-2)4^{\alpha}$ is strictly decreasing in $k \ge 0$ for $-1 \le \alpha < 0$.

Since g(n,k) = f(n, n-k) we deduce the following property.

Corollary 2.1. The function g(n,k) is strictly increasing in $k, 3 \le k \le n$ for $-1 \le \alpha < 0$.

Lemma 2.2. [8] The function

$$\psi(x) = 2(x+5)^{\alpha} + (x-1)(x+4)^{\alpha} - x(x+3)^{\alpha}$$

defined for $x \ge 0$ and $-1 \le \alpha < 0$ is strictly decreasing.

Lemma 2.3. [7] Let uv be an edge of a graph G such that d(u) + d(v) is minimum. If $-1 \le \alpha < 0$ then $\chi_{\alpha}(G - uv) < \chi_{\alpha}(G)$.

Lemma 2.4. [8] a) Let x > 0. If $\alpha < 0$ or $\alpha > 1$ then $(1 + x)^{\alpha} > 1 + \alpha x$. b) Let x > 0. If $\alpha < 0$ or $1 < \alpha < 2$ then $(1 + x)^{\alpha} < 1 + \alpha x + \frac{\alpha(\alpha - 1)}{2}x^{2}$ (for $\alpha = 2$ equality holds).

Lemma 2.5. The function g(n,k) is strictly subadditive in n for $-1 \le \alpha < 0$, i.e.,

$$g(n_1 + n_2, k) < g(n_1, k) + g(n_2, k),$$
(1)

where $n_1, n_2 \ge k \ge 3$.

Proof. By letting $n_1 + n_2 = n \ge 2k$, $n_1 = x$ we deduce $n_2 = n - x$ and (1) leads to

$$g(x,k) + g(n-x,k) > g(n,k)$$

for every $k \le x \le n-k$. Using formula for g(n,k) this inequality is equivalent to

$$(x-k)(x-k+3)^{\alpha} + 2(x-k+4)^{\alpha} + (n-x-k)(n-x-k+3)^{\alpha} + 2(n-x-k+4)^{\alpha} + (k-2)4^{\alpha}$$

> $(n-k)(n-k+3)^{\alpha} + 2(n-k+4)^{\alpha}$. (2)

Let

$$\eta(x) = (x-k)(x-k+3)^{\alpha} + 2(x-k+4)^{\alpha} + (n-x-k)(n-x-k+3)^{\alpha} + 2(n-x-k+4)^{\alpha}.$$

We have $\eta(x) = \eta(n-x)$; we can write $\eta(x) = \gamma(x) + \gamma(n-x)$, where

$$\gamma(x) = (x - k)(x - k + 3)^{\alpha} + 2(x - k + 4)^{\alpha}.$$

We get

$$\gamma''(x) = \alpha(\alpha - 1)(x - k)(x - k + 3)^{\alpha - 2} + 2\alpha(x - k + 3)^{\alpha - 1} + 2\alpha(\alpha - 1)(x - k + 4)^{\alpha - 2}$$

$$< \alpha(\alpha - 1)(x - k)(x - k + 3)^{\alpha - 2} + 2\alpha(x - k + 3)^{\alpha - 1} + 2\alpha(\alpha - 1)(x - k + 3)^{\alpha - 2}$$

$$= \alpha(x - k + 3)^{\alpha - 2}((\alpha + 1)(x - k + 2) + 2) < 0.$$

www.ejgta.org

Similarly, $\gamma''(n-x) < 0$, so $\eta''(x) < 0$, hence $\eta(x)$ is a concave function. Because $\eta(x) = \eta(n-x)$ where $k \le x \le n-k$, so the minimum of $\eta(x)$ is reached at x = k and x = n-k. Replacing x = k in (2) yields

$$k4^{\alpha} + (n-2k)(n-2k+3)^{\alpha} + 2(n-2k+4)^{\alpha} > (n-k)(n-k+3)^{\alpha} + 2(n-k+4)^{\alpha}.$$
(3)

In order to prove (3) we shall consider a new variable $x = n \ge 2k$ and the function

$$\varphi(x) = (x - 2k)(x - 2k + 3)^{\alpha} + 2(x - 2k + 4)^{\alpha} - (x - k)(x - k + 3)^{\alpha} - 2(x - k + 4)^{\alpha}$$

defined for $x \ge 2k \ge 6$. We deduce

$$\varphi'(x) = (x - 2k + 3)^{\alpha - 1}((x - 2k)(\alpha + 1) + 3) + 2\alpha(x - 2k + 4)^{\alpha - 1}$$
$$-(x - k + 3)^{\alpha - 1}((x - k)(\alpha + 1) + 3) - 2\alpha(x - k + 4)^{\alpha - 1} > (x - 2k + 3)^{\alpha - 1}(x(\alpha + 1) - 2k(\alpha + 1) + 3) + 2\alpha) - (x - k + 3)^{\alpha - 1}(x(\alpha + 1) - k(\alpha + 1) + 3) - 2\alpha(x - k + 4)^{\alpha - 1}$$
$$= E(x, k, \alpha)(x - k + 4)^{\alpha - 1}.$$

