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Abstract

A twin edge k-coloring of a graph G is a proper edge kcoloring of G with the elements of Zj, so
that the induced vertex k-coloring, in which the color of a vertex v in G is the sum in Z; of the
colors of the edges incident with v, is a proper vertex kcoloring. The minimum £ for which G
has a twin edge kcoloring is called the twin chromatic index of GG. Twin chromatic index of the
square P2, n > 4, and the square C*> n > 6, are determined. In fact, the twin chromatic index
of the square C? is A + 2, where A is the maximum degree. Twin chromatic index of C,,, O P, is
determined, where O denotes the Cartesian product. C;. and P, are, respectively, the cycle, and the
path on r vertices each.
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1. Introduction

Let G be a simple graph. A proper vertex coloring of GG is an assignment from a given set of
colors to the set of vertices of (G, where adjacent vertices are colored differently. The minimum
number of colors needed in a proper vertex coloring of G is the chromatic number of GG and it is
denoted by x(G). A proper edge coloring of G is an assignment from a given set of colors to the
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set of edges of (G, where adjacent edges are colored differently. The minimum number of colors
needed in a proper edge coloring of G is the chromatic index of G and it is denoted by x'(G).

Recently, a related coloring was introduced by Chartrand and studied in [1] and [2]. For a
connected graph G of order at least 3, let ¢ : E(G) — Zj be a proper edge k-coloring of G for
some integer k > 2. A vertex k-coloring o, : V(G) — Zj is then defined by

o.(v) = Z c(e)

ec FE,

in Z;,, where E), is the set of edges of (G incident with a vertex v and the indicated sum is computed
in Zj,. If the induced vertex kcoloring o, is proper, then c is called a twin edge k-coloring of G.
The minimum £ for which G has a twin edge k-coloring is called the twin chromatic index of G
and it is denoted by Y, (G). Since a twin edge coloring is not only a proper edge coloring of G but
induces a proper vertex coloring of G, it follows that

X (G) = max{x(G), x(G)}.

For every connected graph G that is neither an odd cycle nor a complete graph, x(G) <
A(G) < x'(G); for an odd cycle x(Coni1) = 3 = x'(Cayy1); for the complete graph of odd
order x(K2,11) = X'(Kapny1); and for the complete graph of even order x(Ks,) = 1+ x'(K2p)-
Hence x, (G) >max{x(G),x'(G)} = x'(G) except when G is a complete graph of even order.
th (G) does not exist if GG is the connected graph of order 2, and it was observed in [1] that every
connected graph of order at least 3 has a twin edge coloring.

In [1], Andrews er al. obtained the twin chromatic indexes of paths, complete graphs and
complete bipartite graphs. If n,a,b are integers withn > 3,1 < a < band b > 2, then
xi(P) = 3, x,(C,) = 3ifn = 0(mod 3), x,(C,) = 4ifn # 0(mod 3) and n # 5,
X:(Cs) = 5,x;(K,) = nifnisodd, x,(K,) = n+ lifniseven, x,(K,) = b+1ifb # 1
(mod 4), x; (K1) = b+2ifb = 1(mod 4), x;(Kea) = a+2 = x;(Ksar1)ifa > 2, and
X;(Kap) = bifb > a+2anda > 2.

The Cartesian product G O H of two simple graphs G and H is the simple graph with vertex
set V(G) x V(H), and two vertices (u1,us) and (vq,v9) of GO H are adjacent if and only if
either u; = vy and ugvy € E(H) oruy = vy and ujv; € E(G).

In [2], Andrews et al. obtained the twin chromatic indexes for grids, prisms and trees with
small maximum degree. If n > 3 is an integer with n # 5, then x; (C,, O K,) = 4. Forn = 5,
x;(CsOKy) = 5 If n > 2is an integer, then x,(P,0K,) = 4. If n and ¢ are integers
with n,q > 3, then Xt/ (P,O0P,) = 5. Every tree 7" having maximum degree at most 6 has
x,(T) < 2+ A(T). Finally, in [2], Andrews et. al conjectured the following:

Conjecture 1.1. If G is a connected graph of order at least 3 that is not a 5-cycle, then x, (G) <
2+ A(G).

Observation 1.1. If a connected graph G contains two adjacent vertices of degree A(G), then
X (G) > 1+ A(G).

The kth power of a simple graph G is the simple graph G* with vertex set V' (G) and edge set
{uv|dg(u,v) < k}. Notation and terminalogy not mentioned here can be found in [3].
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2. x,(P2)

Let P, := x1@923...%,. Consider P?. Fori € {1,2,...,n — 1}, lete; = x;x;1, and for
S {1, 2, e, = 2}7 let fz = T;Tjy2.

