

Electronic Journal of Graph Theory and Applications

Twin edge colorings of certain square graphs and product graphs

R. Rajarajachozhan^a, R. Sampathkumar^b

^aDepartment of Mathematics, Annamalai University, Annamalainagar 608 002, India ^bMathematics Section, Faculty of Engineering and Technology, Annamalai University, Annamalainagar 608 002, India

r.rajarajachozhan@gmail.com, sampathmath@gmail.com

Abstract

A twin edge k-coloring of a graph G is a proper edge k-coloring of G with the elements of \mathbb{Z}_k so that the induced vertex k-coloring, in which the color of a vertex v in G is the sum in \mathbb{Z}_k of the colors of the edges incident with v, is a proper vertex k-coloring. The minimum k for which G has a twin edge k-coloring is called the twin chromatic index of G. Twin chromatic index of the square P_n^2 , $n \ge 4$, and the square C_n^2 , $n \ge 6$, are determined. In fact, the twin chromatic index of the square C_7^2 is $\Delta + 2$, where Δ is the maximum degree. Twin chromatic index of $C_m \square P_n$ is determined, where \square denotes the Cartesian product. C_r and P_r are, respectively, the cycle, and the path on r vertices each.

Keywords: twin edge coloring, twin chromatic index, Cartesian product Mathematics Subject Classification : 05C15 DOI: 10.5614/ejgta.2016.4.1.7

1. Introduction

Let G be a simple graph. A proper vertex coloring of G is an assignment from a given set of colors to the set of vertices of G, where adjacent vertices are colored differently. The minimum number of colors needed in a proper vertex coloring of G is the chromatic number of G and it is denoted by $\chi(G)$. A proper edge coloring of G is an assignment from a given set of colors to the

Received: 26 July 2015, Revised: 25 February 2016, Accepted: 13 March 2016.

set of edges of G, where adjacent edges are colored differently. The minimum number of colors needed in a proper edge coloring of G is the *chromatic index* of G and it is denoted by $\chi'(G)$.

Recently, a related coloring was introduced by Chartrand and studied in [1] and [2]. For a connected graph G of order at least 3, let $c : E(G) \to \mathbb{Z}_k$ be a proper edge k-coloring of G for some integer $k \ge 2$. A vertex k-coloring $\sigma_c : V(G) \to \mathbb{Z}_k$ is then defined by

$$\sigma_c(v) = \sum_{e \in E_v} c(e)$$

in \mathbb{Z}_k , where E_v is the set of edges of G incident with a vertex v and the indicated sum is computed in \mathbb{Z}_k . If the induced vertex k-coloring σ_c is proper, then c is called a *twin edge k-coloring* of G. The minimum k for which G has a twin edge k-coloring is called the *twin chromatic index* of Gand it is denoted by $\chi'_t(G)$. Since a twin edge coloring is not only a proper edge coloring of G but induces a proper vertex coloring of G, it follows that

$$\chi_t'(G) \ge \max\{\chi(G), \,\chi'(G)\}.$$

For every connected graph G that is neither an odd cycle nor a complete graph, $\chi(G) \leq \Delta(G) \leq \chi'(G)$; for an odd cycle $\chi(C_{2n+1}) = 3 = \chi'(C_{2n+1})$; for the complete graph of odd order $\chi(K_{2n+1}) = \chi'(K_{2n+1})$; and for the complete graph of even order $\chi(K_{2n}) = 1 + \chi'(K_{2n})$. Hence $\chi'_t(G) \geq \max{\chi(G), \chi'(G)} = \chi'(G)$ except when G is a complete graph of even order. $\chi'_t(G)$ does not exist if G is the connected graph of order 2, and it was observed in [1] that every connected graph of order at least 3 has a twin edge coloring.

In [1], Andrews *et al.* obtained the twin chromatic indexes of paths, complete graphs and complete bipartite graphs. If n, a, b are integers with $n \ge 3, 1 \le a \le b$ and $b \ge 2$, then $\chi'_t(P_n) = 3, \chi'_t(C_n) = 3$ if $n \equiv 0 \pmod{3}, \chi'_t(C_n) = 4$ if $n \not\equiv 0 \pmod{3}$ and $n \neq 5$, $\chi'_t(C_5) = 5, \chi'_t(K_n) = n$ if n is odd, $\chi'_t(K_n) = n + 1$ if n is even, $\chi'_t(K_{1,b}) = b + 1$ if $b \not\equiv 1 \pmod{4}, \chi'_t(K_{1,b}) = b + 2$ if $b \equiv 1 \pmod{4}, \chi'_t(K_{a,a}) = a + 2 = \chi'_t(K_{a,a+1})$ if $a \ge 2$, and $\chi'_t(K_{a,b}) = b$ if $b \ge a + 2$ and $a \ge 2$.

The Cartesian product $G \Box H$ of two simple graphs G and H is the simple graph with vertex set $V(G) \times V(H)$, and two vertices (u_1, u_2) and (v_1, v_2) of $G \Box H$ are adjacent if and only if either $u_1 = v_1$ and $u_2v_2 \in E(H)$ or $u_2 = v_2$ and $u_1v_1 \in E(G)$.

In [2], Andrews *et al.* obtained the twin chromatic indexes for grids, prisms and trees with small maximum degree. If $n \ge 3$ is an integer with $n \ne 5$, then $\chi'_t(C_n \Box K_2) = 4$. For n = 5, $\chi'_t(C_5 \Box K_2) = 5$. If $n \ge 2$ is an integer, then $\chi'_t(P_n \Box K_2) = 4$. If n and q are integers with $n, q \ge 3$, then $\chi'_t(P_n \Box P_q) = 5$. Every tree T having maximum degree at most 6 has $\chi'_t(T) \le 2 + \Delta(T)$. Finally, in [2], Andrews et. al conjectured the following:

Conjecture 1.1. If G is a connected graph of order at least 3 that is not a 5-cycle, then $\chi'_t(G) \leq 2 + \Delta(G)$.

Observation 1.1. If a connected graph G contains two adjacent vertices of degree $\Delta(G)$, then $\chi'_t(G) \geq 1 + \Delta(G)$.

The k-th power of a simple graph G is the simple graph G^k with vertex set V(G) and edge set $\{uv | d_G(u, v) \leq k\}$. Notation and terminalogy not mentioned here can be found in [3].

2. $\chi_{t}^{'}(P_{n}^{2})$

Let $P_n := x_1 x_2 x_3 \dots x_n$. Consider P_n^2 . For $i \in \{1, 2, \dots, n-1\}$, let $e_i = x_i x_{i+1}$ and for $i \in \{1, 2, \dots, n-2\}$, let $f_i = x_i x_{i+2}$.

Define $c : E(P_4^2) \to \mathbb{Z}_4$ as follows: $c(e_1) = 3$, $c(e_2) = 2$, $c(e_3) = 3$, $c(f_1) = 0$, $c(f_2) = 1$. The induced vertex coloring is: $\sigma_c(x_1) = 3$, $\sigma_c(x_2) = 2$, $\sigma_c(x_3) = 1$, $\sigma_c(x_4) = 0$, and it is proper. Hence $\chi'_t(P_4^2) \leq 4$. By Observation 1.1, $\chi'_t(P_4^2) \geq 4$ and so $\chi'_t(P_4^2) = 4$.

Define $c: E(P_5^2) \to \mathbb{Z}_4$ as follows: $c(e_1) = 1, c(e_2) = 2, c(e_3) = 3, c(e_4) = 2, c(f_1) = c(f_2) = 0, c(f_3) = 1$. The induced vertex coloring is: $\sigma_c(x_1) = 1, \sigma_c(x_2) = 3, \sigma_c(x_3) = 2, \sigma_c(x_4) = 1, \sigma_c(x_5) = 3$, and it is proper. Hence $\chi'_t(P_5^2) \leq 4$. As $\chi'_t(P_5^2) \geq \Delta(P_5^2) = 4$, we have $\chi'_t(P_5^2) = 4$.

