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Abstract

We survey a recent progress of cyclic codes over finite rings and their generalization to skew cyclic
as well as skew cyclic codes with derivation over finite rings, focusing on structural properties of
the codes. We also report recent developments on the construction methods of linear codes from
graphs, in particular strongly regular as well as distance regular graphs.
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1. Introduction

The appearance of noise in communication channels is unavoidable thing in our life. The
theory of error-correcting codes emerges as a response to this problem. It is the landmark paper of
Shannon [53] on the mathematical theory of communication, which showed the existence of good
codes, that marked the beginning of Information Theory and Coding Theory. Unfortunately, the
proof given by Shannon is not constructive in the sense that he merely stated the existence of good
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codes, but the construction method to obtain the codes is not given. Constructing good codes over
certain alphabets remains one of the main problems in coding theory.

The study of codes has grown into an important subject that intersect various scientific disci-
plines, including information theory, electrical engineering, computer sciences, and also mathe-
matics for the purpose of designing efficient and reliable methods of data transmission.

Codes over finite rings were introduced by Ian F. Blake in 1970’s [8, 9], although long before
him, Assmus and Mattson [4] first mention rings as possible alphabets for linear codes. Blake [8]
showed a way to construct codes over Zm from cyclic codes over Fp, where p is a prime factor of m.
He [9] then further observed the structure of codes over Zpr . Spiegel [57, 58] generalized Blake’s
results to codes over Zm, where m is an arbitrary positive integer. Study of codes over finite
rings attracted great interest in algebraic coding theory through the work of Hammons, Kumar,
Calderbank, Sloane, and Solé [33], where they show how several well-known families of nonlinear
binary codes were intimately related to linear codes over Z4. Since Hammons et al. [33] many
people have been considering codes over various finite rings.

In the meantime, the study of cyclic codes over finite fields began earlier with two 1957 and
1958 AFCRL reports by E. Prange [49, 50]. Cyclic codes are an extremely important class of codes
from two perspectives: theoretically, cyclic codes are rich mathematical theory, and practically,
cyclic codes can be implemented easily in decoding schemes.

Surprisingly, study of linear codes constructed from graphs has begun only several years after
Prange [49, 50] introduced the notion of cyclic codes. It was Kasami [41] in 1961 who introduced
graph-theoretic codes. Four years later, Hakimi and Frank [32] established a class of optimum
cutset codes, namely optimum codes constructed from the so-called a cut-set matrix of a con-
nected undirected graph. Later, Borrow and Franaszczuk [10] showed that the codes constructed
by Hakimi and Frank [32] contains an infinite subclass of binary cyclic codes, namely binary Bose-
Chaudhuri-Hocquenghem (BCH) codes. The paper of Borrow and Franaszczuk [10] seem to be
the first one that considered cyclic codes constructed from graphs.

The purpose of this paper is to provide a short survey on the study of cyclic codes over finite
rings and their generalization to the so-called skew cyclic codes as well as skew cyclic codes with
derivation over finite rings, from my personal viewpoint. In addition, we also give some progress
on linear codes from graphs, in particular from strongly regular and distance regular graphs. While
for the cyclic codes we emphasize on the structural properties, for the study of linear codes from
graphs we emphasize on the varieties of construction methods of linear codes from graphs. This
paper is a slightly expanded version of my talk at the International Conference on Graph Theory
and Information Security V 2022 (ICGTIS V 2022) in Bandung, West Java, Indonesia, on May
22-25, 2022, and hosted by Institut Teknologi Bandung, conducted in celebrating Prof. Edy Tri
Baskoro’s 58th birthday.

The rest of the paper is organized as follows. In Section 2 we consider cyclic codes over the
ring Bk, including some history on the development of cyclic codes over finite rings and the char-
acterization of cyclic and quasi cyclic codes over the ring Bk. The characterizations of skew cyclic
codes over the ring Ak and Bk are given in Section 3. We also provide algorithms to construct skew
cyclic codes over the ring Ak and Bk. Section 4 describes the skew cyclic codes with derivation
over certain finite non-chain rings. Some recent progress on construction methods of linear codes
over finite fields and finite rings, in particular self-dual codes constructed from graphs, are also
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reported in Section 5. This survey is ended by some remarks. We follow [34, 45] for undefined
terms in coding theory.

2. Cyclic codes over the ring Bk

2.1. Historical remarks
Cyclic codes over finite rings seem to be extensively explored for the first time in the work

of Calderbank and Sloane [17], although we can found some early works on it (see, for exam-
ple, the work of Shankar [52], where he used the Chinese Remainder Theorem to investigate a
class of cyclic codes, called BCH codes, over the ring Zm). In their paper [17], Calderbank and
Sloane derived some basic properties regarding the structure of cyclic codes of length n over the
ring Zpr , where p is prime not divisible by n, and r is a positive integer. Unfortunately, as it is
stated explicitly by the authors, almost all the main theoretical results in [17] are easily verified by
the methods of representation theory or commutative algebra, and the proofs are not given there.
Later, Kanwar and López-Permouth [40], reproved some results of Calderbank and Sloane [17]
by another, and more elementary approach. Norton and Sălăngean-Mandache [46] extended the
structure theorems obtained by [17] and [40] to cyclic codes over finite chain rings. In 2004, Dinh
and López-Permouth [24] derived structural properties of cyclic as well as negacyclic codes over
finite chain rings in a more general setting. Their approach [24] is different with the one used in
[46]. Moreover, the results of [24] are also more detailed compare with [46].

Later, Abualrub and Siap [1] derived structural properties of cyclic codes over the non-chain
rings Z2 + uZ2, with u2 = 0, and Z2 + uZ2 + u2Z2, with u3 = 0 (which further investigated by
Bandi and Bhaintwal [5] for the ring Z4 + uZ4, with u2 = 0). Recently, in 2014, Cengellenmis,
Dertli, and Dougherty [20] investigated linear codes over an infinite family of ring Ak defined as

Ak := F2[v1, . . . , vk]/⟨v2i − vi, vivj − vjvi⟩ki,j=1,

including structures of cyclic codes over the ring Ak. Four years later, together with Irwansyah, the
author [37] investigated linear codes over the infinite family of ring Bk which is a generalization
of the ring considered by Cengellenmis, Dertli, and Dougherty above. We generalized the ring Ak

into Bk by changing the binary finite field F2 in the ring Ak by an arbitrary finite field Fpr , with p
is a prime number and r is a positive integer.

In the next part, we mention the structural properties of the cyclic codes over Bk. We begin
with the basic facts regarding the ring Bk.