Define ¢ : E(P?) — Z4 as follows: c(e;) = 3, c(es) = 2, cles) = 3, ¢c(f1) = 0,
¢(f2) = 1. The induced vertex coloring is: 0.(z1) = 3, 0.(x2) = 2, 0.(x3) = 1, 0.(z4) = 0,
and it is proper. Hence x, (P?) < 4. By Observation 1.1, x; (P?) > 4and so x, (P}?) = 4.

Define ¢ : E(P2?) — Z, as follows: c(e;) = 1, c(es) = 2, cle3) = 3,cles) = 2,¢(f1) =
c(f2) = 0, c(f3) = 1. The induced vertex coloring is: o.(x;) = 1, o.(xs) = 3, o.(z3) = 2,
o.(zy) = 1, O'C(ZE5) = 3, and it is proper. Hence x,(P2) < 4. As x,(P?) > A(P?) = 4, we
have x(P2) =

Forn > 6 d ﬁnec E(P?) — Zs as follows:

cler) = 3,

c(e;) = i(mod 5)if2 < i < n-—2

2ifn = 0(mod 5),

cleny) = 3%fn = 1, 4(mod 5),

4ifn = 2(mod 5),
0ifn = 3(mod 5),
c( =

= (¢ — m0d5 )if2 < i < n-—3,
o(f B (mod 5)ifn = 1, 2, 4(mod 5),
n-2) = mod 5)ifn = 0, 3(mod 5).

The induced vertex coloring is:

oc(z1) = cler) +c(fr) = 3+0 = 3;

0c(x2) = c(er) +cle2) +¢(fa) = 3+2+0 = 0;

oc(rs) = clez) +cles) +c(fr) +e(fs) = 243+0+1 =13

ford < i < n-3,

oo(x;) = clej) +cle) +e(fia) +e(fi) = (=1 +i+(i—4)+(i—2) = 4i -7

4ifi = 4 (mod 5),
3ifi = 0(mod 5),
= {2ifi = 1(mod 5),
l1ifi = 2(mod 5),
(0ifi = 3(mod 5);
0c(Tp—2) = clen—3) +clen—a)+ c(frn-a) +c(fa2) = (n—3)+(n—2)+ (n—6)+c(fn2)

4ifn = 0, 1(mod 5),
=3n—114+c¢(fr2) = ¢ 3ifn = 2(mod 5),
lifn = 3, 4(mod 5);
Oc(xn_1) = clen_a)+tclen1)+c(fus) = (n—2)+clen1)+(n—5) = 2n—T+c(e 1)
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0ifn = 0(mod 5),

] 3ifn = 1(mod 5),
| 1ifn = 2(mod 5),
4ifn = 3, 4(mod 5);

2ifn = 0, 2(mod 5),

oc(x,) = clen—1) +c(fue2) = K 0ifn = 1(mod 5),

3ifn = 3, 4(mod 5).

The sequence {o.(z1), 0c(x2), 0.(x3), ... }is of the form {3,0,1,4,3,2,1,0,4,3,2,1,0,... }
anditsend { ..., 0c(zn_2),06(Tpn_1),0.(x,)} isof the form { ..., 4,3,2,1,0, 4,3,2,1,4,0,2} if
n=0(mod 5),{...,4,3,2,1,0, 4,3,0}ifn=1(mod 5),{...,4,3,2,1,0, 4,3,1,2}ifn=2
(mod 5),{...,4,3,2,1,0, 4,3,1,4,3} ifn =3 (mod 5),and { ..., 4,3,2,1,0, 4,3,2,1,4,3}
if n = 4(mod 5). Hence c is a twin edge 5-coloring of P? and therefore y,(P?) < 5. By
Observation 1.1, y, (P?) > 5, and so x; (P?) = 5.

Thus, we have the following theorem.

Theorem 2.1. x, (P}?) = 4, x,(P2) = 4, andforn > 6, x,(P?) = 5.

3. x,(C?)

Let C,, := 11973 ... x,71. Forn > 6, consider C2. Fori € {1,2,....,n}, e; = x;z;1; and
fi = wiri0, where 2, = xy and z,,49 = x5. By Observation 1.1, x, (C?) > 5.

e Forn = 0(mod 6), define ¢ : E(C?) — Zs as follows:
0 if 7 is odd,

cle;) = e
1if ¢ is even,

2ifi = 1 (mod 3),

c(fi) = ¢ 3ifi = 2(mod 3),
4ifi = 0(mod 3).

