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Abstract

In this paper, we find a special type of non-traceable cubic bridge graph called well-formed graph
whose central fragment is isomorphic to a hairy cycle and whose branches are pairwise isomorphic.
We then show that a well-formed graph can be partition into isomorphic subgraph. Some properties
of a well-formed graph such as perfect matching, matching number, decomposition and some
parameters for pictorial representation are also provided.
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1. Introduction

In [5], Nieva and Nocum introduced a new classification of cubic graph known as non-traceable
cubic bridge graph (NTCBG) with two main components, namely the central fragment and branches.
They discussed some of its properties, including its chromatic number and clique number. It was
shown that this family of NTCBG satisfies the conjecture of Zoeram and Yaqubi [6]. They also
showed that the family of hairy cycle Hy, is a central fragment. Some properties of NTCBG such as
minimum leaf, chromatic and clique number were determined. They also found out that NTCBG
has spanning k—trees where 3 < k < | 2£2] [5].
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2. Preliminaries

Throughout this article we only consider finite simple undirected graph without loops or multi-
ple edges. A simple graph where each vertex has degree 3 is called a cubic graph. Cubic graph can
be classified into three different types, namely 1-connected, 2-connected and 3-connected cubic
graphs. A cubic graph that contains a minimum of one edge so that its removal will disconnect
the graph is said to be a 1-connected cubic graph or cubic bridge graph. Moreover, a graph con-
tains a minimum of two or three edges whose removal will disconnect the graph is known as a
2-connected cubic graph or 3-connected cubic graph, respectively.

For graph-theoretic terms that have not been defined but are used in the paper, see [1, 3]. A
cubic bridge graph G is said to be a non-traceable cubic bridge graph if G does not contain a
Hamiltonian path. Otherwise, if GG contains a Hamiltonian path, then it is a traceable cubic bridge
graph. A central fragment of a graph GG denoted as €', where % is a subgraph of G, satisfies the
following condition; % is connected, a bridge graph, non-traceable and must contain vertices of
degree 1 and of degree 3 only. A cubic graph denoted by %, is said to be a branch of a NTCBG.
In [5], the NTCBG can be obtained by taking the union of the central fragment 4" and a branch
%; where one edge of %, is subdivided into two to produce a path of length two such that the new
vertex is also an end-vertex of the central fragment. The graph formed from %; with one additional
vertex is called the constructed ,@ of %;. For notation purposes and to avoid confusion we reserve
the letter G to denote non-traceable cubic bridge graph.

A set of edges in a graph G is independent if no two edges in the set are adjacent in G. The
edges in an independent set of edges of GG are called a matching in G. A matching of maximum
size in G is a maximum matching in G. The edge independence number o/(G) of G is the number
of edges in a maximum matching of G. In fact, o/(G) is sometimes referred to as the matching
number of G. If M is a matching in a graph G with the property that every vertex of G is incident
with an edge of M, then M is a perfect matching in GG. A graph G is said to be decomposable into
subgraphs Hy, Hs, ..., Hy if {E(H,), E(H2), ..., E(H)} is a partition of E(G). Such a partition
produces a decomposition of GG. If each H; is isomorphic to a graph H, then the graph G is
H-decomposable and the decomposition is an H-decomposable.

The cycle C,, with one pendant edge attached to each cycle vertex is called a hairy cycle for all
n € N with n > 3, and is denoted by H; = C,, ® 1K;. In the definition, the ® indicates that we
attach a copy of the K to each cycle vertex of C),. The union G = G| @& G5 of graph G and G5
has vertex set V(G) = V(G;) U V(Gs2) and edge set E(G) = E(G1) U E(G2) [2, 4].

Here are some important theorems that are necessary in order to prove our results.

Theorem 2.1. [5] Let BB;, i € N be a branch of NTCBG. Then |V (B;)| = 2(b — 1) where b > 3.
Theorem 2.2. [5] Let G be an NTCBG with k.-leaves. Then Y |V (%;)| > 4k..

Theorem 2.3. [5] Let H;, be a central fragment then |V (Hy)| = |E(Hy)| = 2k, where k is the
order and size of Cy, respectively.