2.2. The ring Bk

Let vi, for 1 ≤ i ≤ k, be an indeterminate and Fq be a finite field of order q. The ring Bk is the
ring of the form

Bk := Fpr [v1, v2, . . . , vk]/⟨v2i − vi, vivj − vjvi⟩ki,j=1,

for some prime p and a positive integer r. It is a finite non-chain ring as there exist more than one
maximal ideals. For example, if k = 1, then B1 = Fpr + vFpr , where v2 = v. We also define
B0 := Fpr . The ring Bk forms a commutative algebra over the field Fpr .
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For any given positive integer k, let [k] := {1, 2, . . . , k}. The ring Bk can be viewed as an
Fpr-vector space with dimension 2k whose basis consists of elements of the form

∏
i∈H wi, where

H ∈ 2[k] and wi ∈ {vi, 1− vi} for 1 ≤ i ≤ k ([36, Lemma 1]). Also, the ring Bk has characteristic
p and cardinality (pr)2

k ([36, Lemma 2]). Moreover, the ring Bk is isomorphic via the Chinese
Remainder Theorem to F2k

pr ([37, Theorem 4]).
Every element a in Bk can be written as

a =
∑
S∈2[k]

αSvS,

for some αS ∈ Fpr , where vS :=
∏

i∈S vi, and v∅ := 1.

2.3. Cyclic codes over Bk

Let R be a finite commutative ring. A nonempty set C is called a code of length n over R if
C ⊆ Rn. If C is a submodule of Rn, we call C is a linear code. Let f(x) ∈ R[x]. The following
correspondence will help us to convert the combinatorial structure of cyclic codes into an algebraic
one:

π : Rn ∋ (c0, c1, . . . , cn−1) 7−→ c0 + c1x+ · · ·+ cn−1x
n−1 ∈ R[x]/⟨f(x)⟩.

Definition 1. A linear code C ⊆ Rn is called polycyclic over R if π(C) is an ideal in R[x]/⟨f(x)⟩.
(1) If f(x) = xn − 1, then C is called a cyclic codes.

(2) If f(x) = xn + 1, then C is called a negacyclic code.

(3) If f(x) = xn + λ, λ a unit in R, then C is called a constacyclic code.

Define a λ-constacyclic shift operator Tλ on Rn as follows:

Tλ(c0, c1, . . . , cn−1) = (λcn−1, c0, c1, . . . , cn−2).

Then, the definition above is equivalent to (all codes below are linear):

(1)′ C is a cyclic code if T1(C) = T (C) = C.

(2)′ C is a negacyclic code if T−1(C) = C.

(3)′ C is a λ-constacyclic code if Tλ(C) = C.

C is called a quasi-cyclic of index l if T l(C) = C, for some positive integer l.
Recall the Gray map φ defined on Bk :

φ : Bk −→ F2k

pr ,

a =
∑2k

i=1 αSi
vSi

7−→ (
∑

S⊆S1
αS,
∑

S⊆S2
αS, . . . ,

∑
S⊆S

2k
αS).

The map φ is bijective. Furthermore, this map can be extended into n tuples of Bk naturally:

φ : Bn
k −→ Fn2k

pr ,
(a1, a2, . . . , an) 7−→ (φ(a1), φ(a2), . . . , φ(an)).

We obtain a characterization of cyclic as well as quasi-cyclic codes over Bk. First, the theorem
below characterize quasi-cyclic codes over Bk.
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Theorem 2.1 ([37, Theorem 32]). A code C with length n is quasi-cyclic of index l over Bk if and
only if C = φ−1(C1, C2, . . . , C2k) and each code Ci with length n is quasi-cyclic of length l over
Fpr , for 1 ≤ i ≤ 2k.

Since cyclic codes are just the quasi-cyclic codes of index l = 1, by Theorem 2.1, we have the
following consequence which is a characterization of cyclic codes over Bk.

Theorem 2.2 ([37, Theorem 33]). A code C is a cyclic code of length n over Bk if and only if
C = φ−1(C1, C2, . . . , C2k) and Ci is a cyclic code of length n over Fpr , for all 1 ≤ i ≤ 2k.

In terms of polynomial generators, we have the following properties.

Corollary 2.1 ([37, Corollary 34]). Let C = φ−1(C1, C2, . . . , C2k) be a quasi-cyclic code over
Bk, where C1, C2, . . . , C2k are quasi-cyclic codes over Fpr . If Ci = ⟨g1i(x), . . . , gmi

(x)⟩, for all
i = 1, . . . , 2k, then

C =
〈
vS1g11(x), . . . , vS2k

g11(x), . . . , vS1gm1(x), . . . , vS2k
gm1(x),

. . . , vS1gms(x), . . . , vS2k
gms(x)

〉
.

Again, the following corollary follows from Corollary 2.1.

Corollary 2.2 ([37, Corollary 35]). Let C = φ−1(C1, . . . , C2k) be a cyclic code over Bk, where
C1, . . . , C2k are cyclic codes over Fpr . If Ci = ⟨gi(x)⟩, for all i = 1, . . . , 2k, then

C =
〈
vS1g1(x), . . . , vS2k

g1(x), . . . , vS1g2k(x), . . . , vS2k
g2k(x)

〉
.

3. Skew cyclic codes over the rings Ak and Bk

Now, we consider skew cyclic codes as a ”one-step” generalization of the notion of cyclic
codes. We begin with some basic facts regarding the so-called skew-polynomial rings.

Let θ be an automorphism of Fpr . Consider the set

Fpr [x; θ] := {a0 + a1x+ · · ·+ an−1x
n−1 : ai ∈ Fpr}

of formal polynomials where coefficients are written on the left of the variable x.
Fpr [x; θ] forms a ring under the usual addition of polynomials and the multiplication is defined

by the basic rule
xa := θ(a)x.

The multiplication is extended to all elements in Fpr [x; θ] by associativity and distributivity. Fpr [x; θ]
is called a skew polynomial ring over Fpr , and each element in Fpr [x; θ] is called a skew polyno-
mial. This family of polynomial ring has been introduced at almost a century ago by Ore [43]. It
is easy to check that Fpr [x; θ] is non-commutative unless θ is identity automorphism of Fpr .
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Given an automorphism θ of Fpr and a unit λ ∈ Fpr , a code C is said to be a skew θ-λ-
constacyclic of length n if it is closed under the θ-λ-constacyclic shift Tθ,λ : Fpr −→ Fpr defined
by

Tθ,λ(v0, v1, . . . , vn−1) = (θ(λvn−1), θ(v0), . . . , θ(vn−2)).

In particular, when λ = 1 or λ = −1, such codes are called skew cyclic and skew negacyclic codes,
respectively.

The concept of skew-cyclic codes which is also called θ-cyclic codes over finite fields was
introduced by Boucher, Geiselmann, and Ulmer in 2007 [11]. It is well known that each cyclic
code corresponds to a divisor of xn − 1. Similarly, each skew-cyclic code corresponds to a right
divisor of xn−1. Since skew-polynomials do not necessarily have unique irreducible factorizations,
a polynomial xn−1 may have a considerable number of right divisors. It leads to many skew cyclic
codes, which imply a better opportunity to obtain codes with good parameters. It is a motivation
of [11] to introduced the notion of skew cyclic codes. In 2008 and 2009, Boucher, Solé, and Ulmer
[12] as well as Boucher and Ulmer [13, 14] further investigated skew cyclic codes over finite rings.
Recently, together with his colleagues, the author investigated skew-cyclic codes over the ring Ak

and Bk, in [35] and [36], respectively.

3.1. Skew cyclic codes over the ring Ak

3.1.1. Basic facts on codes over Ak

Since Ak is a special case of Bk, then any element of Ak can be described by exactly the same
way with the element of Bk. For A,B ⊆ [k] we have that vAvB = vA∪B which gives that∑

B∈2[k]
αBvB ·

∑
C∈2[k]

βCvC =
∑

D∈2[k]

( ∑
B∪C=D

αBβC

)
vD.