We have

$$E(x,k,\alpha) = \left[1 + \frac{k+1}{x-2k+3}\right]^{1-\alpha} \left[x(\alpha+1) - 2k(\alpha+1) + 3 + 2\alpha\right]^{1-\alpha}$$
$$-\left[1 + \frac{1}{x-k+3}\right]^{1-\alpha} \left[x(\alpha+1) - k(\alpha+1) + 3\right] - 2\alpha.$$

By Lemma 2.5 we get

$$E(x,k,\alpha) > \left[1 + \frac{(1-\alpha)(k+1)}{x-2k+3}\right] [x(\alpha+1) - 2k(\alpha+1) + 3 + 2\alpha] - \left[1 + \frac{1-\alpha}{x-k+3} + \frac{\alpha(\alpha-1)}{2(x-k+3)^2}\right] [x(\alpha+1) - k(\alpha+1) + 3] - 2\alpha = -\alpha k(1+\alpha) + \alpha(\alpha-1)F(x,k,\alpha),$$

where

$$F(x,k,\alpha) = \frac{(1+\alpha)(k-x) - 3}{2(x-k+3)^2} - \frac{3}{x-k+3} + \frac{k+1}{x-2k+3}$$

Finally,

$$F(x,k,\alpha) > \frac{k-x-3}{(x-k+3)^2} - \frac{3}{x-k+3} + \frac{k+1}{x-2k+3} = -\frac{4}{x-k+3} + \frac{k+1}{x-2k+3} > 0$$

since $k \ge 3$ implies $\frac{k+1}{x-2k+3} > \frac{4}{x-k+3}$. Because $\varphi'(x) > 0$ it follows that $\varphi(x)$ is strictly increasing and (3) holds if it holds for n = 2k and $k \ge 3$. Substituting n = 2k in (3) yields

$$(k+2)4^{\alpha} > k(k+3)^{\alpha} + 2(k+4)^{\alpha},$$

which is true because $k \geq 3$.

www.ejgta.org

Lemma 2.6. Let $G \in \mathcal{G}_n$ such that $g(G) \ge k$. We have $\Delta(G) \le n - k + 2$ and the bound is tight.

Proof. Let $v \in V(G)$ such that $d(v) = \Delta(G)$. Suppose that v belongs to a cycle in G and denote by C a shortest cycle containing v. It follows that v is adjacent to exactly 2 vertices of C, thus implying $\Delta(G) \leq n - l + 2$, where l denotes the length of C. Since $l \geq g(G)$ we obtain $\Delta(G) \leq n - g(G) + 2 \leq n - k + 2$.

If v does not belong to any cycle in G, it follows that a shortest cycle of G contains at most one vertex in the set N(v) and we deduce $\Delta(G) + 1 + g(G) - 1 \le n$, or $\Delta(G) \le n - g(G) < n - k + 2$. The bound is reached because $\Delta(C_{k,n-k}) = n - k + 2$.

3. Main Results

Theorem 3.1. Let G be a connected graph of order $n \ge 3$ and size $m \ge n$ with girth $g(G) \ge k$ $(3 \le k \le n)$. If $-1 \le \alpha < 0$ then $\chi_{\alpha}(G) \ge g(n,k) = (n-k)(n-k+3)^{\alpha}+2(n-k+4)^{\alpha}+(k-2)4^{\alpha}$. Equality holds if and only if $G = C_{k,n-k}$.

Proof. The proof is by induction on m + n. For n = 3 we have m = k = 3, $G = C_3$ and in this case the property holds. Also we can suppose that $n \ge k + 1$, since for n = k there exists a unique graph, namely $C_{n,0} = C_n$. Let $m \ge n \ge 4$. Suppose the property is true for smaller values of m + n. Let $G \in \mathcal{G}_n$ having girth $g(G) \ge k$ such that $\chi_{\alpha}(G)$ is minimum. We shall consider two cases: A. $\delta(G) = 1$ and B. $\delta(G) \ge 2$.

