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Abstract

The partition dimension of a graph is the minimum number of vertex partitions such that every
vertex has different distances to the ordered partitions. Many resolving partitions for trees have
all vertices not in an end-path in the same partition. This reduces the problem of the partition
dimension of trees into finding the partition dimension of palms, the end-paths from a branch. In
this paper, we construct a resolving partition for trees using resolving partitions of their palms. We
also study some bounds for the partition dimension of palms and also find the partition dimension
of regular palm and olive trees.
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1. Introduction

Let G = (V,E) be a simple connected graph. A partition Π = {S1, S2, . . . , Sk} of the vertex-
set V is called a resolving partition if for every two vertices, there exists a partition class Si ∈ Π
with different distances to the two vertices, we say that this partition revolves the two vertices.
To show Π is a resolving partition, it suffices to verify that vertices in the same partition are
resolved. The partition dimension of G, denoted by pd(G), is the minimum number of partitions
in a resolving partition of G. The representation of a vertex v with respect to teh ordered partition Π
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is given by r(v|Π) = (d(v, S1), d(v, S2), . . . , d(v, Sk)). Note that a resolving partition is equivalent
to every vertex having different representations.

Several methods have been developed to construct a resolving partition of a tree graph, see
[6, 12, 13]. Many constructions focus on vertices in the end-paths, a path joining a leaf to its
nearest branch, with vertices not in an end-path in the same partition class. These constructions
make us believe that obtaining the partition dimension of palms, the union of all end-paths from
a branch, will help obtain a better resolving partition for trees. We strengthen this observation by
giving an upper bound for the partition dimension of trees using the partition dimension of their
palms in the next section.

In our previous paper, we utilize the locating-coloring of palms to generate a locating-coloring
of trees, see [10]. In this paper, we will do a similar approach for the partition dimension of trees.
The partition construction for trees and especially for palms we provide in this paper differs from
the locating coloring used in [10]. Other different constructions were also proposed for computing
partition dimensions of graphs, see [1] and [11].

A star Sn is the complete bipartite graph K1,n. A palm Sn(a1, a2, . . . , an) for n ≥ 2, is a graph
obtained from a star Sn by subdividing the ith edge ai − 1 times. Since permuting ai will result
in an isomorphic graph, we always consider {ai} in a non-decreasing sequence. Let us denote the
vertex and edge set of a palm by

V = {a0} ∪ {ai,j | 1 ≤ i ≤ n, 1 ≤ j ≤ ai}, and
E = {a0ai,1 | 1 ≤ i ≤ n} ∪ {ai,jai,j+1 | 1 ≤ i ≤ n, 1 ≤ j ≤ ai − 1}.

The kth level is the set of vertices of distance k to the hub vertex a0, and the kth end-path is the
subgraph induced by the set {a0} ∪ {ak,j : 1 ≤ j ≤ ak}. A palm is called an end-palm if it is the
union of all end-paths from a branch.

If ai = i for every i then this palm tree is called an olive tree and denoted by On, namely
On = Sn(1, 2, . . . , n). Olive trees with partition dimensions 3 and 4 were studied in [2] and [8].
Figure 1 is an example of an olive tree O5. If ai = k for some k then the palm tree is called regular,
and it is denoted by Sn(k) := Sn(k, k, . . . , k). Other graph theory related definitions can be found
in [7].

2. Partition dimension of trees

In this section, we emphasize the importance of studying the partition dimension of palms by
giving a construction of a resolving partition of trees using resolving partitions of their palms.
This construction provides an upper bound for the partition dimension of trees using the partition
dimensions of their palms.

Theorem 2.1. Let T be a tree with b end-palms, P1, P2, . . . , Pb, then

pd(T ) ≤ 1− b+
b∑

i=1

pd(Pi).

Consider the following observation and lemma before proving Theorem 2.1.
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Figure 1. Graph O5 = S5(1, 2, 3, 4, 5)

Observation 2.1. Let G be a graph and Π = {S1, . . . , Sn} a resolving partition of G, then

1. Permuting the order of Si’s (the indices) preserves the resolving property.
2. For every vertex v of G and index i ∈ {1, 2, . . . , n}, there is a resolving partition where v is

in the ith partition.