The induced vertex coloring is:

1ifi = 1(mod 3),
oc(w;) = clei—1) + cle;) + c(fi—e) +c(fi) = { 3ifi = 2(mod 3),
2if7 = 0(mod 3)

Hence c is a twin edge 5-coloring of C? and therefore x, (C?) < 5.

eForn = 5(mod 6)and n > 11, define ¢ : F(C?) — Zs as follows:
0 if 7 is odd,

Fori e {1,2,...,n— 3}, c(e;) = o
1if ¢ is even,
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cle,) = 4.
3ifq
Fori e {1,2,...,n—3},c(fi) =< 4ifs
2if 1
C(fn—Q) =0,
C(fn—l) =1,
c(fn) = 2.

The induced vertex coloring is:

1 (mod 3),
2 (mod 3),
0(mod 3),

R. Rajarajachozhan and R.

For: € {2, 3, e, — 3}, O'C(.Z‘Z') = c(ei_l) + C(ei) + C(fi_Q) + C(fz) =1+ C(fi_Q) + C(fz)

1+4+3=31if4
=q1+2+4=21if7 =
1+3+2=1ifq¢

1(mod 3
2 (mod 3
0 (mod 3).

),
),

Oc(p_2) = clen—3) +clen—a) + c(frna) +c(frn2)=1+24+3+0=1.
Oc(Tp_1) = clen—a) + clen_1) + c(fos) +c(fu1) =2+3+4+1=0.
oc(xn) = clen1) +clen) + c(fnoo) +c(fn) =3+4+0+2=4,

oc(r1) = clen) +c(er) + c(fur) +e(fi) =4+0+1+3=3.
Hence c is a twin edge 5-coloring of C?2 and therefore x, (C?) < 5.

e Forn = 4(mod 6) and n > 10, define ¢ : E(C?) — Zj as follows:

Forie {1,2,...,n—8},c(e;) =

~J0ifiisodd,

1if 72 is even,

clen—7) = clep—2) = 2,

clen_g) = cle,—1) = 3,

clen—s) = clen) = 4,

c(en—sa) = 0,

clen_3) = 1.
3if ¢

Fori e {1,2,...,n—8},c(fi) =< 4if
2if 4

C(fn—7) = C(fn—2) =0,

c(fnos) = c(fu-1) = 1,

C(fn—S) = C(fn) = 27

C(fnfll) = 37

C(fnfg) = 4.

The induced vertex coloring is:
Fori € {2,3,...,n— 8}, o.(z;) =
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1+443=3ifi = 1(mod 3),
=q14244=2ifi = 2(mod 3),
1+3+4+2=1ifi = 0(mod 3).
Oc(@p_7) = clen—g) +clen—7) + c(frno) +c(fu7)=1+24+3+0=1.
0c(Tn—g) = clenr) + cleng) + c(fos) + c(fn6) =2+3+4+1=0.
Oc(Tn5) = cleng) + clens) + c(for) +c(fns) =3+4+0+2=14.
Oc(n_g) = clen_s)+clen—a) +c(frne) +c(fra) =4+0+1+3=3,
Oc(@n—3) = c(en—q) +clen—s) +c(frs) +c(fas) =0+14+2+4 =2,
Oc(@p—2) = c(en—3) + clen—a) + c(fr-a) +c(frn2)=1+2+3+0=1.
Oc(Tp-1) = clen—a) 4+ clen_1) + c(fos) +c(fu-1) =2+3+4+1=0.
oc(xy) = clen_1) +clen) + c(fua) +c(fn) =3+4+0+2=14.

oc(1) = clen) +cler) +e(fu1) +e(fi) =4+0+1+3=3.
Hence c is a twin edge 5-coloring of C? and therefore xt/ (C?) < 5.

e Forn = 3(mod 6) and n > 15, define ¢ : F(C?) — Zs as follows:

0 if 7 is odd,

Fori € {1,2,...,n— 13}, c(e;) = o
1if 7 is even,

clen_12) = clen—7) = clen—2) = 2,
clen_11) = clen_g) = clen—1) = 3,
clen—10) = clen—s) = cle,) = 4,
c(en_g) = cle,—yg) = 0,
clen_g) = cle,_3) = 1.
3ifi = 1(mod 3),
Fori € {1,2 — 13}, ¢(fi) =< 4ifi = 2(mod 3),

2ifi = 0(mod 3),

The induced vertex coloring is:
3ifi = 1(mod 3),

Fori e {2,3,....,n — 13}, oc(x;) = ¢ 2ifi = 2(mod 3),
lifi = 0(mod 3).
Oc C(:71—12) = O-C(xn—7) = O-c(xn—Q) = 1
Oc(Tn_11) = 0e(Tpn_6) = 0c(xy_1) = 0.
0 Uc( 5 c\dn) =
Oc(Tp_9) = 0c(Tp_y) = oc(x1) = 3
Oc(Tp_g) = 0c(xn_3) = 2.