A. In this case there exists a pendant vertex $u \in V(G)$ and let $uv \in E(G)$. We have $d(v) = d \ge 2$ and let $N(v) \setminus \{u\} = \{u_1, \ldots, u_{d-1}\}$. Since G is a connected graph containing at least one cycle, we get that there exists at least one vertex in $\{u_1, \ldots, u_{d-1}\}$ with degree at least 2. Suppose there exists exactly one vertex in this set with degree at least 2, say w. Let $d(w) = s \ge 2$ and let $N(w) \setminus \{v\} = \{v_1, \ldots, v_{s-1}\}$. Define $G_1 = G - \{wv_1, \ldots, wv_{s-1}\} + \{vv_1, \ldots, vv_{s-1}\}$. It follows that $G_1 \in \mathcal{G}_n$ and $g(G_1) = g(G) \ge k$. We deduce

$$\chi_{\alpha}(G) - \chi_{\alpha}(G_1) = (d-1)[(d+1)^{\alpha} - (d+s)^{\alpha}] + \sum_{i=1}^{s-1}[(d(v_i) + s)^{\alpha} - (d(v_i) + d + s - 1)^{\alpha}] > 0$$

since $d \ge 2$ and $s \ge 2$. This contradicts the assumption about the minimality of G. So we deduce that there exist at least two vertices in $\{u_1, \ldots, u_{d-1}\}$ with degree at least 2, thus implying $d \ge 3$. Let $G_2 = G - u$. We have $G_2 \in \mathcal{G}_{n-1}$ and $g(G_2) = g(G) \ge k$. It follows that

$$\chi_{\alpha}(G) = \chi_{\alpha}(G_2) + (d+1)^{\alpha} + \sum_{i=1}^{d-1} [(d+d(u_i))^{\alpha} - (d+d(u_i)-1)^{\alpha}].$$

Since the function $h(x) = (d+x)^{\alpha} - (d+x-1)^{\alpha}$ has h'(x) > 0 for any $\alpha < 0$, one has

$$\sum_{i=1}^{d-1} \left[(d+d(u_i))^{\alpha} - (d+d(u_i)-1)^{\alpha} \right] \ge 2\left[(d+2)^{\alpha} - (d+1)^{\alpha} \right] + (d-3)\left[(d+1)^{\alpha} - d^{\alpha} \right],$$

equality holds if and only if two degrees of u_1, \ldots, u_{d-1} are equal to 2, the remaining ones being 1.

By the induction hypothesis we obtain $\chi_{\alpha}(G_2) \geq g(n-1,k)$, which yields

$$\chi_{\alpha}(G) \ge g(n-1,k) + 2(d+2)^{\alpha} + (d-4)(d+1)^{\alpha} - (d-3)d^{\alpha}.$$

Inequality $g(n-1,k) + 2(d+2)^{\alpha} + (d-4)(d+1)^{\alpha} - (d-3)d^{\alpha} \ge g(n,k)$ is equivalent to

$$(n-k-1)(n-k+2)^{\alpha} + 2(d+2)^{\alpha} + (d-4)(d+1)^{\alpha} - (d-3)d^{\alpha}$$

$$\geq (n-k-2)(n-k+3)^{\alpha} + 2(n-k+4)^{\alpha}.$$
(4)

Let $\varrho(x) = 2(x+2)^{\alpha} + (x-4)(x+1)^{\alpha} - (x-3)x^{\alpha}$. Since $\varrho(x) = \psi(x-3)$, by Lemma 2.3 it follows that $\varrho(x)$ is strictly decreasing for $x \ge 3$ and $-1 \le \alpha < 0$. Note that by Lemma 2.7 we have $d \le \Delta(G) \le n - k + 2$ since $g(G) \ge k$. This leads to the inequality $2(d+2)^{\alpha} + (d-4)(d+1)^{\alpha} - (d-3)d^{\alpha} \ge 2(n-k+4)^{\alpha} + (n-k-2)(n-k+3)^{\alpha} - (n-k-1)(n-k+2)^{\alpha}$ and equality holds only for d = n - k + 2. In this case (4) becomes an equality. Summarizing, we have $\chi_{\alpha}(G) = g(n,k)$ only if $G_2 = C_{k,n-1-k}$, d(v) = n - k + 2 and v is adjacent in G_2 to k-1 pendant vertices and to 2 vertices of degree 2. We have $\chi_{\alpha}(G) \ge g(n,k)$ and equality holds only if $G = C_{k,n-k}$.

B. In this case $\delta(G) \geq 2$. We shall prove that $\chi_{\alpha}(G) > g(n,k)$. Since $\delta(G) \geq 2$ we may assume that $m \geq n+1$ because m = n implies G is 2-regular, hence $G = C_n = C_{n,0}$ and $\chi_{\alpha}(C_n) = g(n,n) > g(n,k)$ for every $3 \leq k \leq n-1$ by Corollary 2.2.