It is shown in [20] that the only unit in the ring Ak is 1. It is also shown that the ideal
⟨w1, w2, . . . , wk⟩, where wi ∈ {vi, 1 + vi}, is a maximal ideal of cardinality 22

k−1. Note that
this gives 2k maximal ideals. Hence, except for the case when k = 0, namely the finite field of
order 2, the ring is not a local ring.

The ring Ak is a principal ideal ring. In particular, let I = ⟨α1, α2, . . . , αs⟩ be an ideal in Ak,
then I is a principal ideal generated by the element which is the sum of all non-empty products of
the αi, that is

I =

〈∑
A⊆[s],
A ̸=∅

∏
i∈A

αi

〉
.

We shall define a set of automorphisms in the ring Ak based on the set S. Define the map Θi by

Θi(vj) :=

{
vi + 1, i = j,

vj, i ̸= j.

For S ⊆ [k], the automorphism ΘS is defined by:

ΘS :=
∏
i∈S

Θi.
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Note that ΘS is an involution on the ring Ak. We shall use this involution to define ΘS-cyclic
codes.

Gray maps were defined on all commutative rings of order 4 (see [25] for a description of these
four Gray maps). For the ring A1 = F2 + vF2, we have the Gray map ϕ1 : A1 → F2

2 defined by
ϕ(a+ bv1) = (a, a+ b). For A1 this is realized as

0 7−→ 00

1 7−→ 11

v 7−→ 01

1 + v 7−→ 10.

We extend this map inductively as follows. Every element in the ring Ak can be written as
α + βvk, where α, β ∈ Ak−1. Then for k ≥ 2, define ϕk : Ak → A2

k−1 by

ϕk(α + βvk) = (α, α + β).

Then define a Gray map Φk : Ak → F2k

2 by Φ1(γ) = ϕ1(γ), Φ2(γ) = ϕ1(ϕ2(γ)) and

Φk(γ) = ϕ1(ϕ2(. . . (ϕk−2(ϕk−1(ϕk(γ)) . . . ).

It follows immediately that Φk(1) = 1, the all-one vector. We note that the Gray map Φk is a
bijection and is a linear map.

We can also define another map which will be used later for constructing generators for ΘS-
cyclic codes. Let p, k ∈ N, where p < k. Let Ωp = {p + 1, p + 2, . . . , k} and s = 2k−p. We have
that |2(Ωp)| = s. We can define a Gray map as follows:

Ψk,p : Ak → As
p.

Denote the coordinates of As
p by the lexicographic ordering of the subsets of Ωp and denote them by

B1, B2 . . . , Bs. Note that B1 = ∅ and Bs = Ωp. An element of Ak can be written as
∑

B⊆Ωp
αBwB,

where αB ∈ Ap and wB =
∏

i∈B vi. Then we have

Ψk,p

∑
B⊆Ωp

αBwB

 =

(∑
D⊆B1

αD,
∑
D⊆B2

αD, . . . ,
∑
D⊆Bs

αD

)
.

For p = 0, Ψk,0 is the same map as Ψk [20]. In that paper, it is shown that Ψk and Φk are conjugate,
in the sense that their images are permutation equivalent.

Notice that the representation of an element in Ak can be changed by replacing any vi with
1 + vi. In that way, we can let ui be either vi or vi + 1 for each i. Then we have an alternative
definition of Ψk,p as

Ψk,p

∑
B⊆Ωp

αByB

 =

(∑
D⊆B1

αD,
∑
D⊆B2

αD, . . . ,
∑
D⊆Bs

αD

)
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where yB =
∏

i∈B ui. Any result for Ψk,p can be replaced for Ψk,p.
Let T be the matrix that performs the cyclic shift on a vector. That is T (v1, v2, . . . , vn) =

(vn, v1, . . . , vn−1). Let σi,k be the permutation on {1, 2, . . . , 2k} defined by

(σi,k){p2i+1,...,(p+1)2i} = T 2i−1

(p2i + 1, . . . , (p+ 1)2i),

for all 0 ≤ p ≤ 2k−i − 1. Let Σi,k be the permutation on elements of F2k

2 induced by σi,k. That is,
for x = (x1, x2, . . . , x2k) ∈ F2k

2 ,

Σi,k(x) =
(
xσi,k(1), xσi,k(2), . . . , xσi,k(2k)

)
. (1)

In other word, Σi,k is a permutation induced by σi,k. We have the following.

Lemma 3.1 ([35, Lemma 2.6]). Let k ≥ 1 and 1 ≤ i ≤ k. For x ∈ Ak we have

Σi,k(Φk(x)) = Φk(Θi(x)).

We can extend the definition of Σ to subsets of [k]. For all A ⊆ [k] we define the permutation
ΣA,k by

ΣA,k =
∏
i∈A

Σi,k.

It is clear that for all x ∈ Ak we have

ΣA,k(Φk(x)) = Φk(ΘA(x)). (2)

3.1.2. Characterization of skew cyclic codes over Ak

Let S ⊆ [k] and let ΣS = τS ◦T 2k be the permutation on elements of Fn2k

2 where T is the cyclic
shift modulo n2k and τS is the permutation on elements of Fn2k

2 defined for all

x = (x1
1, . . . , x

1

2k
, x2

1, . . . , x
2

2k
, . . . , xn

1 , . . . , x
n
2k) ∈ Fn2k,

2

by
τS(x) = τS((x

1
1, . . . , x

1
2k , x

2
1, . . . , x

2
2k , . . . , x

n
1 , . . . , x

n
2k))

= (ΣS,k(x
1),ΣS,k(x

2), . . . ,ΣS,k(x
n))

where xj = (xj
1, . . . , x

j
2k
). Since T 2k and τS commute, ΣS can be written as T 2k◦τS as well. Let σS

denote permutation on {1, 2, . . . , n2k}, the indices of elements in Fn2k

2 , that induce the permutation
ΣS above. Then we have the following necessary and sufficient conditions for the code C to be a
skew cyclic over Ak.

Lemma 3.2 ([35, Lemma 4.1]). Let C be a code in An
k . The code Φk(C) is fixed by the permutation

ΣS if and only if C is a ΘS-cyclic code.

We have the first characterization of the code C to be a ΘS-cyclic over Ak, given in term of the
Gray map Φk as follows.
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Theorem 3.1 ([35, Theorem 4.3]). Let C be a code in An
k .

1. If n is odd then C is a skew-cyclic code if and only if Φk(C) is equivalent to an additive
2k−1−quasi-cyclic code C ′ in Fn2k

2 .
2. If n is even then C is a skew-cyclic code if and only if Φk(C) is equivalent to an additive

2k−quasi-cyclic code C ′ in Fn2k

2 .

We also have the second characterization of ΘS-cyclic codes using the map Ψk,p as follows.

Theorem 3.2 ([35, Theorem 4.4]). An Ak-linear code C is ΘS-cyclic of length n if and only if
C = Ψ−1

k,p(C1, . . . , Cs), where C1, . . . , Cs are quasi-cyclic codes of index 2 which satisfy

TΘS′ (Ci) ⊆ Cµ(i) (3)

for some S ′ ⊆ S and permutation µ.