o
Cﬂ||

Hence c is a twin edge 5-coloring of C? and therefore y, (C?) <
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e Forn = 9, define ¢ : E(CZ) — Zs as follows:

c(e1) = c(e3) = cles) = c(fr) =0,
c(fs) = c(fs) = c(fo) = 1,
c(fa) = c(fs) = c(fs) = 2,
c(es) = c(es) = c(eg) = c(f1) = 3,
c(ez) = cler) = c(eg) = c(f1) = 4

The induced vertex coloring is:

O'C<£IZ'8) = O, O'C(Z'g)) = 1, O'c(l'g) = 2, O'C(SCg) = O'c(l'ﬁ) = O'C(l'g) = 3,
oc(x1) = 0c(x4) = 0c(x7) = 4. /

Hence c is a twin edge 5-coloring of C? and therefore y, (C3) < 5.

e Forn = 2(mod 6) and n > 20, define ¢ : E(C?) — Zs as follows:
~ ) 0ifiis odd,

1if 7 is even,
2,

Fori € {1,2,...,n — 18}, c(e;

(fo-17) = (

C(fnfl6) ( ( = 4
c(fn15) = c(fa10) = c(fus) = c(fn) 2,
C(fn—14) = C(fn—Q) = C(fn—4) = 37

C(fn—lS) = C(fn—8) = C(fn—S) =4

3ifi = 1(mod 3),
Forie {2.3,...,n— 18}, 0.(z;) = < 2ifi = 2(mod 3),

lifi = 0(mod 3)
O(Tp_17) = 0c(Tp_12) = 0c(Tpn_7) = 0c(Tpo) = 1.
Oc(Tp16) = Oc(Tp-11) = 0c(Tn-g) = c(Tpn_1) = 0.
Oc(Tn_15) = 0c(Tp_10) = 0e(Tp_s5) = oc(x,) = 4.
O'C<ZL‘n_14) = O'C(Zli'n_g) = UC(.CEn_4) = O'c(ilj'l) = 3

Uc<$n713) = O'c(xnfS) = Uc(xTLfS) = 2. ,
Hence c is a twin edge 5-coloring of C? and therefore x, (C?) < 5.

e Forn = 8, define ¢ : E(CZ) — Zj as follows:
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cles) = c(fa) = c(f7) =0, c(er)
cles) = c(fs) = c(fs) = 3, c(e2)
The induced vertex coloring is:

oc(x3) = 0c(x8) =0, 0c(21) = 0c(6) = 2, 0c(4) = ac(:c
Hence c is a twin edge 5-coloring of Cf and therefore Xt( 2

c(fr) =
ceq) =

Q:'_/
|
IA o

e Forn = 14, define ¢ : E(C%,) — Zs as follows:

cles) = cler) = cleg) = clern) = c(fa) = (fld) =0,

clers) = c(f1) = c(fs) = c(f7) = c(fo) =1, cler) = c(fs) = c(fo) = c(fo) = c(f12) =
c(ez) = c(fs) = c(fs) = c(fi1) = c(fu) =

c(eg) = c(eq) = c(eg) = c(es) = c(e1) = 0(612) = c(en) =4

The induced vertex coloring is:

0—c<x3) - O—c(xlél) = 07 Uc(ml) = Jc(zﬁ) = O—C(xQ) - 00(3712) = 27

Uc(l‘4) = Uc(9€7) = Uc($10) = Uc(x13> =3, UC(CU2) = UC(I'E)) = Uc($8) = Uc(ll?n) =4.
Hence c is a twin edge 5-coloring of C%, and therefore x; (C?,) < 5.

eForn = 1(mod 6) and n > 25, define ¢ : E(C?) — Zs as follows:
0 if 2 is odd,

Forie {1,2,...,n— 23}, cle;) = ..
1if 7 is even,

c(en_92) = clen_17) = clen_12) = clen_7) = clen_2) = 2,
c(en_91) = clen_16) = clen_11) = clen_g) = clen_1) = 3,
c(en_20) = clen_15) = clen—10) = cen_ 5) = c(en) = 4,
clen_19) = clen—14) = c(epn—g) = c(en 4 =0,
clen_1s) = clen_13) = clen—s) = clen_3) =
3ifi = 1(mod 3),
Fori e {1,2,...,n—23}, ¢ 4ifi = 2(mod 3),
2if i = O(mod 3),
c(frn-22) = c(fa17) = c(fa- 12 = ¢ fa 7 = ¢(fa—2) = 0,
C(fn—m) = C(fn 16) = C(fn 11 = fn 6 = C(fn 1) =1,
c(fn-20) = c(fu-15) = c(fa-10) = c(fus) = c(fn) = 2,
c(fo-19) = c(fu-1a) = c(fu-9) = c(fn-a) = 3,
c(frn1s) = c(fum13) = c(fus) = c(fu3) = 4.