Let $e = uv \in E(G)$ such that d(u) + d(v) is minimum. By Lemma 2.4 we have $\chi_{\alpha}(G - uv) < \chi_{\alpha}(G)$. Since $m \ge n + 1$, $g(G - uv) \ge k$ holds since the cyclomatic number of G is equal to two. We shall consider two subcases B1 and B2, according to e is a cut-edge in G or not, respectively.

B1. *e* being a cut-edge, G - e has two components, say G_1 and G_2 , where $u \in V(G_1)$ and $v \in V(G_2)$. By denoting $|V(G_i)| = n_i$ for $1 \le i \le 2$ we get $n = n_1 + n_2$. Because $\delta(G) \ge 2$ and $g(G) \ge k$ we obtain that each G_i has at least one cycle and $g(G_i) \ge g(G) \ge k$, which implies $n_i \ge k$ for $1 \le i \le 2$. By induction, since $G_i \in \mathcal{G}_{n_i}$ for each *i*, we deduce $\chi_{\alpha}(G) > \chi_{\alpha}(G - e) = \chi_{\alpha}(G_1) + \chi_{\alpha}(G_2) \ge g(n_1, k) + g(n_2, k) > g(n, k)$ by Lemma 2.6.

B2. In this case G - e is a connected graph of order n and size m - 1, with $m - 1 \ge n$ and $g(G - e) \ge k$. By induction $\chi_{\alpha}(G - e) \ge g(n, k)$, which implies $\chi_{\alpha}(G) > g(n, k)$ and the proof is complete.

Since extremal graph $C_{k,n-k}$ has girth equal to k, we deduce the following corollary.

Corollary 3.1. Let G be a connected graph of order $n \ge 3$ and size $m \ge n$ with girth g(G) = k $(3 \le k \le n)$. If $-1 \le \alpha < 0$ then $\chi_{\alpha}(G) \ge g(n,k)$. Equality holds if and only if $G = C_{k,n-k}$.

Since $H(G) = 2\chi_{-1}(G)$, the result also holds for the harmonic index.

If $-1 \le \alpha < 0$ note that $C_{k,n-k}$ is not extremal for zeroth-order general Randić index ${}^{0}R_{\alpha}(G)$. If G_{1} denotes the graph consisting of C_{n-2} and two pendant edges incident to two distinct vertices of C_{n-2} , then we get ${}^{0}R_{\alpha}(G_{1}) < {}^{0}R_{\alpha}(C_{n-2,2})$. This inequality is equivalent to $2 \cdot 3^{\alpha} < 2^{\alpha} + 4^{\alpha}$, which is valid by Jensen's inequality.

Because by Corollary 2.2 the minimum of the function g(n, k) is reached only for k = 3, an extremal property deduced by other means for unicyclic graphs in [2] follows:

Corollary 3.2. If $-1 \le \alpha < 0$, in the class of connected graphs G of fixed order n and variable size $m \ge n$, $\chi_{\alpha}(G)$ is minimum if and only if $G = C_{3,n-3}$.

Acknowledgement

The author is indebted to the referees for some useful remarks.

References

- [1] J. A. Bondy and U. S. R. Murty, *Graph Theory*, Graduate Texts in Mathematics **244**, Springer 2008.
- [2] Z. Du, B. Zhou and N. Trinajstić, Minimum general sum-connectivity index of unicyclic graphs, J. Math. Chem. 48 (2010), 697–703.
- [3] Z. Du, B. Zhou and N. Trinajstić, On the general sum-connectivity index of trees, *Appl. Math. Letters* **24** (2011), 402–405.
- [4] X. Li and I. Gutman, *Mathematical aspects of Randić-type molecular structure descriptors* Mathematical Chemistry Monographs No. 1, Univ. Kragujevac, 2006.
- [5] I. Tomescu and S. Kanwal, Ordering trees having small general sum-connectivity index, *MATCH Commun. Math. Comput. Chem.* **69** (2013), 535–548.
- [6] I. Tomescu and S. Kanwal, Unicyclic graphs of given girth $k \ge 4$ having smallest general sum-connectivity index, *Discrete Appl. Math.* **164** (2014), 344–348.
- [7] I. Tomescu, 2-Connected graphs with minimum general sum-connectivity index, *Discrete Appl. Math.* **178** (2014), 135–141.
- [8] I. Tomescu and M. Arshad, On the general sum-connectivity index of connected unicyclic graphs with *k* pendant vertices, *Discrete Appl. Math.* **181** (2015), 306–309.
- [9] L. Zhong, On the harmonic index and the girth for graphs, *Romanian J. Inf. Sci. Techn.* **16**(4) (2013), 253–260.
- [10] B. Zhou and N. Trinajstić, On general sum-connectivity index, J. Math. Chem. 47 (2010), 210–218.