Next, we illustrate some constructions of skew cyclic codes over Ak.
First, the ring Ak is isomorphic to F2k

2 via the Chinese Remainder Theorem ([20, Theorem
2.5]). Let CRT : F2k

2 → Ak be this canonical map. Let CRT (C1, ...., C2k) be the code over Ak

formed by taking the map from C1 × C2 × · · · × C2k where each Ci is a binary code.
Define the following map Γ : Fn2k

2 7−→ Fn
2 × Fn

2 × · · · × Fn
2 by

Γ(x1
1, . . . , x

2k

1 , x1
2, . . . , x

2k

1 , x1
3, . . . , x

1
n, . . . , x

2k

n ) = ((x1
1, . . . , x

1
n), (x

2
1, . . . , x

2
n), . . . , (x

2k

1 , . . . , x2k

n )).

For all codes C over Ak with C = CRT (C1, . . . , C2k) we have that

Γ ◦ Φk(C) = (C1, C2, . . . , C2k).

Lemma 3.3 ([35, Proposition 5.1]). Let n be an even integer and let C1, C2, . . . , C2k be binary
cyclic codes in Fn

2 . Then for all A ⊆ [k] there exists a ΘA−cyclic code C in An
k .

We define the map
Γ1 : Fn2k−1

2 7−→ F2n
2 × F2n

2 × · · · × F2n
2 , (4)

with

Γ1(x
1
1, . . . , x

2k−1

1 , x1
2, . . . , x

2k−1

2 , . . . , x1
2n, . . . , x

2k−1

2n )

= ((x1
1, . . . , x

1
2n), (x

2
1, . . . , x

2
2n), . . . , (x

2k−1

1 , . . . , x2k−1

2n )).

Lemma 3.4 ([35, Proposition 5.2]). Let n be an odd integer and let C1, C2, . . . , C2k−1 be binary
cyclic codes in F2n

2 . Then for all S ⊆ [k] there exists a ΘS-cyclic code C in An
k .

We know describe an algorithm for constructing ΘS-cyclic codes.

1. Construction of ΘA-cyclic codes in Ak of even length.

(a) We consider C1, . . . , C2k binary cyclic codes in Fn
2

475



www.ejgta.org

Linear codes and cyclic codes over finite rings and their generalizations: a survey | D. Suprijanto

(b) We apply Γ−1 and we obtain C ′ a 2k− quasi-cyclic code in Fn2k

2 .
(c) We apply Φ−1

k ◦ σ−1
S2

to C ′. We obtain a ΘS-cyclic code C in Ak.

2. Construction of ΘS-cyclic codes in Ak of odd length.

(a) We consider C1, . . . , C2k−1 binary cyclic codes in F2n
2

(b) We apply Γ−1
1 and we obtain C ′ a 2k−1−quasi-cyclic code in Fn2k

2 .

(c) We apply Φ−1
k ◦ σ−1

S1
to C ′. We obtain a ΘS-cyclic code C in An

k .

3. Construction of ΘS-cyclic codes over Ak from codes over Ap, where p < k.

(a) Given C1, . . . , Cs quasi-cyclic codes of index 2 in Ap which satisfy Equation (3) in
Theorem 3.2, for some S ′ ⊆ S.

(b) Appling Ψk,p to (C1, . . . , Cs), we obtain a ΘS-cyclic code over Ak.

In terms of skew-polynomial rings, the third construction of a ΘS-cyclic code above will be as
follows.

Lemma 3.5 ([35, Proposition 5.3]). Let C = Ψ−1
k,p(C1, . . . , Cs) be ΘS−cyclic codes over Ak,

where C1, . . . , Cs are codes over Ap, for some p < k. If Ci = ⟨g1i(x), . . . , gmi
(x)⟩, for all

i = 1, . . . , s, then
C = ⟨g11(x), . . . , gm1(x), . . . , g1s(x), . . . , gms(x)⟩.

Now, let us turn to the skew cyclic codes over Bk.

3.2. Skew cyclic codes over the ring Bk

As it is clear from the definition, the ring Bk is a generalization of the ring Ak. We also have
further facts regarding the Gray map on Bk, and also the automorphism on Bk. We knew that every
element in Bk can be written as every element in Ak, and also the map Φk on Ak also define a Gray
map on Bk. Moreover, the automorphism ΘS as defined on Ak also holds as an automorphism on
Bk.

Now, let S1, S2 be two elements of 2[k] with the same cardinality. Let λS1,S2 be a one-on-one
correspondence between S1 and S2 and λS1,S2(i) = i for all i ̸∈ S1. For any α ∈ Fpr , we define
the map ΛS1,S2,t as follows.

ΛS1,S2,t(αvi) = αptvλS1,S2
(i),

for every i ∈ S1, where 0 ≤ t ≤ r. It is easy to check that ΛS1,S2,t defines an automorphism on Bk.
Using two classes of automorphisms ΘS and ΛS1,S2,t, we can describe all automorphisms in

the ring Bk as given in the lemma below.

Lemma 3.6 ([36, Lemma 9]). If θ is an automorphism in the ring Bk, then there exist S, S1, S2,
three subsets of [k], some integer t, where |S1| = |S2| and 0 ≤ t ≤ r, such that

θ = ΘS ◦ ΛS1,S2,t.
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Let T be the matrix that performs the cyclic shift on a vector. Let σi,k be the permutation of
{1, 2, . . . , 2k} defined by

(σi,k){j2i+1,...,(j+1)2i} = T 2i−1

(j2i + 1, . . . , (j + 1)2i)

for all 0 ≤ j ≤ 2k−i − 1. Let Σi,k be the permutation on elements of F2k

pr induced by σi,k. That is,
for x = (x1, x2, . . . , x2k) ∈ F2k

pr ,

Σi,k(x) =
(
xσi,k(1), xσi,k(2), . . . , xσi,k(2k)

)
. (5)

Related to the Gray map, Lemma 3.1 above also holds for the ring Bk, as mentioned below.

Lemma 3.7 ([36, Lemma 10]). Let k ≥ 1 and 1 ≤ i ≤ k. For x ∈ Bk we have

Σi,k(Φk(x)) = Φk(Θi(x))

3.3. Characterization of skew cyclic codes over Bk

Let S, S1, S2 ⊆ {1, 2, . . . , k}, where |S1| = |S2| and let ΞS,S1,S2 = ξS,S1,S2,t ◦T 2k be a bijective
map on elements of Fn2k

pr where T is the cyclic shift modulo n2k and ξS,S1,S2,t defined for all
elements

x = (x1
1, . . . , x

1
2k , x

2
1, . . . , x

2
2k , . . . , x

n
1 , . . . , x

n
2k) ∈ Fn2k,

2

by

ξS,S1,S2,t(x) = ξS,S1,S2,t((x
1
1, . . . , x

1
2k , x

2
1, . . . , x

2
2k . . . , x

n
1 , . . . , x

n
2k))

= ((ΣS,k ◦ ΓS1,S2,t)(x
1), (ΣS,k ◦ ΓS1,S2,t)(x

2), . . . , (ΣS,k ◦ ΓS1,S2,t)(x
n))

where xj = (xj
1, . . . , x

j
2k
), for 1 ≤ j ≤ n. Since T 2k and ξS,S1,S2,t commute, ΞS,S1,S2,t can be

written as T 2k ◦ ξS,S1,S2,t as well. Now we are ready to provide the first characterization of θ-cyclic
codes over Bk.