The induced vertex coloring is:

)
Fori € {2,3,...,n — 23}, o.(x;) = ¢ 2ifi = 2(mod 3),
lifi = 0(mod 3).
Uc<$n722) = O'c(xn717) = O'c(xn712) == o'c(xn77) = O'c<xn72) = 1.
O-c<xn 21) = O-c(xn716) = O'c(xnfll) = O'C(QZ”,@‘) = O-c<xn71) = 0.
Oe(Tn_20) = 0e(p_15) = 0c(Tpn_10) = 0c(Tpn_5) = 0c(z,) = 4.
Oc(Tp_19) = 0e(Tp_14) = 0e(Tp_9) = 0c(Ty_g) = oc(x1) = 3.
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0-(:(5671—18) - O-C(ITL—13) = Uc(l‘n—8> - O-c(xn—i‘]) - 2-/
Hence c is a twin edge 5-coloring of C? and therefore y, (C?) < 5.

e Forn = 19, define ¢ : E(C%) — Zj as follows:

c 61) = 0(63) = 0(65) = 0(67) = 0(69) = 6(611) = 0(613) = 0(615) = C(fl?) =0,
e15) = cles) = c(f1) = c(fa) = c(f7) = c(fi0) = c(f13) = 1,

12) = c(err) = c(fz) = c(fo) = c(fo) = c(f1a) = c(f19) = 2,

ez) = c(eq) = c(es) = c(es) = c(ei) = c(fi2) = c(f15) = c(fis) = 3,

e1s) = c(e) = c(f2) = c(fs) = c(fs) = c(f11) = c(fi6) = 4.

SRS
™

o

(
(
(
(
o

The induced vertex coloring is:

oc(z18) = 0, 0c(23) = 0c(w6) = 0c(29) = 0c(712) = 0c(217) = 1,

0c(213) = 0c(T16) = 0c(T19) = 2, 0c(21) = 0c(24) = 0c(27) = 0c(210) = 0c(215) = 3,
0c(x9) = 0c(x5) = 0c(x8) = 0c(x11) = 0c(214) = 4.

Hence c is a twin edge 5-coloring of C%, and therefore x; (C%,) < 5.

e Forn = 13, define ¢ : E(C%) — Zs as follows:

C

cler) = c(e3) = c(es) = cler) = c(eg) = ¢(f11) =0,
c(ein) = clerz) = c(f1) = c(fa) = c(f7) = 1,
6266) clerr) = c(fs) = c(fs) = c(fi3) = 2, c(e2) = c(es) = c(fs) = c(fo) = c(f12) = 3,

c(eiz) = c(f2) = c(fs) = c(f0) = 4.

68)

The induced vertex coloring is:

Uc(iUw) =0, Uc(xs) = Uc(336) = Uc($11) =1,

0c(7) = 0c(210) = 0c(13) = 2, 0.(21) = 0c(24) = 0c(T9) = 3,
oc(x2) = 0o(x5) = 0c(x8) = 4.

Hence c is a twin edge 5-coloring of C%, and therefore x; (C%) < 5.

e Forn = 7, define ¢ : E(C2) — Zg as follows:
c(eg) = c(eq) = c(eg) =0,
cler) =1, c(e3) = c(es) = c(er) = 2,
c(fr) = C(f4) =c(f7) =3, c(f2) = C(f5) =4, c(f3) = c(fs) =5.

The induced vertex coloring is:
0c(x9) =2, 0.(x4) = 0c(7) = 3, 0c(x3) = 0.(x6) = 4, gc(xl) = o.(z5) = 5.
Hence c is a twin edge 6-coloring of C? and therefore x, (C?) < 6.

Lemma 3.1. Let G be a k-regular graph of odd order at least k + 2. If for any two nonadjacent
vertices w and v, Ng(u) U Ng(v) = V(G) \ {u, v}, then x,(G) > k + 2.

Proof. Suppose X;(G) = k1. Then there exists a twin edge (k+1)-coloring ¢ : E(G) — Zy. 1.
As G is k-regular, for any vertex x, some color ¢; is not represented for the edges incident at z.
Since there are k + 1 colors and |V (G)| > k + 1, by pigeonhole principle, some color, say, i is
not represented at two vertices. Since o, is equal for these two vertices, they are nonadjacent. Let

87



Twin edge colorings of certain square graphs and product graphs | R. Rajarajachozhan and R.
Sampathkumar

the two nonadjacent vertices be u and v. By hypothesis, - must be represented at all the vertices of
V(G) \ {u,v}. This is clearly impossible, since |V (G) \ {u, v}|is odd. O

By Lemma 3.1, x, (C2) > 6.
Thus we have:

Theorem 3.1. Let n > 6. If n # 7, then x, (C?) = 5. Also, x,(C2) = A(C2) +2 = 6.