For
$$n \ge 6$$
, define $c : E(P_n^2) \to \mathbb{Z}_5$ as follows:
 $c(e_1) = 3$,
 $c(e_i) = i \pmod{5}$ if $2 \le i \le n-2$,
 $c(e_{n-1}) = \begin{cases} 2 \text{ if } n \equiv 0 \pmod{5}, \\ 3 \text{ if } n \equiv 1, 4 \pmod{5}, \\ 4 \text{ if } n \equiv 2 \pmod{5}, \\ 0 \text{ if } n \equiv 3 \pmod{5}, \end{cases}$
 $c(f_1) = 0,$
 $c(f_i) = (i-2) \pmod{5}$ if $2 \le i \le n-3,$
 $c(f_{n-2}) = \begin{cases} (n-4) \pmod{5} \text{ if } n \equiv 1, 2, 4 \pmod{5} \end{cases}$

 $n \pmod{5}$ if $n \equiv 0, 3 \pmod{5}$.

The induced vertex coloring is:

$$\begin{split} \sigma_c(x_1) &= c(e_1) + c(f_1) = 3 + 0 \equiv 3; \\ \sigma_c(x_2) &= c(e_1) + c(e_2) + c(f_2) = 3 + 2 + 0 \equiv 0; \\ \sigma_c(x_3) &= c(e_2) + c(e_3) + c(f_1) + c(f_3) = 2 + 3 + 0 + 1 \equiv 1; \\ \text{for } 4 \leq i \leq n - 3, \\ \sigma_c(x_i) &= c(e_{i-1}) + c(e_i) + c(f_{i-2}) + c(f_i) = (i - 1) + i + (i - 4) + (i - 2) = 4i - 7 \\ \begin{cases} 4 \text{ if } i \equiv 4 \pmod{5}, \\ 3 \text{ if } i \equiv 0 \pmod{5}, \\ 2 \text{ if } i \equiv 1 \pmod{5}, \\ 1 \text{ if } i \equiv 2 \pmod{5}, \\ 0 \text{ if } i \equiv 3 \pmod{5}; \end{cases} \\ \sigma_c(x_{n-2}) &= c(e_{n-3}) + c(e_{n-2}) + c(f_{n-4}) + c(f_{n-2}) = (n - 3) + (n - 2) + (n - 6) + c(f_{n-2}) \\ &= 3n - 11 + c(f_{n-2}) \equiv \begin{cases} 4 \text{ if } n \equiv 0, 1 \pmod{5}, \\ 3 \text{ if } n \equiv 2 \pmod{5}, \\ 1 \text{ if } n \equiv 3, 4 \pmod{5}; \end{cases} \\ \sigma_c(x_{n-1}) &= c(e_{n-2}) + c(e_{n-1}) + c(f_{n-3}) = (n - 2) + c(e_{n-1}) + (n - 5) = 2n - 7 + c(e_{n-1}) \end{cases} \end{split}$$

Twin edge colorings of certain square graphs and product graphs | R. Ro Sampathkumar

$$\equiv \begin{cases} 0 \text{ if } n \equiv 0 \pmod{5}, \\ 3 \text{ if } n \equiv 1 \pmod{5}, \\ 1 \text{ if } n \equiv 2 \pmod{5}, \\ 4 \text{ if } n \equiv 3, 4 \pmod{5}; \end{cases}$$
$$\sigma_c(x_n) = c(e_{n-1}) + c(f_{n-2}) \equiv \begin{cases} 2 \text{ if } n \equiv 0, 2 \pmod{5}, \\ 0 \text{ if } n \equiv 1 \pmod{5}, \\ 3 \text{ if } n \equiv 3, 4 \pmod{5}. \end{cases}$$

The sequence $\{\sigma_c(x_1), \sigma_c(x_2), \sigma_c(x_3), \dots\}$ is of the form $\{3, 0, 1, 4, 3, 2, 1, 0, 4, 3, 2, 1, 0, \dots\}$ and its end $\{\ldots, \sigma_c(x_{n-2}), \sigma_c(x_{n-1}), \sigma_c(x_n)\}$ is of the form $\{\ldots, 4, 3, 2, 1, 0, 4, 3, 2, 1, 4, 0, 2\}$ if $n \equiv 0 \pmod{5}, \{\ldots, 4, 3, 2, 1, 0, 4, 3, 2, 1, 0, 4, 3, 0\}$ if $n \equiv 1 \pmod{5}, \{\ldots, 4, 3, 2, 1, 0, 4, 3, 1, 2\}$ if $n \equiv 2 \pmod{5}, \{\ldots, 4, 3, 2, 1, 0, 4, 3, 1, 4, 3\}$ if $n \equiv 3 \pmod{5}$, and $\{\ldots, 4, 3, 2, 1, 0, 4, 3, 2, 1, 4, 3\}$ if $n \equiv 4 \pmod{5}$. Hence c is a twin edge 5-coloring of P_n^2 and therefore $\chi_t'(P_n^2) \leq 5$. By Observation 1.1, $\chi_t'(P_n^2) \geq 5$, and so $\chi_t'(P_n^2) = 5$.

Thus, we have the following theorem.

Theorem 2.1. $\chi_t'(P_4^2) = 4, \chi_t'(P_5^2) = 4$, and for $n \ge 6, \chi_t'(P_n^2) = 5$.

3. $\chi_t'(C_n^2)$

Let $C_n := x_1 x_2 x_3 \dots x_n x_1$. For $n \ge 6$, consider C_n^2 . For $i \in \{1, 2, \dots, n\}$, $e_i = x_i x_{i+1}$ and $f_i = x_i x_{i+2}$, where $x_{n+1} = x_1$ and $x_{n+2} = x_2$. By Observation 1.1, $\chi_t'(C_n^2) \ge 5$.

• For
$$n \equiv 0 \pmod{6}$$
, define $c : E(C_n^2) \to \mathbb{Z}_5$ as follows:

$$c(e_i) = \begin{cases} 0 \text{ if } i \text{ is odd,} \\ 1 \text{ if } i \text{ is even,} \end{cases}$$

$$c(f_i) = \begin{cases} 2 \text{ if } i \equiv 1 \pmod{3}, \\ 3 \text{ if } i \equiv 2 \pmod{3}, \\ 4 \text{ if } i \equiv 0 \pmod{3}. \end{cases}$$

The induced vertex coloring is:

$$\sigma_c(x_i) = c(e_{i-1}) + c(e_i) + c(f_{i-2}) + c(f_i) = \begin{cases} 1 \text{ if } i \equiv 1 \pmod{3}, \\ 3 \text{ if } i \equiv 2 \pmod{3}, \\ 2 \text{ if } i \equiv 0 \pmod{3}. \end{cases}$$

Hence c is a twin edge 5-coloring of C_n^2 and therefore $\chi_t'(C_n^2) \leq 5$.