Theorem 3.3 ([36, Lemma 15]). Let C be a code in Bn
k and θ = ΘS ◦ΛS1,S2,t be an automorphism

in Bk, for some S, S1, S2 ⊆ [k] and an integer t, where 0 ≤ t ≤ r. Then, the code Φk(C) is fixed
by the bijection ΞS,S1,S2,t if and only if C is a θ-cyclic code.

Let λ̃S1,S2 be a permutation on {1, 2, . . . , 2k} induced by ΘS ◦ ΛS1,S2,t, and Ord(λ̃S1,S2) be the
order of λ̃S1,S2 . The following theorem also gives a second characterization for θ-cyclic codes over
the ring Bk.

Theorem 3.4 ([36, Theorem 17]). A linear code C over Bk is θ-cyclic of length n if and only if
there exist quasi-θ̃-cyclic codes C1, C2, . . . , C2k of length n over Fpr with index Ord(λ̃S1,S2), such
that

C = φ−1
k (C1, C2, . . . , C2k)

where θ̃ = ϕtOrd(λ̃S1,S2
), for some t as in the Lemma, with ϕ is the Frobenius automorphism in Fpr ,

and Tθ̃(Ci) ⊆ Cj, where j ∈ S ∪ S2, for all i = 1, 2, . . . , 2k.
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Theorem above gives us an algorithm to construct skew-cyclic codes over the ring Bk as fol-
lows.

Algorithm 3.5. Given n, the ring Bk, and an automorphism θ.

(1) Decompose θ into θ = ΘS ◦ ΛS1,S2,t.

(2) Determine Ord(λ̃S1,S2) and θ̃ = θ|Fpr
= ϕt, where ϕ is the Frobenius automorphism in Fpr .

(3) Choose quasi-θ̃-cyclic codes over Fpr , say C1, . . . , C2k , such that

T t1
θ̃
(Ci) ⊆ Cj,

where j ∈ S ∪ S2, for all i = 1, 2, . . . , 2k.

(4) Calculate C = φ−1
k (C1, . . . , C2k).

(5) C is a θ-cyclic code over the ring Bk.

4. Skew cyclic codes with derivation over non-chain rings

Seven years later, after introducing the notion skew cyclic codes over finite fields, Boucher and
Ulmer [15] further generalized the concept of cyclic codes over finite fields to the skew cyclic codes
with derivation over finite fields. These codes may be regarded as a ”two-step” generalization of
cyclic codes, namely by considering non identity automorphism and non zero derivation.

Let R be a finite ring and Θ : R −→ R be an automorphism of R. Then a map ∆Θ : R −→ R
is called a derivation on R if the following two conditions are satisfied:

(i) ∆Θ(x+ y) = ∆Θ(x) + ∆Θ(y), and

(ii) ∆Θ(xy) = ∆Θ(x)y +Θ(x)∆Θ(y).

Let R be a ring with automorphism Θ and derivation ∆Θ. The skew-polynomial ring R[x; Θ,∆Θ]
is the set of all polynomials over R with ordinary addition of polynomials and multiplication de-
fined by

xa := Θ(a)x+∆Θ(a),

for any a ∈ R. This multiplication is extended to all polynomials in R[x; Θ,∆Θ] in the usual
manner. This kind of ring was introduced by Ore [43] in 1933, where R is equal to the finite field
Fq.

A code C ⊆ Rn is called a ∆Θ-linear code of length n over R if C is a left R[x; Θ,∆Θ]-
submodule of R[x; Θ,∆Θ]/⟨f(x)⟩ for a polynomial f(x) ∈ R[x; Θ,∆Θ] of degree n. If f(x) is a
central element then C is called a central ∆Θ-linear code.

A code C ⊆ Rn is called a ∆Θ-cyclic code of length n over R if C is a ∆Θ-linear code and for
all c = (c0, c1, . . . , cn−1) ∈ C we have

T∆Θ
(c) := (Θ(cn−1) + ∆Θ(c0),Θ(c0) + ∆Θ(c1), . . . ,Θ(cn−2) + ∆Θ(cn−1)) ∈ C.
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Here, T∆Θ
is called a shifting operator of ∆Θ-cyclic.

The notion of skew cyclic codes with derivation (or ∆Θ-cyclic codes) over finite fields was
introduced by Boucher and Ulmer [15] in 2014. Sharma and Baintwal [54] generalized the notion
of ∆Θ-cyclic codes over a finite ring Z4 + uZ4, with u2 = 1. Ma, Gao, Li and Fu [44] further
generalized the observation of Sharma and Baitwall above, by considering Z4 + uZ4, with u2 = 1.
Recently, Patel and Prakash [47] investigated ∆Θ-cyclic codes over Fq [u,v]

⟨u2−u,v2−v⟩= B2. Very recently,
together with Tang, the author investigated ∆Θ-cyclic codes over Z4 + vZ4, with v2 = v.

Let R1 := Z4 + uZ4, with u2 = 1 and R3 := Z4 + vZ4, with v2 = v, denote the finite rings
considered by Sharma and Bainthwal [54] and also Suprijanto and Tang [60], respectively. The
following automorphisms θ and their related derivations ∆θ have been defined by several authors:

• θ1(a+ ub) = a+ (u+ 2)b and ∆θ1(a+ ub) = 2b+ 2ub (Ma, Gao, Li, and Fu [44]; Sharma
and Bainthwal [54]).

• θ2(a + ub + vc + uvd) = ap
t
+ ubp

t
+ vcp

t
+ uvpp

t and ∆θ2(a + ub + vc + uvd) =
(1 + u+ v + uv)(θ2(a+ ub+ vc+ uvd)− (a+ ub+ vc+ uvd)) (Patel and Prakash [47]).

• θ3(a + bv) = a + b − bv and ∆θ3(a + bv) = (1 + 2v) (θ3(a + bv) − (a + bv)) (Suprijanto
and Tang [60]).

By using the above notations, we have some properties regarding automorphisms and their
related derivations.

Lemma 4.1. The following statements hold:

(1) For i = 1 or i = 3, we have ∆θiθi + θi∆θi ≡ 0 ([54], [60]).

(1′) ∆θ2θ2 = θ2∆θ2 ([47]).

(2) For i = 1 or i = 3, we have ∆θi∆θi ≡ 0 ([54], [60]).

(3) Let i = 1 or i = 3. For all x ∈ R, we have ∆θi(x) = 0 ⇐⇒ θi(x) = x ([54], [60]).

Sharma and Bainthwal [54] also Suprijanto and Tang [60] proved the following property for
the rings they considered. This property is important to do a multiplicative operation in the rings.

Lemma 4.2 ([54], [60]). Let R1 and R3 denote the finite rings as defined above. For all a ∈ R1 or
a ∈ R3, we have x2a = ax2.