Lemma 2.1 ([3]). Let G be a graph and xy a bridge of G. Let Gx and Gy be the component
of G − xy containing x and y respectively. Let Π = {S1, . . . , Sn} be a partition of V (G). If
Si ⊆ V (Gx) and Sj ⊆ V (Gy) for some Si and Sj in Π, then the representation of any vertex
u ∈ V (Gx) and v ∈ V (Gy) is different.

Proof of Theorem 2.1. If b = 1, then T is a palm and the result follows. Let b ≥ 2, l0 = 2, and
li = 2 +

∑i
k=1(pd(Pi)− 1) for other i. Consider the following partition construction.

1. For every palm Pi in T , let Πi = {S1, Sli−1
, Sli−1+1, . . . , Sli−1} be a resolving partition of Pi

with the hub vertex in S1. This is possible because of Observation 2.1.
2. Put every other vertex (the one not in an end-path) in S1.

Note that the partition construction above uses lb−1 = 1−b+
∑

pd(Pi) partitions and every palm
Pi contains a unique partition Sli−1

. This partition is a resolving partition because two vertices in
the same palm are resolved by the existing resolving partition in that palm, and two vertices not in
the same palm have different representations by Lemma 2.1.

3. Partition dimension of palm

Now that we know the importance of the partition dimension of palms, we can focus this section
on studying the partition dimension of palms. The relation between the partition dimension of a
palm and its maximum degree is given in the following theorem.

Theorem 3.1. [5] If G is a graph with pd(G) = k ≥ 3, then ∆(G) ≤ 3k−1 − 1.

We will use the previous theorem to find the bounds for the partition dimension of palms.
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Theorem 3.2. Let n ≥ 2 and G = Sn(a1, a2, . . . , an) be a palm, then

⌊log3 n⌋+ 2 ≤ pd(G) ≤ n.

Proof. The lower bound is a direct consequence of Theorem 3.1. The upper bound is achieved by
putting each end-path in a different partition, the hub vertex can be included in any partition.

This bound is useful for characterizing infinite trees with finite dimensions, see [4] and [9].
It’s not hard to see that the upper bound in Theorem 3.2 is only satisfied by the star graph.

However, the lower ground is achieved by many palms, consider the following family of palms. A
palm Sn(a1, a2, . . . , an) is said to have property A if a3k+1 ≥ 2k + 1 and a2·3k+1 ≥ 2k + 2 for all
non negative integers k < log3 n. For example if ∆(G) = 27, then the requirements for property
A is a3 ≥ 2, a4 ≥ 3, a7 ≥ 4, a10 ≥ 5, and a19 ≥ 6. Remember that {ai} is non decreasing so
this means G has at least different end-paths with 1 end-path of length at least 2, 3 end-paths of
length at least 3, 3 end-paths of length at least 4, 9 end-paths of length at least 5, and 9 end-paths
of length at least 6.

Theorem 3.3. Let G = Sn(a1, a2, . . . , an) be a palm with property A, then pd(G) = ⌊log3 n⌋+ 2.

Proof. If n = 2, G is a path and the result follows, so let n ≥ 3 be an integer. Note that that
pd(G) = ⌊log3 n⌋+ 2 is equivalent to

pd(G) = k ⇐⇒ 3k−2 ≤ n ≤ 3k−1 − 1. (1)

By Theorem 3.2, pd(G) ≥ ⌊log3 n⌋ + 2. Now we give an algorithm to make a partition Π =
{S1, . . . , Sk} of with k = ⌊log3 n⌋+ 2.

1. For i = 1, . . . , n; write i = 1+ (i− 1)3 where (i− 1)3 is written as a (k− 1)-digit numbers
in base 3, allowing the first digit to be zero, this is always possible by (1). For example if
n = 26, then k = 4 and write 20 = 1 + (201)3 and 9 = 1 + (022)3.

2. Define n distinct integer-sequences Al = {al1, al2, al3, . . .}, 0 ≤ l ≤ n− 1, with the following
algorithm.

• Initially, define each Al as the sequence of all 1s, i.e., Al = {1, 1, 1, 1, 1, 1, 1, 1, . . .}.