• For
$$n \equiv 5 \pmod{6}$$
 and $n \ge 11$, define $c : E(C_n^2) \to \mathbb{Z}_5$ as follows:
For $i \in \{1, 2, \dots, n-3\}$, $c(e_i) = \begin{cases} 0 \text{ if } i \text{ is odd,} \\ 1 \text{ if } i \text{ is even,} \end{cases}$
 $c(e_{n-2}) = 2,$
 $c(e_{n-1}) = 3,$

$$c(e_n) = 4.$$

For $i \in \{1, 2, ..., n-3\}, c(f_i) = \begin{cases} 3 \text{ if } i \equiv 1 \pmod{3}, \\ 4 \text{ if } i \equiv 2 \pmod{3}, \\ 2 \text{ if } i \equiv 0 \pmod{3}, \\ 2 \text{ if } i \equiv 0 \pmod{3}, \\ c(f_{n-1}) = 1, \\ c(f_n) = 2. \end{cases}$

The induced vertex coloring is:

$$\begin{aligned} \text{For } i \in \{2, 3, \dots, n-3\}, \, \sigma_c(x_i) &= c(e_{i-1}) + c(e_i) + c(f_{i-2}) + c(f_i) = 1 + c(f_{i-2}) + c(f_i) \\ &= \begin{cases} 1 + 4 + 3 = 3 \text{ if } i \equiv 1 \pmod{3}, \\ 1 + 2 + 4 = 2 \text{ if } i \equiv 2 \pmod{3}, \\ 1 + 3 + 2 = 1 \text{ if } i \equiv 0 \pmod{3}, \\ 1 + 3 + 2 = 1 \text{ if } i \equiv 0 \pmod{3}. \end{cases} \\ \sigma_c(x_{n-2}) &= c(e_{n-3}) + c(e_{n-2}) + c(f_{n-4}) + c(f_{n-2}) = 1 + 2 + 3 + 0 = 1. \\ \sigma_c(x_{n-1}) &= c(e_{n-2}) + c(e_{n-1}) + c(f_{n-3}) + c(f_{n-1}) = 2 + 3 + 4 + 1 = 0. \\ \sigma_c(x_n) &= c(e_{n-1}) + c(e_n) + c(f_{n-2}) + c(f_n) = 3 + 4 + 0 + 2 = 4. \\ \sigma_c(x_1) &= c(e_n) + c(e_1) + c(f_{n-1}) + c(f_1) = 4 + 0 + 1 + 3 = 3. \end{aligned}$$

Hence c is a twin edge 5-coloring of C_n^2 and therefore $\chi_t'(C_n^2) \leq 5. \end{aligned}$

• For
$$n \equiv 4 \pmod{6}$$
 and $n \ge 10$, define $c : E(C_n^2) \to \mathbb{Z}_5$ as follows:
For $i \in \{1, 2, ..., n - 8\}, c(e_i) = \begin{cases} 0 \text{ if } i \text{ is odd,} \\ 1 \text{ if } i \text{ is even,} \end{cases}$
 $c(e_{n-7}) = c(e_{n-2}) = 2,$
 $c(e_{n-6}) = c(e_{n-1}) = 3,$
 $c(e_{n-5}) = c(e_n) = 4,$
 $c(e_{n-4}) = 0,$
 $c(e_{n-3}) = 1.$
For $i \in \{1, 2, ..., n - 8\}, c(f_i) = \begin{cases} 3 \text{ if } i \equiv 1 \pmod{3}, \\ 4 \text{ if } i \equiv 2 \pmod{3}, \\ 2 \text{ if } i \equiv 0 \pmod{3}, \\ 2 \text{ if } i \equiv 0 \pmod{3}, \end{cases}$
 $c(f_{n-7}) = c(f_{n-2}) = 0,$
 $c(f_{n-6}) = c(f_{n-1}) = 1,$
 $c(f_{n-5}) = c(f_n) = 2,$
 $c(f_{n-4}) = 3,$
 $c(f_{n-3}) = 4.$

The induced vertex coloring is: For $i \in \{2, 3, ..., n-8\}$, $\sigma_c(x_i) = c(e_{i-1}) + c(e_i) + c(f_{i-2}) + c(f_i) = 1 + c(f_{i-2}) + c(f_i)$

$$=\begin{cases} 1+4+3=3 \text{ if } i \equiv 1 \pmod{3}, \\ 1+2+4=2 \text{ if } i \equiv 2 \pmod{3}, \\ 1+3+2=1 \text{ if } i \equiv 0 \pmod{3}, \\ 1+3+2=1 \text{ if } i \equiv 0 \pmod{3}. \end{cases}$$

$$\sigma_c(x_{n-6}) = c(e_{n-7}) + c(e_{n-6}) + c(f_{n-9}) + c(f_{n-7}) = 1+2+3+0 = 1.$$

$$\sigma_c(x_{n-6}) = c(e_{n-7}) + c(e_{n-6}) + c(f_{n-8}) + c(f_{n-6}) = 2+3+4+1 = 0.$$

$$\sigma_c(x_{n-5}) = c(e_{n-6}) + c(e_{n-5}) + c(f_{n-7}) + c(f_{n-5}) = 3+4+0+2 = 4.$$

$$\sigma_c(x_{n-4}) = c(e_{n-5}) + c(e_{n-4}) + c(f_{n-6}) + c(f_{n-4}) = 4+0+1+3 = 3.$$

$$\sigma_c(x_{n-2}) = c(e_{n-3}) + c(e_{n-2}) + c(f_{n-4}) + c(f_{n-2}) = 1+2+3+0 = 1.$$

$$\sigma_c(x_{n-1}) = c(e_{n-2}) + c(e_{n-1}) + c(f_{n-3}) + c(f_{n-1}) = 2+3+4+1 = 0.$$

$$\sigma_c(x_n) = c(e_{n-1}) + c(e_n) + c(f_{n-2}) + c(f_{n-1}) = 2+3+4+1 = 0.$$

$$\sigma_c(x_1) = c(e_n) + c(e_1) + c(f_{n-1}) + c(f_1) = 4+0+1+3 = 3.$$
Hence c is a twin edge 5-coloring of C_n^2 and therefore $\chi'_t(C_n^2) \leq 5.$

• For
$$n \equiv 3 \pmod{6}$$
 and $n \ge 15$, define $c : E(C_n^2) \to \mathbb{Z}_5$ as follows:
For $i \in \{1, 2, \dots, n-13\}, c(e_i) = \begin{cases} 0 \text{ if } i \text{ is odd,} \\ 1 \text{ if } i \text{ is even,} \end{cases}$
 $c(e_{n-12}) = c(e_{n-7}) = c(e_{n-2}) = 2,$
 $c(e_{n-11}) = c(e_{n-6}) = c(e_{n-1}) = 3,$
 $c(e_{n-10}) = c(e_{n-5}) = c(e_n) = 4,$
 $c(e_{n-9}) = c(e_{n-4}) = 0,$
 $c(e_{n-8}) = c(e_{n-3}) = 1.$
For $i \in \{1, 2, \dots, n-13\}, c(f_i) = \begin{cases} 3 \text{ if } i \equiv 1 \pmod{3}, \\ 4 \text{ if } i \equiv 2 \pmod{3}, \\ 2 \text{ if } i \equiv 0 \pmod{3}, \\ 2 \text{ if } i \equiv 0 \pmod{3}, \end{cases}$
 $c(f_{n-12}) = c(f_{n-7}) = c(f_{n-2}) = 0,$
 $c(f_{n-11}) = c(f_{n-6}) = c(f_{n-1}) = 1,$
 $c(f_{n-10}) = c(f_{n-5}) = c(f_n) = 2,$
 $c(f_{n-9}) = c(f_{n-4}) = 3,$
 $c(f_{n-8}) = c(f_{n-3}) = 4.$

The induced vertex coloring is:

For
$$i \in \{2, 3, ..., n - 13\}$$
, $\sigma_c(x_i) = \begin{cases} 3 \text{ if } i \equiv 1 \pmod{3}, \\ 2 \text{ if } i \equiv 2 \pmod{3}, \\ 1 \text{ if } i \equiv 0 \pmod{3}, \\ 1 \text{ if } i \equiv 0 \pmod{3}, \\ 1 \text{ if } i \equiv 0 \pmod{3}. \end{cases}$
 $\sigma_c(x_{n-12}) = \sigma_c(x_{n-7}) = \sigma_c(x_{n-2}) = 1.$
 $\sigma_c(x_{n-11}) = \sigma_c(x_{n-6}) = \sigma_c(x_{n-1}) = 0.$
 $\sigma_c(x_{n-10}) = \sigma_c(x_{n-5}) = \sigma_c(x_n) = 4.$
 $\sigma_c(x_{n-9}) = \sigma_c(x_{n-4}) = \sigma_c(x_1) = 3.$
 $\sigma_c(x_{n-8}) = \sigma_c(x_{n-3}) = 2.$
Hence c is a twin edge 5-coloring of C_n^2 and therefore $\chi_t'(C_n^2) \leq 5.$

www.ejgta.org

• For
$$n = 9$$
, define $c : E(C_9^2) \to \mathbb{Z}_5$ as follows:
 $c(e_1) = c(e_3) = c(e_5) = c(f_7) = 0$,
 $c(f_3) = c(f_6) = c(f_9) = 1$,
 $c(f_2) = c(f_5) = c(f_8) = 2$,
 $c(e_4) = c(e_6) = c(e_8) = c(f_1) = 3$,
 $c(e_2) = c(e_7) = c(e_9) = c(f_4) = 4$.