4. x,(C,, O P,)

Letm >3,n > 3,C,, := x12223...x,r1 and P, := y1y2ys3 . . . y,. For convenience, assume

Tm+1 = X1

By Observation 1.1, x,(C,, O P,) > 5.
Theorem 4.1. For m > 3andn > 3, x,(C,,0P,) = 5.

Proof. We consider three cases and in each case, we first define ¢ : V' (C,,, O P,) — Zs.

Case 1. m is even.

c((@i, y;)(Tiv1,y5)) = {

0 if 7 is even,

1if 2 is odd;

3if ¢ is odd,
2 if 7 is even;
4 if 4 is odd,

for j =1 (mod 3), c((zi, yj) (@i, yj41)) =

for j = 2 (mod 3), c((xs, yj) (@i, yj41)) = 3 if i is even:

, 2 if 4 is odd,
for j = 0 (mod 3), c((xi, y;) (2, yj+1)) = {4 i is even

Then the induced vertex coloring is:

( ) 4 if ¢ is odd,
O\ 5, - P
n 3 if 7 is even.

4 if 7 is odd,
3if 7 is even.
0 if 7 is odd,
4 if 7 is even.
3 if 7 is odd,

0 if 7 is even.

Forn = 2(mod 3), o.((x,yn)) = {

Forn = 0(mod 3), o.((x,yn)) = {

Forn = 1(mod 3), o.((zi,yn)) = {

3if 7 is odd
For j = 2(mod 3) and for j # n, 0.((z;,y;)) = { 1 Z_%SO ’
1if ¢ is even.

2 if 7 is odd

For j = 0(mod 3) and for j # n, o.((z;,y;)) = { 1 Z,%SO ’
3 if ¢ is even.
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1if 2 is odd,
21if 7 is even.
It can be verified that c is a twin edge 5-coloring of C,,, O P,,.

For j = 1(mod 3)andforj ¢ {1,n}, o.((x;,y;)) =

Case 2. misodd and n # 2 (mod 3).

, 1if 7 is odd,
ForzE{1,2,...,m—2},c((mi,yj)(xiﬂ,yj)) = e .
0 if 7 is even;
C<<Im—17y])('rmvyj>> = 27

((Tm, yj)(71,95)) = 0;

2 if 7 is odd
fori e {1,2,....m—2}andj = 1(mod 3),  c((z;,y;)(xi,yj11)) = 1 Z}SO ’

3 if 7 is even;
forj = 1(mod 3),  c((Tm—1,Y)(@m-1,Yj41)) = 4, (T, Y) (T, Yj41)) = 3;

4 if 7 is odd
fori e {1,2,....m—2}and j = 2(mod 3),  c((z;,y;)(xs,yj11)) = 1 Z}SO ’

2if 7 is even;
forj = Q(mOd 3)7 C((xm—layj)(mm—layj-l-l)) ((xmvijxm»yj-i-l)) =1

3if ¢ is odd
fori € {1,2,...,m—2}andj = 0(mod 3),  c((z;,y;)(@i,yj+1)) = l Z.?SO ’

4 if 7 is even;
forj = 0(mod 3),  c((Tm-1,Y)(@m-1,Yj+1)) = 0, (T, Y;)(Tm, Yj11)) = 4.

Then the induced vertex coloring is:
Fori € {1,2,...,m — 2},
oc((isy1)) = (@1, y1) (@i y1) + e((@s ya) (@i, y1)) + (@i, y1) (@2, y2))
1+2=3ifris odd,
1+3=4if7iseven.
oc((Tm-1,41)) = c((@m-2,y1)(@m-1,91)) + c((@m-1,91)(@m, y1)) + c((Tm-1, Y1) (Tm-1,Y2))

—1+244 =2
Te((@m; 91)) = ((@m—1,91) (@m; 1)) + (@, Y1) (21, 91)) + ((@m, 1) (@ms 2))
- 2+0+3 = 0.
Fori e {1,2,...,m — 2},

Jc((xhyn)) = C((.%’l 17yn)(xlayn + xlyyn)(wi-‘rl?yn)) + C((xhyn—l)(xi?yn))
= 14 (245, Yn—-1)(Ti, yn))

+ 4 =01if71s odd,
1+2—31f21seven;
1+3=4ifsis odd,
1+4=0ifz1is even;

142 =3if7is odd,
1+ 3 =4ifiseven.