Theorem 2.4. A nontrivial connected graph G is P3-decomposable if and only if G has even size.
One of the earliest result in graph theory is the Petersen theorem about the bridgeless cubic

graph stated as follows.
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Theorem 2.5. Every cubic bridgeless graph contains a perfect matching.

Theorem 2.6. (The First Theorem of Graph Theory). If G is a graph of size m, then >, deg(v) =
veV

2m.

3. Well-formed Graph and its Matching Number

Among the numerous possible NTCBG that can be created, particular attention is directed
towards examining those that exhibit visual symmetry. Visual symmetry in this context refers to
NTCBG where each branch is structurally identical to one another, and the central fragment is
isomorphic to some hairy cycle. In this study we explore a class of NTCBG that satisfies this
condition.

Definition 1. Let G be an NTCBG. If the central fragment of G is isomorphic to H; and all
branches of G are pairwise isomorphic, then G is said to be a well-formed graph.

For example, the graph G, in Figure 1 is well-formed since the central fragment of G, is iso-
morphic to H3 and all the branches of G, are pairwise isomorphic. In contrast, although the central
fragment G, in Figure 1 is isomorphic to a hairy cycle, it is not well-formed because not all of its
branches are pairwise isomorphic. Also, G3 is not well-formed since its central fragment is not
isomorphic to any Hy, although its branches are pairwise isomorphic.

G Go U3

Figure 1. Well-formed graph G; and not well-formed graphs G- and Gs

One question that possible arises here is determining all orders for which an NTCBG has a
well-formed representation. Recall that any NTCBG can be written as G = € & %,;, where %;
need to be derived as constructed 552 to produce a valid union operation between % and %;. Note
that the order of the vertex set in 4 and %, is always equal to the order of the vertex set of € & @’2
since for every %; the additional vertex in f%’?@ is an end-vertex of €. Thus, we write G = € ® %;
instead of G = € & f@?z If a graph G is well-formed then by definition its central fragment is
isomorphic to some hairy cycle and all %; are pairwise isomorphic.

Remark 1. Theorem 2.3 implies that the order of the cycle in H}, is equal to the number of leaves
in Hy. Thus, we can rewrite |V (Hy)| as 2k., where k. < 3 is the number of leaves in Hy.
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Remark 2. By Theorem 2.1 and 2.2, if the branches of an NTCBG are all isomorphic we can say
that > |V (B;)| = k.2(b — 1) where k. is the number of leaves of the central fragment.

The next theorem will be useful in determining whether an NTCBG of a given order can be
represented as a well-formed graph. While this theorem is necessary, this is not sufficient, and its
formally stated as follows.

Theorem 3.1. For any well-formed graph G, |V (G)| = 2k.b where k. < 3 is the number of leaves
inH, and b > 3.

Proof. Suppose G is a well-formed graph. By Definition 1, the central fragment of G is isomorphic
to Hj, and each branch is pairwise isomorphic. It follows from Theorem 2.3 and Remark 1 that
|V (Hy)| = 2k., where k. < 3 is the number of leaves in H;. By Theorem 2.1 and Remark 2,
Y |\V(%:)| = ke[2(b — 1)] where k. < 3 is the number of leaves in H; and b > 3. Thus we have

V(@) = V(HW)| + > IV(%
V(G| = 2ke + ke[2(b - 1)]
\V(G)| = 2k, + 2k.[(b—1)]
IV(G)| = 2k (1 +(b-1))
IV(G)| = 2k,
V(G)| = 2k.b where k. < 3 is the number of leaves
in H; and b > 3. ]

Lemma 3.1. Every hairy cycle Hy, has perfect matching.

Proof. Suppose we have a hairy cycle H;. Note that Hy, has a cycle Cy, = [c1, o, ..., ¢k, 1] and
end-vertices a1, as, ..., a,. Also, every pendant edge of H;, produces a matching [a;, ¢;] where a; is
a pendant vertex and ¢; is a vertex in C. By definition of hairy cycle, the set of pendant edges is
equal to [ay, 1], [as, ¢, ..., [ak, cx]. Note that the set of pendant edge incident to all the vertices in
‘H;. and produces a matching. Therefore, ;. has perfect matching. [

Theorem 3.2. Any well-formed graph in which every branch is bridgeless contains a perfect
matching.