The induced vertex coloring is:

 $\sigma_c(x_8) = 0, \, \sigma_c(x_5) = 1, \, \sigma_c(x_2) = 2, \, \sigma_c(x_3) = \sigma_c(x_6) = \sigma_c(x_9) = 3,$ $\sigma_c(x_1) = \sigma_c(x_4) = \sigma_c(x_7) = 4.$ Hence c is a twin edge 5-coloring of C_9^2 and therefore $\chi'_t(C_9^2) \leq 5.$

The induced vertex coloring is:

For
$$i \in \{2, 3, ..., n-18\}$$
, $\sigma_c(x_i) = \begin{cases} 3 \text{ if } i \equiv 1 \pmod{3}, \\ 2 \text{ if } i \equiv 2 \pmod{3}, \\ 1 \text{ if } i \equiv 0 \pmod{3}, \\ 1 \text{ if } i \equiv 0 \pmod{3}, \\ 1 \text{ if } i \equiv 0 \pmod{3}, \end{cases}$
 $\sigma_c(x_{n-17}) = \sigma_c(x_{n-12}) = \sigma_c(x_{n-7}) = \sigma_c(x_{n-2}) = 1.$
 $\sigma_c(x_{n-16}) = \sigma_c(x_{n-11}) = \sigma_c(x_{n-6}) = \sigma_c(x_{n-1}) = 0.$
 $\sigma_c(x_{n-15}) = \sigma_c(x_{n-10}) = \sigma_c(x_{n-5}) = \sigma_c(x_n) = 4.$
 $\sigma_c(x_{n-14}) = \sigma_c(x_{n-9}) = \sigma_c(x_{n-4}) = \sigma_c(x_1) = 3.$
 $\sigma_c(x_{n-13}) = \sigma_c(x_{n-8}) = \sigma_c(x_{n-3}) = 2.$
Hence c is a twin edge 5-coloring of C_n^2 and therefore $\chi_t'(C_n^2) \leq 5.$

• For n = 8, define $c : E(C_8^2) \to \mathbb{Z}_5$ as follows:

$$\begin{array}{l} c(e_5) = c(f_2) = c(f_7) = 0, \ c(e_7) = c(f_1) = c(f_4) = 1, \ c(e_1) = c(f_3) = c(f_6) = 2, \\ c(e_3) = c(f_5) = c(f_8) = 3, \ c(e_2) = c(e_4) = c(e_6) = c(e_8) = 4. \\ \\ \text{The induced vertex coloring is:} \\ \sigma_c(x_3) = \sigma_c(x_8) = 0, \ \sigma_c(x_1) = \sigma_c(x_6) = 2, \ \sigma_c(x_4) = \sigma_c(x_7) = 3, \ \sigma_c(x_2) = \sigma_c(x_5) = 4. \\ \\ \text{Hence } c \text{ is a twin edge 5-coloring of } C_8^2 \text{ and therefore } \chi_t'(C_8^2) \leq 5. \end{array}$$

• For
$$n = 14$$
, define $c : E(C_{14}^2) \to \mathbb{Z}_5$ as follows:
 $c(e_5) = c(e_7) = c(e_9) = c(e_{11}) = c(f_2) = c(f_{13}) = 0$,
 $c(e_{13}) = c(f_1) = c(f_4) = c(f_7) = c(f_{10}) = 1$, $c(e_1) = c(f_3) = c(f_6) = c(f_9) = c(f_{12}) = 2$,
 $c(e_3) = c(f_5) = c(f_8) = c(f_{11}) = c(f_{14}) = 3$,
 $c(e_2) = c(e_4) = c(e_6) = c(e_8) = c(e_{10}) = c(e_{12}) = c(e_{14}) = 4$.
The induced vertex coloring is:
 $\sigma_c(x_3) = \sigma_c(x_{14}) = 0$, $\sigma_c(x_1) = \sigma_c(x_6) = \sigma_c(x_9) = \sigma_c(x_{12}) = 2$,
 $\sigma_c(x_4) = \sigma_c(x_7) = \sigma_c(x_{10}) = \sigma_c(x_{13}) = 3$, $\sigma_c(x_2) = \sigma_c(x_5) = \sigma_c(x_8) = \sigma_c(x_{11}) = 4$.
Hence c is a twin edge 5-coloring of C_{14}^2 and therefore $\chi_t'(C_{14}^2) \leq 5$.

• For
$$n \equiv 1 \pmod{6}$$
 and $n \ge 25$, define $c : E(C_n^2) \to \mathbb{Z}_5$ as follows:
For $i \in \{1, 2, \dots, n-23\}$, $c(e_i) = \begin{cases} 0 \text{ if } i \text{ is odd,} \\ 1 \text{ if } i \text{ is even,} \end{cases}$
 $c(e_{n-22}) = c(e_{n-17}) = c(e_{n-12}) = c(e_{n-7}) = c(e_{n-2}) = 2,$
 $c(e_{n-21}) = c(e_{n-16}) = c(e_{n-11}) = c(e_{n-6}) = c(e_{n-1}) = 3,$
 $c(e_{n-20}) = c(e_{n-15}) = c(e_{n-10}) = c(e_{n-5}) = c(e_n) = 4,$
 $c(e_{n-19}) = c(e_{n-14}) = c(e_{n-9}) = c(e_{n-4}) = 0,$
 $c(e_{n-18}) = c(e_{n-13}) = c(e_{n-8}) = c(e_{n-3}) = 1.$
For $i \in \{1, 2, \dots, n-23\}$, $c(f_i) = \begin{cases} 3 \text{ if } i \equiv 1 \pmod{3}, \\ 4 \text{ if } i \equiv 2 \pmod{3}, \\ 2 \text{ if } i \equiv 0 \pmod{3}, \\ 2 \text{ if } i \equiv 0 \pmod{3}, \end{cases}$
 $c(f_{n-22}) = c(f_{n-17}) = c(f_{n-12}) = c(f_{n-7}) = c(f_{n-2}) = 0,$
 $c(f_{n-21}) = c(f_{n-16}) = c(f_{n-11}) = c(f_{n-6}) = c(f_{n-1}) = 1,$
 $c(f_{n-20}) = c(f_{n-15}) = c(f_{n-10}) = c(f_{n-6}) = c(f_n) = 2,$
 $c(f_{n-19}) = c(f_{n-14}) = c(f_{n-9}) = c(f_{n-4}) = 3,$
 $c(f_{n-18}) = c(f_{n-13}) = c(f_{n-8}) = c(f_{n-3}) = 4.$

The induced vertex coloring is:

For
$$i \in \{2, 3, ..., n-23\}$$
, $\sigma_c(x_i) = \begin{cases} 3 \text{ if } i \equiv 1 \pmod{3}, \\ 2 \text{ if } i \equiv 2 \pmod{3}, \\ 1 \text{ if } i \equiv 0 \pmod{3}, \\ 1 \text{ if } i \equiv 0 \pmod{3}. \end{cases}$
 $\sigma_c(x_{n-22}) = \sigma_c(x_{n-17}) = \sigma_c(x_{n-12}) = \sigma_c(x_{n-7}) = \sigma_c(x_{n-2}) = 1.$
 $\sigma_c(x_{n-21}) = \sigma_c(x_{n-16}) = \sigma_c(x_{n-11}) = \sigma_c(x_{n-6}) = \sigma_c(x_{n-1}) = 0.$
 $\sigma_c(x_{n-20}) = \sigma_c(x_{n-15}) = \sigma_c(x_{n-10}) = \sigma_c(x_{n-5}) = \sigma_c(x_n) = 4.$
 $\sigma_c(x_{n-19}) = \sigma_c(x_{n-14}) = \sigma_c(x_{n-9}) = \sigma_c(x_{n-4}) = \sigma_c(x_1) = 3.$

www.ejgta.org

$$\sigma_c(x_{n-18}) = \sigma_c(x_{n-13}) = \sigma_c(x_{n-8}) = \sigma_c(x_{n-3}) = 2.$$

Hence c is a twin edge 5-coloring of C_n^2 and therefore $\chi'_t(C_n^2) \leq 5.$

• For
$$n = 19$$
, define $c : E(C_{19}^2) \to \mathbb{Z}_5$ as follows:
 $c(e_1) = c(e_3) = c(e_5) = c(e_7) = c(e_9) = c(e_{11}) = c(e_{13}) = c(e_{15}) = c(f_{17}) = 0$,
 $c(e_{16}) = c(e_{18}) = c(f_1) = c(f_4) = c(f_7) = c(f_{10}) = c(f_{13}) = 1$,
 $c(e_{12}) = c(e_{17}) = c(f_3) = c(f_6) = c(f_9) = c(f_{14}) = c(f_{19}) = 2$,
 $c(e_2) = c(e_4) = c(e_6) = c(e_8) = c(e_{10}) = c(f_{12}) = c(f_{15}) = c(f_{18}) = 3$,
 $c(e_{14}) = c(e_{19}) = c(f_2) = c(f_5) = c(f_8) = c(f_{11}) = c(f_{16}) = 4$.

The induced vertex coloring is:

$$\begin{split} &\sigma_c(x_{18}) = 0, \, \sigma_c(x_3) = \sigma_c(x_6) = \sigma_c(x_9) = \sigma_c(x_{12}) = \sigma_c(x_{17}) = 1, \\ &\sigma_c(x_{13}) = \sigma_c(x_{16}) = \sigma_c(x_{19}) = 2, \, \sigma_c(x_1) = \sigma_c(x_4) = \sigma_c(x_7) = \sigma_c(x_{10}) = \sigma_c(x_{15}) = 3, \\ &\sigma_c(x_2) = \sigma_c(x_5) = \sigma_c(x_8) = \sigma_c(x_{11}) = \sigma_c(x_{14}) = 4. \\ &\text{Hence } c \text{ is a twin edge 5-coloring of } C_{19}^2 \text{ and therefore } \chi_t^{'}(C_{19}^2) \leq 5. \end{split}$$

• For
$$n = 13$$
, define $c : E(C_{13}^2) \to \mathbb{Z}_5$ as follows:
 $c(e_1) = c(e_3) = c(e_5) = c(e_7) = c(e_9) = c(f_{11}) = 0$,
 $c(e_{10}) = c(e_{12}) = c(f_1) = c(f_4) = c(f_7) = 1$,
 $c(e_6) = c(e_{11}) = c(f_3) = c(f_8) = c(f_{13}) = 2$, $c(e_2) = c(e_4) = c(f_6) = c(f_9) = c(f_{12}) = 3$,
 $c(e_8) = c(e_{13}) = c(f_2) = c(f_5) = c(f_{10}) = 4$.

The induced vertex coloring is:

$$\begin{split} &\sigma_c(x_{12}) = 0, \, \sigma_c(x_3) = \sigma_c(x_6) = \sigma_c(x_{11}) = 1, \\ &\sigma_c(x_7) = \sigma_c(x_{10}) = \sigma_c(x_{13}) = 2, \, \sigma_c(x_1) = \sigma_c(x_4) = \sigma_c(x_9) = 3, \\ &\sigma_c(x_2) = \sigma_c(x_5) = \sigma_c(x_8) = 4. \\ &\text{Hence } c \text{ is a twin edge 5-coloring of } C_{13}^2 \text{ and therefore } \chi_t^{'}(C_{13}^2) \leq 5. \end{split}$$

• For
$$n = 7$$
, define $c : E(C_7^2) \to \mathbb{Z}_6$ as follows:
 $c(e_2) = c(e_4) = c(e_6) = 0$,
 $c(e_1) = 1, c(e_3) = c(e_5) = c(e_7) = 2$,
 $c(f_1) = c(f_4) = c(f_7) = 3, c(f_2) = c(f_5) = 4, c(f_3) = c(f_6) = 5$.

The induced vertex coloring is:

 $\sigma_c(x_2) = 2, \sigma_c(x_4) = \sigma_c(x_7) = 3, \sigma_c(x_3) = \sigma_c(x_6) = 4, \sigma_c(x_1) = \sigma_c(x_5) = 5.$ Hence c is a twin edge 6-coloring of C_7^2 and therefore $\chi_t'(C_7^2) \leq 6.$

Lemma 3.1. Let G be a k-regular graph of odd order at least k + 2. If for any two nonadjacent vertices u and $v, N_G(u) \cup N_G(v) = V(G) \setminus \{u, v\}$, then $\chi'_t(G) \ge k + 2$.

Proof. Suppose $\chi'_t(G) = k+1$. Then there exists a twin edge (k+1)-coloring $c : E(G) \to \mathbb{Z}_{k+1}$. As G is k-regular, for any vertex x, some color c_i is not represented for the edges incident at x. Since there are k + 1 colors and |V(G)| > k + 1, by pigeonhole principle, some color, say, i is not represented at two vertices. Since σ_c is equal for these two vertices, they are nonadjacent. Let

the two nonadjacent vertices be u and v. By hypothesis, i must be represented at all the vertices of $V(G) \setminus \{u, v\}$. This is clearly impossible, since $|V(G) \setminus \{u, v\}|$ is odd. \Box

By Lemma 3.1, $\chi'_t(C_7^2) \ge 6$. Thus we have:

Theorem 3.1. Let $n \ge 6$. If $n \ne 7$, then $\chi_t'(C_n^2) = 5$. Also, $\chi_t'(C_7^2) = \Delta(C_7^2) + 2 = 6$.

4. $\chi_t'(C_m \Box P_n)$

Let $m \ge 3$, $n \ge 3$, $C_m := x_1 x_2 x_3 \dots x_m x_1$ and $P_n := y_1 y_2 y_3 \dots y_n$. For convenience, assume $x_{m+1} = x_1$.

By Observation 1.1, $\chi'_t(C_m \Box P_n) \geq 5$.

Theorem 4.1. For $m \ge 3$ and $n \ge 3$, $\chi'_t(C_m \Box P_n) = 5$.

Proof. We consider three cases and in each case, we first define $c: V(C_m \Box P_n) \to \mathbb{Z}_5$.