forn = 0(mod 3), o.((z4,yn))

forn = 1(mod 3), o.((x:,yn)) =

forn = 2(mod 3), o.((x,yn)) =

/—’H/—H/—/H

Oe((Tm-1,Yn))
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= C((mm—% yn)(xm—la yn)) + C((xm—la yn)(xma yn)) + C((xm—l, yn—1)($m—1> yn))
= 1424+ c((Tm-1, Yn-1)@m_1,Un));

forn = 0(mod 3), oc((Tm-1,Yn)) = 1 +2+3 =1;
forn = 1(mod 3), o.((Tm-1,Yn)) = 1 +2+0=3;
forn = 2(mod 3), o.((Tm-1,Yn)) = 1 +2+4=2.
((xrmyn)) = ((ZL’ —17yn)(xm7yn)) + C((xm’yn)(xlvyn)) + C((Im—lvyn)(xmuyn))

104 (o, ) (T )

=2
forn = 0(mod 3), oc.((Tm,yn)) = 2+0+1=3;
forn = 1(mod 3), o.((Tm,yn)) = 2+0+4=1;
forn = 2(mod 3), o.((Tm,yn)) = 2+0+3=0.
Fori e {1,2,...,m — 2},

oc((xi,y5))
= c((zi—1,Y5) (i, y5)) + (@i, y;) (Tir1,y5)) + (@i, y5-1) (w6, 95)) + (i, y5) (T, Yj41));
44+3+0+1=3if7isodd,

forj = 0(mod 3)andj #n, 0e((@iv)) = Vo 4 414 o= 2if s even:

3+2+0+1=1ifiisodd
forj = 1 (mod 3) and j 1,n}, oo((xi,y;)) = he )
! ( ) JE i ({0 15) {4+3+1+0:31fi1seven;
24+44+04+1=2if7is odd
for j = 2(mod 3)and j # n, oc((zi,y;)) = +a+0+ 1T 2 18 odd,

3+2+1+0=1if71seven.

Oc((Tm-1,95)) = c((@m—2,Y;)(@m-1,Y;)) +c((Tm—1,Y;) (@m, ¥;)) +c((Xm—1, Yj—1) (Tm—1,Y5))
+c((@m—1,Y) (Tm-1,Yj+1));

forj = 0(mod 3)and j # n, o.((xm-1,v;)) = 3+0+1+2=1;

forj = 1(mod 3)and j & {1,n}, 0.((zm-1,y;)) = 0+4+1+2=2;

forj = 2(mod 3)and j # n, o.((zpm-1,y;)) = 4+3+1+2=0.

el (s )

= (s 53) s )+ (s 13 1,55))+ (s B51) (s 3)) + (s ) s Y301))
forj = 0(mod 3)and j # n, o.((Tm,y;)) = 1+4+24+0=2;

forj = 1(mod 3)and j &€ {1,n}, 0.((zm,y;) = 4+3+2+0=4;

forj = 2(mod 3)and j # n, o.((zp,y;)) = 3+1+24+0=1.

It can be verified that c is a twin edge 5-coloring of C,,, O P,.

Case 3. misodd andn = 2 (mod 3).
Fori e {1,2,....,m — 1}, c((xi, yj)(®it1,Y5)) = {
((@m, ;) (21, 95)) = 25
fori e {1,2,...,m—2}and j = 1(mod 3),  c((z,y;)(xs,yj11)) =

0 if 7 is odd,

1if 2 is even;

3 if 7 is odd,
2 if 7 is even;
for j = 1(mod 3), c((Tm-1,Y)(Tm-1,Yj11)) = 4, c((Tm; Yj)(Tm, Yj11)) = 0;

4 if 7 is odd

fori e {1,2,...,m—2}and j = 2(mod 3),  c((z;,y;)(xi,yj11)) = 1 Z.?SO ’
3 if 7 is even;
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2(mod 3),  c((Tm-1,9;)@m-1,Y541)) = 2, (T, Yj)(Tm, Yj+1)) = 3;
c((21,y;) (21, ¥541)) = 15

for 5
for j

i

o

=

S)

a.

w
:_/

2 if 4 is odd,
4 if 7 is even;
forj = 0(mod 3),  c((@m-1,4)(@m-1,Y541)) = 3, c((@m, Y;)(@m, Yj11)) = 4.

fori € {2,3,...,m—2}andj = 0(mod 3),  c((z,y;)(xs,yj11)) =

Then the induced vertex coloring is:

oc((x1,11)) = c((@m, y1)(x1,91)) + (@1, 1) (w2, 91)) +c((z1, 1) (21, 92)) = 2+0+3 = 0.
Fori € {2,3,...,m — 2},

oc((zi, 1)) = (@i, y0)(@i, 91)) + (@i, y1) (@1, y1) + (@i, y1) (@4, y2))
1+3=4ifiis odd,
1+2=3ifziseven.