The similar property was also proved by Patel and Prakash [47], for the finite field of order 4.

Lemma 4.3 ([47]). For all a ∈ F4, we have x2a = θ22(a)x
2.

As a corollary, the following property hold.

Corollary 4.1 ([54], [60]). Let i = 1 or i = 3. For all a ∈ Ri, n ∈ Z+, we have

xna =

{
(θi(a)x+∆θi(a))x

n−1, n is odd,
axn, n is even.
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Corollary 4.2 ([47]). For all a ∈ F4, n ∈ Z+, we have

xna =

{
(θ2(a)x+∆θ2(a))x

n−1, n is odd,
θ2(a)x

n, n is even.

Since the rings R1, R3, and B2 are all not left/ right Euclidean rings, then the division algorithm
does not hold. But a kind of modified division algorithm still holds, which means that we can still
apply the division algorithm on some particular elements of the rings.

Lemma 4.4 (Right-division algorithm). Let R be R1, R3, or B2. Let f(x), g(x) ∈ R[x; θ,∆θ] such
that the leading coefficient of g(x) is a unit. Then there exist q(x), r(x) ∈ R[x; θ,∆θ] such that

f(x) = q(x)g(x) + r(x),

with r(x) = 0 or deg r(x) < deg g(x).

4.1. Structural properties of skew cyclic codes with derivation
Let R denote the ring R1, R3, or B2. Let θ be an automorphism θ1, θ2, or θ3 defined above

and let Deltaθ be their related derivations. For our purpose, to convert the algebraic structures of
∆θ-cyclic codes into combinatorial structures and vice versa, we consider the following correspon-
dence:

R[x; θ,∆θ]/⟨f(x)⟩ −→ Rn,
c0 + c1x+ c2x

2 + · · ·+ cn−1x
n−1 7−→ (c0, c1, . . . , cn−1).

Let Rn,∆θ
denote the ring R[x; θ,∆θ]/⟨xn − 1⟩.

Lemma 4.5 ([47], [54], [60]). If c(x) = c0 + c1x+ c2x
2 + · · ·+ cn−1x

n−1 ∈ Rn,∆θ
is identified by

a codeword c = (c0, c1, . . . , cn−1) ∈ Rn, then xc(x) is identified by T∆θ
(c) ∈ Rn.

Lemma 4.6 ([47], [54], [60]). A code C ⊆ Rn is ∆θ-cyclic code if and only if C is a R[x; θ,∆θ]-
submodule of Rn,∆θ

.

Corollary 4.3 ([47], [54], [60]). If C ⊆ Rn is a ∆θ-cyclic code of even length n, then C is an ideal
of Rn,∆θ

.

Lemma 4.7 ([47], [54], [60]). Let C ⊆ Rn be a ∆θ-cyclic code. Then the following two statements
hold.

(1) If n is odd, then C is a cyclic code of length n over R.

(2) If n is even, then C is a quasi-cyclic code of length n and index 2 over R.

Remark 4.1. Patel and Prakash [47] proved that the Lemma 4.7 holds only for R = F4.

Lemma 4.8. If C ⊆ Rn is a ∆θ-cyclic code and g(x) is a nonzero polynomial in C of smallest
degree with leading coefficient is a unit in R, then the following three statements hold.

(1) C = ⟨g(x)⟩.

(2) g(x) is a right divisor of xn − 1.

(3) {g(x), xg(x), . . . , xn−k−1g(x)} is a basis of C, with k = deg(g(x)).

Remark 4.2. Patel and Prakash [47] proved only the properties (1) and (2) in Lemma 4.8.
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5. Linear codes from graphs

Around twenty years ago, Tonchev [68] wrote a short survey on linear codes over a binary field
F2 constructed from adjacency matrices of undirected graphs. Among the main and important
result mentioned in [68] is a theorem below.

Theorem 5.1 ([68]). Let G = (V,E) be an undirected graph on n vertices having an adjacency
matrix A. Then the class of binary linear codes of length 2n and dimension n defined by generator
matrices of the form (I, A) contains codes with minimum Hamming distance

d ≥ 0.22n.

From the proof of the above theorem, it becomes clear that the theorem shows the existence of
optimal binary linear codes constructed from graphs, namely from the class of all graphs with n
vertices, we may obtain linear codes that for large n meet the Gilbert–Varshamov bound. Unfortu-
nately, the proof does not provide a constructive way to find such codes. However, we may obtain
many good linear codes from certain class of graphs, such as strongly regular and distance regular
graphs.

5.1. Linear codes from strongly regular graphs
A graph G = (V,E) is called strongly regular of parameters (n, k, λ, µ) if G is a graph on

|V | = n vertices which is regular of degree k and satisfies the following properties:

(1) any two adjacent vertices have exactly λ common neighbors, and

(2) any two non-adjacent vertices have exactly µ common neighbors.

Tonchev [66, 68] showed that linear codes constructed from strongly regular graphs have an
efficient decoding algorithm, called majority logic decoding (see [45, 67] for a detail description
about majority logic decoding). In particular, he [66] succeed to construct optimal and nearly opti-
mal linear codes over F2 of length 50 and 100 from Hoffman-Singleton and Higman-Sims graphs,
two famous strongly regular graphs having parameters (50, 7, 0, 1) and (100, 22, 0, 6), respectively.
We note that Hoffman-Singleton and Higman-Sims graph is a unique strongly regular graph on 50
and 100 vertices, respectively, with the above mentioned parameters (see [16] p. 285 and 303). Us-
ing the Hoffman-Singleton graph, Tonchev [66] obtained binary linear codes with parameters (1)
[50, 21, 12], (2) [50; 29; 8], (3) [50, 22, 7], and (4) [50, 28, 8], while from Higman-Sims graphs he
[66] obtained binary linear codes with parameters (5) [100, 22, 22], (6) [100, 78, 6], (7) [100, 22, 32],
and (8) [100, 78, 8]. Tonchev [66] also showed that the code (8) is optimal, while the codes (1), (2),
(4), and (7) have the highest known minimum distance for a known code of the given length and
dimension. The codes (2), (4), (6), and (8) admit majority logic decoding.

Afterwards, Haemers, Peeters, and van Rijckevorsel [31] looked at linear codes over F2 gener-
ated by A and I +A, where A is an adjacency matrix of a strongly regular graph. They considered
linear codes constructed from strongly regular graphs on vertices up to 45. This includes some
famous strongly regular graphs like Triangular graphs, Lattice graphs, Paley graphs, and also the
graphs related to a symplectic form over F2. They did a more structural approach by deriving the

481



www.ejgta.org

Linear codes and cyclic codes over finite rings and their generalizations: a survey | D. Suprijanto

relation between the binary codes obtained from strongly regular graphs with regular two-graphs
and also Seidel switching (see Section 5 in [31] for detail accounts).