Proof. Let G be a well-formed graph. By Definition 1, G has a central fragment #; and pairwise
isomorphic branch %;. By Lemma 3.1, the set of pendant edge in 7}, is a perfect matching. Since
every %, is bridgeless, by Theorem 2.5 each %; also has perfect matching. Thus it remains to be
shown that the union H; & %, also has perfect matching. Recall that a constructed f%’: is formed
by subdividing any edge of a %; to produce a path of length 2 such that the new vertex is precisely
one of the end-vertex of the central fragment. Since each of the pairwise isomorphic branches
is bridgeless, it follows that every edge in a cubic bridgeless graph is contained in some perfect
matching. Hence, for any edge chosen in .%;, the constructed ,@ still contains a perfect matching
that does not include the chosen edge. Now, consider the union H; . %;. Note that each end-vertex
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of H;. which is part of its matching is connected to a new vertex in constructed ,/@2 Here, the edge
of A, that was subdivided to obtain the new vertex of the constructed f/%’?z is not part of a perfect
matching of %;. Thus, each pendant edge of Hj is not adjacent to any perfect matching of %;.
Therefore, the perfect matching of H;, & %, exists, and is composed of the perfect matching of H,
and the perfect matching of %;. [

For illustration, suppose we have an NTCBG with central fragment H3 and branches K, as
shown in Figure 2. By Theorem 2.5, K, contains perfect matching, and likewise H3 contains a
perfect matching by Lemma 3.1. It follows that by definition we have a constructed [/(\4. Hence we
have the following theorem.

L4 L

—~

Hs Ka K, My + Ky + Ky + K,

Figure 2. Perfect Matching {3 union 3 copies of K4

Theorem 3.3. Let G be a well-formed graph of order n and size m whose branch are bridgeless.

Then the matching number of G is o/ (G) = 5 and o/ (G) = %.

Proof. Let G be a well-formed graph of order n whose branches are bridgeless, Then by Theorem
3.2 G has perfect matching. By definition the matching number of any perfect matching is 5. Thus,
o(G) = 1.

Now, by Theorem 2.6, since every vertex of NTCBG is of degree 3 then the size is2 T%iven by

m = 2, we can write this as n = Z*. Since o/(G) = % it follows that o/(G) = 4 = 2.
Therefore, o/(G) = % O

4. Decomposition of Well-formed Graph

The notion of subgraph is widely studied in graph theory. Numerous conjectures and open
problems are studied regarding collections of subgraphs of a given graph where each edge of that
graph belongs to exactly one subgraph in the collection. The collection of subgraphs with this
property are often divided into two categories, depending on whether the subgraphs are required
to be spanning subgraphs of a given graph or not. From this, an interesting problem arises: Does
there exist an NTCBG G with a partition Hy, ..., Hy of V(G) such that all induced subgraphs are
pairwise isomorphic, that is, G[H;| = G[H,| for all i, j € N?
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Recall the notion of hairy cycle introduced by Barrientos [2]. A hairy cycle is constructed
by attaching one copy of /i to each vertex in a cycle to form a pendant edge. Hence, if we
have a cycle Cy, = [c1, ¢2, ..., ¢, ¢1] and K, then H;, has pendant edges [aq, ¢1], [az, ¢, ..., [ak, ck].
This graph labeling is also discussed in the proof of Lemma 3.1. The next result will discuss the
decomposition of hairy cycle.

Lemma 4.1. Any H;, can be decomposed as Ps = [a;, ¢;, ¢;iy1], where 1 <i < k.