• Write l = 1 + (lklk−1 · · · l3l2)3 as in step 1.

• For t = 2, . . . , k, if lt ̸= 0, reassign the value of als with t for every s ≥ 2t− 4 + lt.

For example if n = 26, then k = 4 and the sequences Al for l = 1, 15, 20 and 25 are as
follows:

A1 = A1+(000)3 = {1, 1, 1, 1, 1, 1, 1, . . .} A15 = A1+(112)3 = {1, 2, 3, 3, 4, 4, 4, . . .}
A20 = A1+(201)3 = {2, 2, 2, 2, 2, 4, 4, . . .} A25 = A1+(220)3 = {1, 1, 1, 3, 3, 4, 4, . . .}

3. Assign ai,j ∈ Saij
. Also assign a0 ∈ Sk if n = 3k−2 and a0 ∈ S1 otherwise.
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Now we prove that the representations of all vertices are different. Note that the sequence Al

has the following properties: (a) Al is an increasing sequence, (b) Al is different for every l, (c)
al1 ∈ {1, 2} for every l, (d) If Al contains a term with value t (lt ̸= 0), then the first term with value
t is al2t−3 (if lt = 1) or al2t−2 (if lt = 2), and (e) If n > 3k−2, then for every t ∈ {2, . . . , k} there
exists an l such that al2t−3 = t.

(A) First, consider if 3k−2 + 1 ≤ n ≤ 3k−1 − 1. The representation of the hub is r(a0,0|Π) =
(0, 1, 3, 5, . . . , 2k − 3) by the above properties (d) and (e). Suppose there is another vertex with
the same representation, say r(ai,j) = r(a0,0) with (i, j) ̸= (0, 0). We will prove that Ai contains
every value t, 1 ≤ t ≤ k. Suppose otherwise, Ai does not contains any term of value t for
some t, then the shortest path from ai,j to a vertex in St contains the hub vertex, which means
d(ai,j, St) > d(a0,0, St).

Now, for every t, 2 ≤ t ≤ k, let aist be the first term in Ai which is equal to t. From the property
(d), we have st ≤ 2t − 2 and since st − j = d(ai,j, ai,st) = d(ai,j, St) = d(v, St) = 2t − 2, then
j = 0 and st = 2t − 2 which means that i = 1 + (222 · · · 2)3. That implies i = 3k−1 > n, a
contradiction.

Before we prove the representations of all vertices are different, note that if the ith end-path
contains a vertex in St then the nearest vertex in St from a vertex ai,j is always a vertex in this
end-path. If the ith end-path does not contain a vertex in St then d(ai,j, St) = 2t + j − 3 by the
properties (d) and (e).

Now we prove that r(ai,j|Π) ̸= r(al,m|Π) for (i, j) ̸= (l,m).
Case 1. j = m. Since i ̸= l then Ai ̸= Al and ais ̸= als for some s. If s < j = m, Sz with

z = min{ais, als} is going to distinguish r(ai,j|Π) and r(al,m|Π) because Ai and Al are monotone.
If s > j = m, Sz with z is the largest between the value of ais and als is going to distinguish
r(ai,j|Π) and r(al,m|Π) because Ai and Al is monotone.

Case 2. j ̸= m. For a contradiction, suppose r(ai,j|Π) = r(al,m|Π). Without loss of generality,
assume j < m. First note that i ̸= 0, because if i = 0 then l ̸= 1 which means that there exists
a term in Al which is not 1 (say als = t > 1). This means that d(a0,1, St) = 2t − 2 > 2t − 3 ≥
d(al,m, St) by the properties (d) and (e). Next we prove m = j + 1.

If ai,j ∈ S1 then al,m ∈ S1. We know that 1 ≤ j < m, so m ≥ 2. This means that the
second term of Al is 1 and Al does not contain a term with value 2, so d(al,m, S2) = m + 1. In
any case whether Ai contains a term 2 or not, we obtain d(ai,j, S2) ≤ j + 1, which means that
d(al,m, S2) > d(ai,j, S2). Therefore ai,j /∈ S1.