The construction of linear codes from graphs, in particular from strongly regular graphs, further
investigated by many people. In 2007, Dougherty, Kim, and Solé [26] introduced a very general
construction method of self-dual codes over finite commutative rings from strongly regular graphs
as well as doubly regular tournaments. As it is well-known, association schemes of class-2 consist
of either strongly regular graphs (SRG) or doubly regular tournaments (DRT). A strongly regular
graph is equivalent to a symmetric association scheme of class-2. Namely, if for all i ∈ [0, 2]Z,
we have AT

i = Ai. In this case, A1 is the adjacency matrix of a strongly regular graph. If the
association scheme is not symmetric, then we have A2 = AT

1 , and here A1 is the adjacency matrix
of a doubly regular tournament. (See [6] or [7] the definition of and undefined terms related to
association schemes).

The general constructions given by [26] can be described as follows. Let R be a finite commu-
tative ring, and let r, s, t ∈ R. Define a matrix

QR(r, s, t) := (rI + sA+ tA),

where A is the adjacency matrix of a strongly regular graph or a doubly regular tournament.
The pure construction is

PR(r, s, t) = (I | QR(r, s, t)).

The bordered construction is

BR(r, s, t) =


1 0 · · · 0 α β · · · β
0 γ
... I

... QR(r, s, t)
0 γ

 ,

where α, β, and γ are scalars which is determined according to specific cases (namely, depending
on the specific ring R).

Let PR(r, s, t) be the row span over R of PR(r, s, t) and let BR(r, s, t) be the row span over R
of BR(r, s, t). The code PR(r, s, t) is a code over R of length 2v and the code BR(r, s, t) is a code
over R of length 2v + 2, where v is a cardinality of vertex set of the strongly regular graph or the
doubly regular tournament. Two main results in [26] are given below.

Theorem 5.2. Let G be a strongly regular graph or doubly regular tournament with parameters
(v, k, λ, µ). The code PR(r, s, t) formed from an SRG is Euclidean self-dual over R if and only if

(r2 + s2k − t2 − t2k + t2v) = −1,

(2rs+ s2λ− 2st− 2stλ+ t2λ+ 2stk + t2v − 2t2k) = 0,

(2rt+ s2µ− 2stµ+ t2µ+ 2stk + t2v − 2t2 − 2t2k) = 0.

The code PR(r, s, t) formed from a DRT is Euclidean self-dual over R if and only if

(r2 + (s2 + t2)k) = −1,

(rt+ sr + (s2 + t2)(k − 1− λ) + stλ+ stµ) = 0,

(rt+ sr + (s2 + t2)(k − µ) + stµ+ stλ) = 0.
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Furthermore, the self-dual code is Type II over Z2m if and only if 1+ r2+ s2k+ t2(v− k− 1) ≡ 0
(mod 4m).

Theorem 5.3. The code BR(r, s, t) formed from an SRG is Euclidean self-dual over R if and only
if

(r2 + s2k − t2 − t2k + t2v) = −(1 + γ2),

(2rs+ s2λ− 2st− 2stλ+ t2λ+ 2stk + t2v − 2t2k) = −γ2,

(2rt+ s2µ− 2stµ+ t2µ+ 2stk + t2v − 2t2 − 2t2k) = −γ2,

1 + α2 + vβ2 = 0,

αγ + β(r + sk + t(v − k − 1)) = 0.

The code BR(r, s, t) formed from a DRT is Euclidean self-dual over R if and only if

(r2 + (s2 + t2)k) = −(1 + γ2),

(rt+ sr + (s2 + t2)(k − 1− λ) + stλ+ stµ) = −γ2,

(rt+ sr + (s2 + t2)(k − µ) + stµ+ stλ) = −γ2,

1 + α2 + vβ2 = 0,

αγ + β(r + sk + t(v − k − 1)) = 0.

Furthermore, this self-dual code is Type II over Z2m if and only if 1+γ2+r2+s2k+t2(v−k−1) ≡ 0
(mod 4m) and 1 + α2 + vβ2 ≡ 0 (mod 4m).

The work of Dougherty, Kim, and Solé [26] generalized several known constructions such as
ternary symmetric codes by Pless [48], binary double circulant codes by Karlin [45, p. 507], qua-
ternary double circulant codes by Calderbank and Sloane [18], and also quadratic double circulant
codes by Gaborit [30]. Their work [26] provided a new breakthrough in study of constructing
codes from graphs.

As concrete examples, they [26] obtained many new self-dual codes over certain finite rings
having good properties and parameters. Moreover, by using pure and bordered constructions
above, the author together with Nugraha [59] constructed many extremal or nearly-extremal linear
codes over finite fields of various lengths.

Very recently, Fellah, Guenda, Özbudak, and Seneviratne [27] constructed self-dual codes over
certain finite fields from Paley-type bipartite graphs as well as their complements. They [27]
obtained many optimal or nearly optimal self-dual codes.

5.2. Linear codes from directed strongly regular graphs
Beside (undirected) strongly regular graphs, recently directed strongly regular graphs have also

attracted coding theorists in connection with construction of linear codes. It is well-known that
doubly regular tournaments are equivalent to skew Hadamard matrices [51]. It is also known that
doubly regular tournaments are special case of directed strongly regular graphs [2]. Since doubly
regular tournaments lead to many good codes [42], it is very natural to consider codes constructed
from the adjacency matrices of directed strongly regular graphs. This facts have motivated Alah-
madi, Alkenani, Kim, Shi, and Solé [2] to consider linear codes from directed strongly regular
graphs.
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Let A be a v by v (0, 1)-matrix having zero diagonal. Thus A is the adjacency matrix of a
directed simple graph without loops on v vertices. This graph is a directed strongly regular graph
(DSRG) of parameters (v, k, t, λ, µ) if it satisfies the following pair of relations:

(1) AJ = JA = kJ,

(2) A2 = tI + λA+ µ(J − I − A),

where I and J denote the identity and all-one matrices, respectively, of order v. This concept was
defined by Duval in 1998 [16].

Although, so far, the codes constructed from directed strongly regular graphs are not optimal,
but they [2] believed that there are many interesting combinatorial aspects of directed strongly
regular graphs in the same way that linear codes are relevant to combinatorial aspects of designs.
There are huge study of the later objects, but it is beyond the scope of this paper. (See the book of
Assmus and Key [3] for the record of early development and see Ding and Tang’s book [23] for
recent developments on it).

5.3. Linear codes from distance regular graphs
Very recently, there is a new development on linear codes constructed from graphs. Crnković,

Rukavina, and Švob proposed a construction method of linear codes, in particular self-orthogonal
codes over a finite field Fq as well as a finite ring Zm from equitable partitions of symmetric
association schemes. Their construction methods then be applied to distance regular graphs to
obtain self-orthogonal codes, which some of them are optimal. We describe here their methods a
bit detail.

Let {C0, C1, . . . , Ct−1} be a partition of X. The characteristic matrix H is the n × t matrix
whose j-th column is the characteristic vector of Cj, where j = 0, 1, . . . , t − 1. A partition Π =
{C0, C1, . . . , Ct−1} of the n vertices of a graph G is equitable (or regular) if for every pair of
(not necessarily distinct) indices i, j ∈ {0, 1, . . . , t − 1} there is a nonnegative integer bij such
that each vertex v ∈ Ci has exactly bij neighbors in Cj, regardless of the choice of v. The t × t
quotient matrix B = (bij) is well-defined if and only if the partition Π is equitable. An equitable
(or regular) partition of an association scheme (X,R) is a partition of X which is equitable with
respect to each of the graphs Γi, i ∈ {1, 2, . . . , d} corresponding to the association scheme (X,R)
with d classes.