Case 1. m is even.

$$c((x_{i}, y_{j})(x_{i+1}, y_{j})) = \begin{cases} 0 \text{ if } i \text{ is even,} \\ 1 \text{ if } i \text{ is odd;} \end{cases}$$

for $j \equiv 1 \pmod{3}$, $c((x_{i}, y_{j})(x_{i}, y_{j+1})) = \begin{cases} 3 \text{ if } i \text{ is odd,} \\ 2 \text{ if } i \text{ is even;} \end{cases}$
for $j \equiv 2 \pmod{3}$, $c((x_{i}, y_{j})(x_{i}, y_{j+1})) = \begin{cases} 4 \text{ if } i \text{ is odd,} \\ 3 \text{ if } i \text{ is even;} \end{cases}$
for $j \equiv 0 \pmod{3}$, $c((x_{i}, y_{j})(x_{i}, y_{j+1})) = \begin{cases} 2 \text{ if } i \text{ is odd,} \\ 4 \text{ if } i \text{ is even;} \end{cases}$

Then the induced vertex coloring is:

$$\sigma_{c}((x_{i}, y_{1})) = \begin{cases} 4 \text{ if } i \text{ is odd,} \\ 3 \text{ if } i \text{ is even.} \end{cases}$$
For $n \equiv 2 \pmod{3}$, $\sigma_{c}((x_{i}, y_{n})) = \begin{cases} 4 \text{ if } i \text{ is odd,} \\ 3 \text{ if } i \text{ is even.} \end{cases}$
For $n \equiv 0 \pmod{3}$, $\sigma_{c}((x_{i}, y_{n})) = \begin{cases} 0 \text{ if } i \text{ is odd,} \\ 4 \text{ if } i \text{ is even.} \end{cases}$
For $n \equiv 1 \pmod{3}$, $\sigma_{c}((x_{i}, y_{n})) = \begin{cases} 3 \text{ if } i \text{ is odd,} \\ 0 \text{ if } i \text{ is even.} \end{cases}$
For $j \equiv 2 \pmod{3}$ and for $j \neq n$, $\sigma_{c}((x_{i}, y_{j})) = \begin{cases} 3 \text{ if } i \text{ is odd,} \\ 1 \text{ if } i \text{ is even.} \end{cases}$
For $j \equiv 0 \pmod{3}$ and for $j \neq n$, $\sigma_{c}((x_{i}, y_{j})) = \begin{cases} 2 \text{ if } i \text{ is odd,} \\ 1 \text{ if } i \text{ is even.} \end{cases}$

For $j \equiv 1 \pmod{3}$ and for $j \notin \{1, n\}$, $\sigma_c((x_i, y_j)) = \begin{cases} 1 \text{ if } i \text{ is odd,} \\ 2 \text{ if } i \text{ is even.} \end{cases}$ It can be verified that c is a twin edge 5-coloring of $C_m \square P_n$.

Case 2. m is odd and $n \not\equiv 2 \pmod{3}$.

For
$$i \in \{1, 2, ..., m-2\}$$
, $c((x_i, y_j)(x_{i+1}, y_j)) = \begin{cases} 1 \text{ if } i \text{ is odd,} \\ 0 \text{ if } i \text{ is even;} \end{cases}$
 $c((x_{m-1}, y_j)(x_m, y_j)) = 2;$
 $c((x_m, y_j)(x_1, y_j)) = 0;$
for $i \in \{1, 2, ..., m-2\}$ and $j \equiv 1 \pmod{3}$, $c((x_i, y_j)(x_i, y_{j+1})) = \begin{cases} 2 \text{ if } i \text{ is odd,} \\ 3 \text{ if } i \text{ is even;} \end{cases}$
for $j \equiv 1 \pmod{3}$, $c((x_{m-1}, y_j)(x_{m-1}, y_{j+1})) = 4$, $c((x_m, y_j)(x_m, y_{j+1})) = 3;$
for $i \in \{1, 2, ..., m-2\}$ and $j \equiv 2 \pmod{3}$, $c((x_i, y_j)(x_i, y_{j+1})) = \begin{cases} 4 \text{ if } i \text{ is odd,} \\ 2 \text{ if } i \text{ is even;} \end{cases}$
for $j \equiv 2 \pmod{3}$, $c((x_{m-1}, y_j)(x_{m-1}, y_{j+1})) = 3$, $c((x_m, y_j)(x_m, y_{j+1})) = 1;$
for $i \in \{1, 2, ..., m-2\}$ and $j \equiv 0 \pmod{3}$, $c((x_i, y_j)(x_i, y_{j+1})) = \begin{cases} 3 \text{ if } i \text{ is odd,} \\ 4 \text{ if } i \text{ is even;} \end{cases}$
for $j \equiv 0 \pmod{3}$, $c((x_{m-1}, y_j)(x_{m-1}, y_{j+1})) = 0$, $c((x_m, y_j)(x_m, y_{j+1})) = 4.$

Then the induced vertex coloring is:

$$\begin{aligned} & \text{For } i \in \{1, 2, \dots, m-2\}, \\ & \sigma_c((x_i, y_1)) = c((x_{i-1}, y_1)(x_i, y_1)) + c((x_i, y_1)(x_{i+1}, y_1)) + c((x_i, y_1)(x_i, y_2)) \\ & = \begin{cases} 1+2=3 \text{ if } i \text{ is odd}, \\ 1+3=4 \text{ if } i \text{ is even.} \end{cases} \\ & \sigma_c((x_{m-1}, y_1)) = c((x_{m-2}, y_1)(x_{m-1}, y_1)) + c((x_{m-1}, y_1)(x_m, y_1)) + c((x_{m-1}, y_1)(x_{m-1}, y_2)) \\ & = 1+2+4=2. \end{cases} \\ & \sigma_c((x_m, y_1)) = c((x_{m-1}, y_1)(x_m, y_1)) + c((x_m, y_1)(x_1, y_1)) + c((x_m, y_1)(x_m, y_2)) \\ & = 2+0+3=0. \end{aligned} \\ & \text{For } i \in \{1, 2, \dots, m-2\}, \\ & \sigma_c((x_i, y_n)) = c((x_{i-1}, y_n)(x_i, y_n)) + c((x_i, y_n)(x_{i+1}, y_n)) + c((x_i, y_{n-1})(x_i, y_n)) \\ & = 1+c((x_i, y_{n-1})(x_i, y_n)); \end{aligned} \\ & \text{for } n \equiv 0 \pmod{3}, \sigma_c((x_i, y_n)) = \begin{cases} 1+4=0 \text{ if } i \text{ is odd}, \\ 1+2=3 \text{ if } i \text{ is even;} \\ 1+3=4 \text{ if } i \text{ is even;} \end{cases} \\ & \text{for } n \equiv 1 \pmod{3}, \sigma_c((x_i, y_n)) = \begin{cases} 1+2=3 \text{ if } i \text{ is odd}, \\ 1+4=0 \text{ if } i \text{ is even;} \\ 1+3=4 \text{ if } i \text{ is even;} \end{cases} \\ & \text{for } n \equiv 2 \pmod{3}, \sigma_c((x_i, y_n)) = \begin{cases} 1+2=3 \text{ if } i \text{ is odd}, \\ 1+3=4 \text{ if } i \text{ is even;} \\ 1+3=4 \text{ if } i \text{ is even;} \end{cases} \end{aligned}$$