Oc((Tm-1,91)) = c((Tm-2,y1)(@m—1,91)) + (-1, Y1) (@m; 1)) + ((Tm—1, Y1) (X1, Y2))

—0+1+4=0.

oc((@m,y1)) = ((@m—1,y1)(@m, y1)) + c((@m, 1) (@1, 91)) + (T, Y1) (Tm, y2))
= 14240 =3

UC<<:C17 yn)) = C((‘%Tm yn)(l'la yn)) + C((xlv yn)(m% yn)) + C((xh yn*1>(x17 yn))
:2+0+3:o.

Fori € {2 -2},

((zi,yn)) = mz 1 Yn) (i Yn)) + (i Yn) (Tig1, Yn)) + (a5 Yn1)(Tis Yn))
{1+3—41f11sodd

1+ 2 =23ifiiseven.

o ) o))+ (s ) )+ (s ) (Bt )
—0+1+4—0

e, ) = (1, 90) s ) el 1, 90) (1) ()
—14+2+0 = 3.

For j & {1,n},

oc((21,95))

= C(<xm7yj)(x17yj)) + C<<x1ayj)(x2)yj>> + C((xhyj—l)(xlvyj)) + C((I17yj)(x17yj+1));

forj = 0(mod 3), o.((xm,yj)) = 2+0+4+1=2;
forj = 1(mod 3), o.((xm,y;)) = 24+0+1+3=1,;
forj = 2(mod 3), o.((zm,y;)) =2+0+3+4=4

Fori € {2,3,...,m—2}and j & {1,n},

oe( (i, 5))

= c((@im1, y;) (s, y5)) + (@, 43) (@i, y5) + (6, y5-10) (@3, 45)) + (@i, 95) (26, y541));
14+40+4+2=2if7is odd,
0+1+4+3+4=3ifiiseven;
1+0+4+2+3=1if:is odd,
O+1+4+2=21if¢iseven;

fOl‘j = O(mOd 3)7 ac((xivyj)) =

forj = 1(mod 3), oc((zi,y;)) = {
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1+0+3+4=3if7is odd
forj = 2 d 3), (x5, 95)) = e ’
J = 2(mod 3), oel(wi,yy)) {O+1+2+3:11filseven.
For j & {1,n},
Oc((Tm-1,v5)) = c((Tm—2,Y;)(@m-1,9;)) + c((Tm—1, ;) (Tm; y;))
+ C((l’mfl, yjfl)@?'m—la yj)) + C(('Ccmfla yj)(l'm—ly yj+1))ﬂ

forj = 0(mod 3), 0c((zm-1,95)) = 0+1+2+3=1;
forj = 1(mod 3), 0c((m-1,v5)) = 0+1+3+4=3;
forj = 2(mod 3), o.((zm-1,v;)) = 0+1+4+2=2.

For j ¢ {1,n},
oc((Tm, y;)) = c((@m—1,Y5)(@m, Y;)) + c((@m, y;)(21,95))
+ (@ Y1) (@m, Y5)) + (@ Y5) (T Yj41));

forj = 0(mod 3), o.((xm,y;)) = 1+2+34+4=0;
for j 1 (mod 3),0.((zm,y;) = 1+2+4+0=2;
forj = 2(mod 3), o.((xm,y;)) = 14+24+0+3=1.

It can be verified that c is a twin edge 5-coloring of C,,, O P,.
This completes the proof. ]

5. x,(G) = 2+ A(G)

By Section 1, ,(G) =
U{K, :nisevenand n > 4} U {Ky, :
{C5 0 Ky}

By Theorem 3.1, x, (G) = 2+ A(G) for G = C2.

Consider G = Ky,.1 — E(H), where H is a triangle-free r-regular spanning subgraph of
Ko, y1. Itis a (2n — r)-regular graph on 2n + 1 vertices. For any two nonadjacent vertices u and
vof G, Ng(u) U Ng(v) = V(G) \ {u,v}. Otherwise, there exist w ¢ Ng(u) U Ng(v). But then
{u,v,w} is an independent set in G, and therefore it is a triangle in H, a contradiction. So, by
Lemma 3.1, x; (G) > 2+ A(G).

In particular, consider K9 — E(Cy). Let V(Kg) = {vg,v1,...,vs} and Cyg = wvgvy ... vg0p.
The table below yields a twin edge 8-coloring of it. Consequently,

Xt (K9 — E(Cy)) > 2+ A(Ky — E(Cy)).

Finally, we propose the following problem:

2—|—A(G)f0rG€{ :n >3, n # 5andn £ 0(mod 3)}
El(mod4) b > 2} U{K,,:a > 2} U

Problem 1. If possible, find a twin edge (2+ A)-coloring of Ko, 11— FE(H), where H is a triangle-
free 2-factor of Koy 1.
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