Proof. By Theorem 2.3, the size Hj is even. Thus by Theorem 2.4, it is Ps-decomposable.
Now, we will show that P;-decomposition is composed of [a;, ¢;,¢; 1] where 1 < i < k. Let
Cry = [e1, 09,0y Ch1, Cr, 1) and aq, as, ..., ax_1, ax be the end-vertex of each pendant edge at-
tached to each vertex in the cycle. Without loss of generality, we can name all the pendant
edges as [a1, 1], [ag, Cal, ..., [ag—1, k1], [ak, ck]. Also, note that every non-empty graph is Ps-
decomposable, so that C is decomposable as {[c1, co], [c2, ¢3], ..., [ck—1, ck]}. By following the
labeling of the central fragment, if we take the union of pendant edges and the decomposition
of C} with common vertex it is clear that Py = [a;, ¢;, ¢;+1] is the decomposition of Hj, where
1<i<k. [

Remark 3. Any H;, can be decomposed as k-copies of Py = [a;, ¢;, ¢i11], where 1 <7 < k.

Theorem 4.1. Let G be a NTCBG. Then G is well-formed if and only if G is (Ps & %;) - decom-
posable.

Proof. Suppose G is well-formed graph. Then we have a central fragment #; and %k copies of
isomorphic branch %;. By Lemma 4.1, H,, can decomposable as P = [a;, ¢;, ¢;11] where 1 < i <
k. Recall that for each 4, the constructed f/%’: has a new vertex equal to exactly one end-vertex
of the central fragment. Thus every constructed ,@Z contains a new vertex a; where 1 < ¢ < k.
Taking the union of P3 = [a;, ¢;, ¢;11] and %;, we have Py & %, foralli = 1,2, ..., k. Thus, G is
P3; & 9; - decomposable.

Conversely, suppose G is (P; @& %;) - decomposable. It is clear that we have k copies
(P; ® 9;). Furthermore, there are also k copies of P; and k copies %;. It remains to be shown
that the union of £ copies of P; is isomorphic to H; . By Lemma 4.1, we have a set of P; that is,
la1, 1, ), [ag, ca, 3], ..oy [ag—1, ck—1, cx] and [ag, ¢k, ¢1]. Taking the union of these k copies of P
yields Cy, = [c1, oy ..., €k, ¢1] @and [aq, ¢1], [ag, ¢a], ..., [ak, cx]. Note that this is exactly the represen-
tation of the hairy cycle Hj. Hence, the union of k-copies of P4 is isomorphic to . Therefore, G
is well-formed if and only if G is (P3 & %;) - decomposable. ]

If Gis (P & %) - decomposable graph for some P; @& %, then certainly P; & %; is
a subgraph of G and the size of P; & %, divides the size of G. Although this last condition is
necessary, it is not sufficient. If £ be the number of copies of P; & %, in the decomposition of G,
then k£ = |V (Cy)| in Hy.

Theorem 4.2. Let G be an NTCBG. If G is well-formed, then G is k(P; @& %;) - decomposable
where k is the order of Cj,.
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Figure 3. Illustration of Theorem 4.1

Proof. Let G be an NTCBG such that G is a well-formed graph. Then G contains a central fragment
‘Hy, and all branch Z; are pairwise isomorphic. By Theorem 4.1, G is (P; & %;)-decomposable.
Note that, by Remarks 3, H;, has k-copies of P3 = [a;, ¢;, ¢;41]. Since every branch 2; is connected
to P;, we have a k copies of (P3 & %;). Therefore, G is k(P; ®& %;) - decomposable where £ is
the order of C}. ]

Ilustration 1. Here is an illustration for Theorem 4.2. Note that the graph G shown in Figure 4
has a hairy cycle Hs. This implies that we can have 3-copies of P3 & %;.

ai a2
) o C2 €3 €1
C3 C1 Ca C3
asg a1 ) as
g

Figure 4. A well-formed graph G with Hairy Cycle H3 and branch K

5. Well-formed graph pictorial representation

The notion of representing NTCBG is quite difficult because of their extensive isomorphisms.
For instance, there are numerous distinct branches of an NTCBG of order 6. In this section, we
endeavor to find methods of determining whether an NTCBG of a given order is well-formed. The
next theorem gives a sufficient condition for this, but it does not provide information about the
uniqueness of said well-formed representation.