$$= c((x_{m-2}, y_n)(x_{m-1}, y_n)) + c((x_{m-1}, y_n)(x_m, y_n)) + c((x_{m-1}, y_{n-1})(x_{m-1}, y_n)) \\ = 1 + 2 + c((x_{m-1}, y_{n-1})(x_{m-1}, y_n)); \\ \text{for } n \equiv 0 \pmod{3}, \sigma_c((x_{m-1}, y_n)) = 1 + 2 + 3 = 1; \\ \text{for } n \equiv 1 \pmod{3}, \sigma_c((x_{m-1}, y_n)) = 1 + 2 + 4 = 2; \\ \sigma_c(x_m, y_n)) = c((x_{m-1}, y_n)(x_m, y_n)) + c((x_m, y_n)(x_1, y_n)) + c((x_{m-1}, y_n)(x_m, y_n)) \\ = 2 + 0 + c((x_m, y_{n-1})(x_m, y_n)); \\ \text{for } n \equiv 0 \pmod{3}, \sigma_c((x_m, y_n)) = 2 + 0 + 1 = 3; \\ \text{for } n \equiv 1 \pmod{3}, \sigma_c((x_m, y_n)) = 2 + 0 + 4 = 1; \\ \text{for } n \equiv 1 \pmod{3}, \sigma_c((x_m, y_n)) = 2 + 0 + 4 = 1; \\ \text{for } n \equiv 1 \pmod{3}, \sigma_c((x_m, y_n)) = 2 + 0 + 3 = 0. \\ \text{For } i \in \{1, 2, \dots, m - 2\}, \\ \sigma_c((x_i, y_j)) \\ = c((x_{i-1}, y_j)(x_i, y_j)) + c((x_i, y_j)(x_{i+1}, y_j)) + c((x_i, y_{j-1})(x_i, y_j)) + c((x_i, y_j)(x_i, y_{j+1})); \\ \text{for } j \equiv 0 \pmod{3} \text{ and } j \neq n, \\ \sigma_c((x_i, y_j)) \\ = c((x_{i-1}, y_j)(x_i, y_j)) + c((x_i, y_j)) = \begin{cases} 4 + 3 + 0 + 1 = 3 \text{ if } i \text{ is odd}, \\ 2 + 4 + 1 + 0 = 2 \text{ if } i \text{ is even}; \end{cases} \\ \text{for } j \equiv 1 \pmod{3} \text{ and } j \notin n, \\ \sigma_c((x_i, y_j)) \\ = \begin{cases} 2 + 4 + 0 + 1 = 2 \text{ if } i \text{ is even}; \\ 3 + 2 + 0 + 1 = 1 \text{ if } i \text{ is odd}, \\ 3 + 2 + 1 + 0 = 3 \text{ if } i \text{ is even}; \end{cases} \\ \text{for } j \equiv 2 \pmod{3} \text{ and } j \neq n, \\ \sigma_c((x_i, y_j)) = \begin{cases} 2 + 4 + 0 + 1 = 2 \text{ if } i \text{ is even}; \\ \sigma_c((x_{m-1}, y_j)) = c((x_{m-2}, y_j)(x_{m-1}, y_j)) + c((x_{m-1}, y_j)(x_m, y_j)) + c((x_{m-1}, y_j)(x_{m-1}, y_j)) \\ + c((x_{m-1}, y_j)(x_{m-1}, y_j)) \end{cases} \\ \text{for } j \equiv 1 \pmod{3} \text{ and } j \neq n, \\ \sigma_c((x_{m-1}, y_j)) = 0 + 4 + 1 + 2 = 1; \\ \text{for } j \equiv 1 \pmod{3} \text{ and } j \notin n, \\ \sigma_c((x_{m-1}, y_j)) = 0 + 4 + 1 + 2 = 2; \\ \text{for } j \equiv 2 \pmod{3} \text{ and } j \neq n, \\ \sigma_c((x_{m-1}, y_j)) = 0 + 4 + 1 + 2 = 0; \\ \sigma_c((x_m, y_j)) = c((x_{m-1}, y_j)) + c((x_m, y_j)) + c((x_m, y_j)(x_m, y_j)) + c((x_m, y_j)(x_m, y_j)); \\ \text{for } j \equiv 0 \pmod{3} \text{ and } j \neq n, \\ \sigma_c((x_m, y_j)) = 1 + 4 + 2 + 0 = 2; \\ \text{for } j \equiv 1 \pmod{3} \text{ and } j \notin n, \\ \sigma_c((x_m, y_j)) = 1 + 4 + 2 + 0 = 2; \\ \text{for } j \equiv 0 \pmod{3} \text{ and } j \notin n, \\ \sigma_c((x_m, y_j)) = 1 + 4 + 2 + 0 = 1. \\ \text{It can be verified$$

Case 3. m is odd and $n \equiv 2 \pmod{3}$.

For
$$i \in \{1, 2, ..., m-1\}$$
, $c((x_i, y_j)(x_{i+1}, y_j)) = \begin{cases} 0 \text{ if } i \text{ is odd}, \\ 1 \text{ if } i \text{ is even}; \end{cases}$
 $c((x_m, y_j)(x_1, y_j)) = 2;$
for $i \in \{1, 2, ..., m-2\}$ and $j \equiv 1 \pmod{3}$, $c((x_i, y_j)(x_i, y_{j+1})) = \begin{cases} 3 \text{ if } i \text{ is odd}, \\ 2 \text{ if } i \text{ is even}; \end{cases}$
for $j \equiv 1 \pmod{3}$, $c((x_{m-1}, y_j)(x_{m-1}, y_{j+1})) = 4$, $c((x_m, y_j)(x_m, y_{j+1})) = 0;$
for $i \in \{1, 2, ..., m-2\}$ and $j \equiv 2 \pmod{3}$, $c((x_i, y_j)(x_i, y_{j+1})) = \begin{cases} 4 \text{ if } i \text{ is odd}, \\ 3 \text{ if } i \text{ is even}; \end{cases}$

www.ejgta.org

$$\begin{aligned} &\text{for } j \equiv 2 \,(\,\text{mod } 3), \quad c((x_{m-1}, y_j)(x_{m-1}, y_{j+1})) = 2, \, c((x_m, y_j)(x_m, y_{j+1})) = 3; \\ &\text{for } j \equiv 0 \,(\,\text{mod } 3), \quad c((x_1, y_j)(x_1, y_{j+1})) = 1; \\ &\text{for } i \in \{2, 3, \dots, m-2\} \text{ and } j \equiv 0 \,(\,\text{mod } 3), \quad c((x_i, y_j)(x_i, y_{j+1})) = \begin{cases} 2 \text{ if } i \text{ is odd}, \\ 4 \text{ if } i \text{ is even}; \end{cases} \\ &\text{for } j \equiv 0 \,(\,\text{mod } 3), \quad c((x_{m-1}, y_j)(x_{m-1}, y_{j+1})) = 3, \, c((x_m, y_j)(x_m, y_{j+1})) = 4. \end{aligned}$$

Then the induced vertex coloring is:

 $\sigma_c((x_1, y_1)) = c((x_m, y_1)(x_1, y_1)) + c((x_1, y_1)(x_2, y_1)) + c((x_1, y_1)(x_1, y_2)) = 2 + 0 + 3 = 0.$ For $i \in \{2, 3, \ldots, m-2\}$, $\sigma_c((x_i, y_1)) = c((x_{i-1}, y_1)(x_i, y_1)) + c((x_i, y_1)(x_{i+1}, y_1)) + c((x_i, y_1)(x_i, y_2))$ $=\begin{cases} 1+3=4 \text{ if } i \text{ is odd,} \\ 1+2=3 \text{ if } i \text{ is even.} \end{cases}$ $\sigma_c((x_{m-1}, y_1)) = c((x_{m-2}, y_1)(x_{m-1}, y_1)) + c((x_{m-1}, y_1)(x_m, y_1)) + c((x_{m-1}, y_1)(x_{m-1}, y_2))$ = 0 + 1 + 4 = 0. $\sigma_c((x_m, y_1)) = c((x_{m-1}, y_1)(x_m, y_1)) + c((x_m, y_1)(x_1, y_1)) + c((x_m, y_1)(x_m, y_2))$ = 1 + 2 + 0 = 3. $\sigma_c((x_1, y_n)) = c((x_m, y_n)(x_1, y_n)) + c((x_1, y_n)(x_2, y_n)) + c((x_1, y_{n-1})(x_1, y_n))$ = 2 + 0 + 3 = 0.For $i \in \{2, 3, \ldots, m-2\}$, $\sigma_c((x_i, y_n)) = c((x_{i-1}, y_n)(x_i, y_n)) + c((x_i, y_n)(x_{i+1}, y_n)) + c((x_i, y_{n-1})(x_i, y_n))$ $= \begin{cases} 1+3=4 \text{ if } i \text{ is odd,} \\ 1+2=3 \text{ if } i \text{ is even.} \end{cases}$ $\sigma_c((x_{m-1}, y_n))$ $= c((x_{m-2}, y_n)(x_{m-1}, y_n)) + c((x_{m-1}, y_n)(x_m, y_n)) + c((x_{m-1}, y_{n-1})(x_{m-1}, y_n))$ = 0 + 1 + 4 = 0. $\sigma_c((x_m, y_n)) = c((x_{m-1}, y_n)(x_m, y_n)) + c((x_m, y_n)(x_1, y_n)) + c((x_m, y_{n-1})(x_m, y_n))$ = 1 + 2 + 0 = 3.For $j \notin \{1, n\}$, $\sigma_c((x_1, y_i))$ $= c((x_m, y_i)(x_1, y_i)) + c((x_1, y_i)(x_2, y_i)) + c((x_1, y_{i-1})(x_1, y_i)) + c((x_1, y_i)(x_1, y_{i+1}));$ for $j \equiv 0 \pmod{3}$, $\sigma_c((x_m, y_j)) = 2 + 0 + 4 + 1 = 2$; for $j \equiv 1 \pmod{3}$, $\sigma_c((x_m, y_j)) = 2 + 0 + 1 + 3 = 1$; for $j \equiv 2 \pmod{3}$, $\sigma_c((x_m, y_j)) = 2 + 0 + 3 + 4 = 4$. For $i \in \{2, 3, ..., m-2\}$ and $j \notin \{1, n\}$, $\sigma_c((x_i, y_i))$ $\sigma_{c}((x_{i}, y_{j})) = c((x_{i}, y_{j})(x_{i}, y_{j})) + c((x_{i}, y_{j})(x_{i+1}, y_{j})) + c((x_{i}, y_{j-1})(x_{i}, y_{j})) + c((x_{i}, y_{j})(x_{i}, y_{j+1}));$ for $j \equiv 0 \pmod{3}$, $\sigma_{c}((x_{i}, y_{j})) = \begin{cases} 1 + 0 + 4 + 2 = 2 \text{ if } i \text{ is odd,} \\ 0 + 1 + 3 + 4 = 3 \text{ if } i \text{ is even;} \end{cases}$ for $j \equiv 1 \pmod{3}$, $\sigma_{c}((x_{i}, y_{j})) = \begin{cases} 1 + 0 + 2 + 3 = 1 \text{ if } i \text{ is odd,} \\ 0 + 1 + 4 + 2 = 2 \text{ if } i \text{ is even;} \end{cases}$

$$\begin{split} &\text{for } j \equiv 2 \,(\,\text{mod } 3), \qquad \sigma_c((x_i,y_j)) = \begin{cases} 1+0+3+4=3 \text{ if } i \text{ is odd}, \\ 0+1+2+3=1 \text{ if } i \text{ is even}. \end{cases} \\ &\text{For } j \not\in \{1,n\}, \\ &\sigma_c((x_{m-1},y_j)) = c((x_{m-2},y_j)(x_{m-1},y_j)) + c((x_{m-1},y_j)(x_m,y_j)) \\ &\quad + c((x_{m-1},y_{j-1})(x_{m-1},y_j)) + c((x_{m-1},y_j)(x_{m-1},y_{j+1})); \\ &\text{for } j \equiv 0 \,(\,\text{mod } 3), \sigma_c((x_{m-1},y_j)) = 0+1+2+3=1; \\ &\text{for } j \equiv 1 \,(\,\text{mod } 3), \sigma_c((x_{m-1},y_j)) = 0+1+3+4=3; \\ &\text{for } j \equiv 2 \,(\,\text{mod } 3), \sigma_c((x_{m-1},y_j)) = 0+1+4+2=2. \end{cases} \\ &\text{For } j \notin \{1,n\}, \\ &\sigma_c((x_m,y_j)) = c((x_{m-1},y_j)(x_m,y_j)) + c((x_m,y_j)(x_1,y_j)) \\ &\quad + c((x_m,y_{j-1})(x_m,y_j)) + c((x_m,y_j)(x_m,y_{j+1})); \\ &\text{for } j \equiv 0 \,(\,\text{mod } 3), \sigma_c((x_m,y_j)) = 1+2+3+4=0; \\ &\text{for } j \equiv 1 \,(\,\text{mod } 3), \sigma_c((x_m,y_j)) = 1+2+0+3=1. \\ &\text{It can be verified that } c \text{ is a twin edge 5-coloring of } C_m \square P_n. \end{split}$$

This completes the proof.

5. $\chi_{t}^{'}(G) = 2 + \Delta(G)$

By Section 1, $\chi'_t(G) = 2 + \Delta(G)$ for $G \in \{C_n : n \ge 3, n \ne 5 \text{ and } n \not\equiv 0 \pmod{3}\}$ $\cup \{K_n : n \text{ is even and } n \ge 4\} \cup \{K_{1,b} : b \equiv 1 \pmod{4} \text{ and } b \ge 2\} \cup \{K_{a,a} : a \ge 2\} \cup \{C_5 \Box K_2\}.$

By Theorem 3.1, $\chi'_t(G) = 2 + \Delta(G)$ for $G = C_7^2$.

Consider $G = K_{2n+1} - E(H)$, where H is a triangle-free r-regular spanning subgraph of K_{2n+1} . It is a (2n - r)-regular graph on 2n + 1 vertices. For any two nonadjacent vertices u and v of G, $N_G(u) \cup N_G(v) = V(G) \setminus \{u, v\}$. Otherwise, there exist $w \notin N_G(u) \cup N_G(v)$. But then $\{u, v, w\}$ is an independent set in G, and therefore it is a triangle in H, a contradiction. So, by Lemma 3.1, $\chi'_t(G) \ge 2 + \Delta(G)$.

In particular, consider $K_9 - E(C_9)$. Let $V(K_9) = \{v_0, v_1, \ldots, v_8\}$ and $C_9 = v_0v_1 \ldots v_8v_0$. The table below yields a twin edge 8-coloring of it. Consequently,

$$\chi'_t(K_9 - E(C_9)) \ge 2 + \Delta(K_9 - E(C_9)).$$

Finally, we propose the following problem:

Problem 1. If possible, find a twin edge $(2+\Delta)$ -coloring of $K_{2n+1} - E(H)$, where H is a trianglefree 2-factor of K_{2n+1} .

	v_0	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8
v_0		—	5	4	3	2	1	0	—
v_1	_	_	_	7	1	0	2	6	5
v_2	5	—	_	—	0	7	3	2	4
v_3	4	7	_	_	_	5	6	1	3
v_4	3	1	0	—	—	—	5	7	2
v_5	2	0	7	5	—	_	—	4	1
v_6	1	2	3	6	5	—	—	—	0
v_7	0	6	2	1	7	4	—	—	_
v_8	_	5	4	3	2	1	0	—	_

Acknowledgement

The authors are grateful to the referee for useful suggestions. This research was supported for the first author by UGC - Rajiv Gandhi National Fellowship.

References

- [1] E. Andrews, L. Helenius, D. Johnston, J. VerWys and P. Zhang, On twin edge colorings of graphs, *Discuss. Math. Graph Theory* **34** (2014), 613-627.
- [2] E. Andrews, D. Johnston and P. Zhang, A twin edge coloring conjecture, *Bulletin of the ICA* 70 (2014), 28-44.
- [3] R. Balakrishnan and K. Ranganathan, *A textbook of graph theory*, Second Edition, Springer-Verlag, New York, 2012.