The main theorems in [21] below give a construction method of self-orthogonal codes over a
finite field Fq and a finite ring Zm, respectively.

Theorem 5.4. Let Π be an equitable partition of a d-class association scheme (X,R) with n cells

of the same length
|X|
n

and let p be a prime number. If there exists i ∈ [1, d]Z such that for all

k ∈ [0, d]Z the prime p divides pkii, then the rows of the matrix Mi span a self-orthogonal code of
length n over the field Fq, where q = pm is a prime power.

Theorem 5.5. Let Π be an equitable partition of a d-class association scheme (X,R) with n cells

of the same length
|X|
n

and let p be a prime number. If there exists i ∈ [1, d]Z such that for all
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k ∈ [0, d]Z the prime m divides pkii, then the rows of the matrix Mi span a self-orthogonal code of
length n over the ring Zm.

In the above two theorems,
Mi := (HTH)−1HTAiH,

with Ai is an adjacency matrix corresponding to a relation Ri in the association schemes.
By using the above construction method, they [21] constructed self-orthogonal codes over finite

fields from several classes of distance regular graphs: Hadamard graph on 48 vertices, d = 4;
Doubled Gewirtz graph, d = 5; Incidence graph of GH(3, 3), d = 6; Doubled odd graph D(O4),
d = 7; Foster graph, d = 8; (here d is a diameter of the distance regular graphs).

6. Final remarks

We have reported some progress of study on cyclic codes over finite rings as well as their ”one-
step” and ”two-step” generalization. We also mentioned an overview on the study of linear codes
constructed from graphs, with emphasize on (directed or undirected) strongly regular graphs and
also distance regular graphs. However, there are many more interesting aspects of cyclic codes
as well as linear codes from graphs to consider, but the constraints of space and time have not
permitted it. We list some of them.

(1) Negacyclic and constacyclic codes over finite rings.
Negacyclic and constacyclic codes (see again Subsection 2.3 for the definitions) are also
generalizations of cyclic codes in another direction. There are many results regarding nega-
cyclic as well as constacyclic codes over finite rings, but we did not mention here. We can
see, for examples, [69] for an early work, and [24] for a significant progress on negacyclic
codes over finite rings. See also [63] for an early work on constacyclic codes over finite
rings. For skew constacyclic codes over finite rings, the readers can also look at [39], which
seem to be the first paper investigated this aspect. On the other hand, the paper by Ma, Gao,
Li, and Li [44] seem to be the first one that consider skew constacyclic codes with derivation
over certain finite ring. It is very interesting to consider the similar aspects, namely skew
constacyclic codes as well as skew constacyclic codes with derivation over other finite rings.

(2) Applications of cyclic codes over finite rings to the construction of quantum codes.
One of successful application in the investigation of cyclic codes over finite rings is its appli-
cation to construct good quantum codes. We can find many articles on it. In a recent article,
together with Tang, the author provides many examples of quantum codes constructed from
cyclic codes over a finite non-chain ring, namely a ring Fq + vFq + v2Fq + v3Fq + v4Fq,
where q = pr, for a positive integer r, with 4 | (p− 1), and v5 = v (see [61]). Very recently,
together with Irwansyah, the author [62] has derived some structural properties of consta-
cyclic codes over the ring Bk (See also [38], where we derived several structural properties
of linear codes over very general family of finite rings, where Bk is a special case of it). We
are now doing on the construction of good quantum codes from these constacyclic codes.
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(3) Codes from incidence matrices of graphs
What we have considered so far in Section 5 is constructing linear codes by using the ad-
jacency matrices of graphs. There are also many observations on constructing linear codes
from the incidence matrices of graphs. This approach has been doing by Jennifer D. Key and
her school of thoughts (see, for examples, [22], [28] and [29]), but we did not include here.

(4) Graph from linear and cyclic codes.
Regarding the interplay between codes and graphs, what we have discussed is how to con-
struct good linear codes from graphs. However, there is also a ”reverse” study: constructing
graphs from codes and deriving their properties. This kind of study has recently been done,
for examples, by Cardinali, Giuzzi, and Kwiatkowski [19], Shi and Solé [55], Shi, Helleseth,
and Solé [56], and recently by the author as a joint work with Tang [65]. The development
on this project also missed in this review.

As a final statement, we have to highlight that beside its theoretical and foundational aspects
(see, for example, [70]), among the motivation in studying linear codes over finite rings is to con-
struct linear codes with good parameters via the Gray map, that can not be obtained by direct
constructions. However, very recently, together with Tang, the author [60, 64] succeeded to con-
struct many linear codes over the ring Z4 having new parameters by direct construction methods.
It is very interesting to construct cyclic codes with good parameters over the ring Z2k as well as
Z2k, for certain positive integer k, by direct construction methods.

Acknowledgment

This research is supported by the Institut Teknologi Bandung (ITB) and the Ministry of Ed-
ucation, Culture, Research and Technology (Kementerian Pendidikan, Kebudayaan, Riset dan
Teknologi (Kemdikbudristek)), Republic of Indonesia.

References

[1] T. Abualrub and I. Siap, Cyclic codes over the rings Z2 + uZ2 and Z2 + uZ2 + u2Z2, Des.
Codes Cryptogr. 42(3) (2007), 273-287.

[2] A. Alahmadi, A. Alkenani, J.-L. Kim, M. Shi, and Patrick Solé, Directed strongly regular
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[12] D. Boucher, Solé, and Ulmer, Skew constacyclic codes over Galois rings, Adv. Math. Com-
mun. 2(3) (2008), 273-292.

[13] D. Boucher and F. Ulmer, Coding with skew polynomial rings, J. Symb. Comput. 44(3-4)
(2009), 1644-1656.

[14] D. Boucher and F. Ulmer, Coding as modules over skew polynomial rings, in Proceedings of
the 12th IMA Conference on Cryptography and Coding, Lecture Notes in Comput. Sci. 5921
(2009), 38-55.

[15] D. Boucher and F. Ulmer, Linear codes using skew polynomials with automorphisms and
derivations, Des. Codes Cryptogr. 70(3) (2014), 405-431.

[16] A.E. Brouwer and H. van Maldeghem, Strongly regular graphs, Encyclopedia Math. Appl.
182, Cambridge University Press, 2022.

[17] A.R. Calderbank and N.J.A. Sloane, Modular and p-adic cyclic codes, Des. Codes Cryptogr.
6 (1995), 21-35.

[18] A. R. Calderbank and N. J. A. Sloane, Double circulant codes over Z4 and even unimodular
lattices, J. Algebraic Combin. 6(2) (1997), 119-131.

[19] I. Cardinali, L. Giuzzi, and M. Kwiatkowski, On the Grassmann graph of linear codes, Finite
Fields Appl. 75 (2021), 101895.

[20] Y. Cengellenmis, A. Dertli, and S.T. Dougherty, Codes over an infinite family of rings with a
Gray map, Des. Codes Cryptogr., 72(3) (2014), 559-580.
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