Let ais = t be the first term in Ai which is not 1. Note that d(ai,j, S1) = d(ai,j, ai,s−1) =
j − s+ 1, then d(al,m, S1) = j − s+ 1 which means that alm−j+s−1 = 1. Now m− j + s− 1 ≥ s,
therefore als = alm−j+s−1 = 1. Since r(ai,j|Π) = r(al,m|Π) and j > m, then Al also contains a
term which equals to t. Since ais = t is the first term in Ai which is equal to t, by the property (d),
the only possible way is for the first term of Al which is equal to t must be als+1 and m−j+s−1 = s
which means that m = j + 1.

Now we prove that Ai and Al both contain all the numbers t, 2 ≤ t ≤ k. Suppose otherwise,
there exists some t ∈ {2, 3, . . . , k} not in either Ai or Al or both. If t is not contained in both of
them, then d(al,m, St) = 2t+m−3 > 2t+ j−3 = d(ai,j, St) because m > j. If t is not contained
in Ai but contained in Al, then d(al,m, St) = |m−(2t−3)| = max{m, 2t−3}−min{m, 2t−3} ≤
m + 2t− 3− 1 = j + 2t− 3 = d(ai,j, St) because m = j + 1 and t ≥ 2. If t is not contained in
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Al but contained in Ai, then d(al,m, St) = m+ 2t− 3 > j ≥ d(ai,j, St) because m > j and t ≥ 2.
Since m = j + 1, r(ai,j|Π) = r(al,m|Π), and both Ai and Al contain all t, 1 ≤ t ≤ k, and also

the properties (d) and (e), the first term in Ai which equal to t ≥ 2 must be ai2t−3 and first term in Al

which equal to t ≥ 2 must be al2t−2. This implies that i = 1+ (111 · · · 1)3 and l = 1+ (222 · · · 2)3
and l = 3k−1 − 1 ≥ n > l, a contradiction. Therefore, the representations of all vertices are
different.

(B) Now consider if n = 3k−2. For every integer i ∈ [0, 3k−2), the representation of i as a
(k − 1)-digit number in base 3 will always have the first digit to be zero. This means that k is not
contained in any sequence Al and Sk = {v}. If r(ai,j|Π) = r(al,m|Π) then their distances to Sk

must be the same, which means they are at the same level. A similar argument as in Case II can be
used to show that r(ai,j|Π) ̸= r(al,m|Π).

To conclude, we have constructed a resolving partition of G with k = ⌊log3 n⌋+ 2 colors, and
so pd(G) = ⌊log3 n⌋+ 2.

Theorem 3.2 can be expressed in the following way:

Corollary 3.1. Let G be an A palm. For k ≥ 2, pd(G) = k if and only if 3k−2 ≤ ∆(G) ≤ 3k−1−1.

Since the lower bound and upper bound in Theorem 3.2 is achieved, by adapting the method in
the proof of Theorem 4.1(2) in [10], for every k between ⌊log3 n⌋ + 2 and n, there is an olive G
with ∆(G) = n and pd(G) = k.

One particular palm with property A is the olive tree.

Corollary 3.2. For n ≥ 2, pd(On) = ⌊log3 n⌋+ 2.

Note that for k = 3 and k = 4 Corollary 3.2 corrects the results stated in Theorem 7 and 8 in
[2]. The corrected results are (1) pd(On) = 3 if and only if 3 ≤ n ≤ 8 and (2) pd(On) = 4 if and
only if 9 ≤ n ≤ 26. Figure 3 shows a resolving partition of olive O8.
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Figure 2. A resolving partition of O8.

The complexity of the locating chromatic number for regular palms is given in [10].
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Theorem 3.4. [10] for every positive integer k, χL(Sn(k)) = Θ
(
n

1
k

)
.

The coloring algorithm in the proof of this theorem can be adapted for partition dimensions by
setting the color classes as partitions. This means we have the following theorem.

Theorem 3.5. For every fixed positive integer k, pd(Sn(k)) = Θ
(
n

1
k

)
.

We end this paper by giving a conjecture for a stronger value for the partition dimension of
regular palms.

Conjecture 1. For k ≥ 2, pd(Sn(k)) = (1 + o(1))
(
k−1
2

)
k
√
4n.
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