Theorem 5.1. Let G be an NTCBG of order n such that the central fragment of G has k. leaves.
Then G has a well-formed representation if and only if there exists a factor pair F = {[k., b] | k. x
b= % where3 < k., b < 3}
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Proof. Let G be an NTCBG of order n such that the central fragment of G has k. leaves. Suppose
there exists a factor pair F = {[k.,b] | k. x b = 5 where 3 < k., b < 2 }. It follows that n = 2k.b.
Clearly, G has a well-formed representation by Theorem 3.1.

Conversely, suppose G is a well-formed NTCBG of order n. By Theorem 3.1, |V(G)| = 2k.b,
ke, b are both greater than or equal to 3. It follows that n = 2k.0 = 5 = k.b. Therefore there
exists a factor pairs [k, b] of § such that k., b > 3. O

Ilustration 2. Show that a graph G of order 32 has well-formed representation.

Solution: By Theorem 3.1 G is well-formed. Also, by Theorem 5.1 we have: k.b = 32—2 which
implies that k.b = 16. The factor pairs of 16 are {[1, 16], [2, 8], [4,4], 8, 2], [16, 1]} among which
(4, 4] satisfies F = {[ke, b] | ke x b = 2 where 3 < k,,b < 32}, that is, [4,4]. Thus G has a well-
formed representation. Furthermore, since we have k. = 4 and b = 4, it follows that the central
fragment is of order |V (H4)| = 2k. = 2(4) = 8 and there are 4 pairwise isomorphic branches of
order |V(%;)| =2(b—1) = 2(4 — 1) = 6 as shown in Figure 5.

Figure 5. Well-formed representation of G of order 32

Corollary 5.1. Let F be the set of factor pairs of a graph G of order n such that F = {[k., b] | k. X
b= 3,3 < ke, b< 3} Then the cardinality of factor pairs in F is the number of ways such that G
has a well-formed representation.

6. Summary and Conclusion

In this paper, we introduced a special type of NTCBG called well-formed graph. Here we
gave the isomorphic subgraph partition of NTCBG. Furthermore, the perfect matching, matching
number, decomposition and some parameters for pictorial representation are also determined.

From the previously discussed results, one may consider a rather interesting problem, namely
that of determining the family of constructed %;’s (up to isomorphism) that is formed by selecting
different edges of a given starting %;. As an example, we will show that if our branch is %; = [9\,
then all the constructed I/(\4 are pairwise isomorphic. Recall the defintion of the construction %;
of %;, where that we pick any edge in %; and subdivide it into two to produce a path of length
two such that the new vertex is precisely one of the end-vertices of the central fragment. Clearly,
we have here six edges of K, to choose from. Graphs /; and H> in Figure 6 show two of the
six graphs that can be obtained from different choices of edge in /4. It can be easily verified that
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graphs obtained by subdividing other edges are represented by rotations of either /1, or H5, and are
thus isomorphic to either of these graphs. Specifically, subdividing edge |a, c| or [b, ¢] according
to the labeling used in Figure 6 will result in a constructed [/(\4 that is a rotation of H1, so that said
constructed K is isomorphic to H;. Likewise, subdividing edge [c,d] or [b,d] according to the
same labeling will result in a constructed K, 4 that is a rotation of Hs, so that said constructed K4 1S
isomorphic to Hj.

Moreover, we can see that /; and H, in Figure 6 are isomorphic by defining the mapping
¢ :V(Hy) — V(Hy) by ¢ = a+— a,b— d,c —> ¢,d — b,e — e. Finally, since graph
isomorphism is an equivalence relation, a graph is isomorphic to /; if and only if it is isomorphic
to Hy. Therefore all six constructed f%’: are pairwise isomorphic.

Figure 6. Uniqueness of I/(\4 up to isomorphism

Notice that by dgﬁnition of edge-transitive graph, if a cubic graph %; is edge-transitive, then
all the constructed %; are pairwise isomorphic. To date, the only known cubic graphs (up to
isomorphism) that have edge-transitive properties are symmetric and semi-symmetric cubic graphs.
Hence we arrive at the following conjecture.

Conjecture 1. Symmetric and semi-symmetric cubic graphs are the only branches of NTCBG such
that all constructed branches are pairwise isomorphic.
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