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Abstract

In this paper, we obtain a sufficient condition for the existence of parity factors in a regular graph
in terms of edge-connectivity. Moreover, we also show that our condition is sharp.
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1. Preliminaries

Let G = (V, E) be a graph with vertex set V(G) and edge set £(G). The number of vertices
of a graph G is called the order of GG and is denoted by n. The number of edges of G is called the
size of G and is denoted by e. For a vertex v of graph G, the number of edges of GG incident to v is
called the degree of v in G and is denoted by dg(v). For two subsets S, T C V(G), let eq(S,T')
denote the number of edges of G joining S to 7.

Let H be a function associating a subset of Z to each vertex of (G. A spanning subgraph F’ of
graph G is called an H-factor of G if

dr(x) € H(x) for every vertex = € V(G). (1)
For a spanning subgraph F' of G and for a vertex v of G, define

O(H; F,v) = min{|dp(v) —i|i € H,},
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and let 0(H; F) = > () 6(H; F, ). Thus a spanning subgraph [ is an H-factor if and only if
S(H; F) = 0. Let

du(G) = min{d(H; F) | F are spanning subgraphs of G'}.

A spanning subgraph F' is called H-optimal if 6(H; F') = dy(G). The H-factor problem is to
determine the value 05 (G). An integer h is called a gap of H(v) if h ¢ H(v) but H(v) contains
an element less than h and an element greater than h. Lovész [11] gave a structural description on
the H-factor problem in the case where H (v) has no two consecutive gaps for all v € V(G) and
showed that the problem is NP-complete without this restriction. Moreover, he also conjectured
that the decision problem of determining whether a graph has an H-factor is polynomial in the case
where H (v) has no two consecutive gaps for all v € V' (G). Cornuéjols [5] proved the conjecture.

Let therefore g, f : V' — Z7 such that g(v) < f(v) and g(v) = f(v) (mod 2) for every
v € V. Then a spanning subgraph F of G is called a (g, f)-parity-factor, if g(v) < dp(v) < f(v)
and dp(v) = f(v) (mod 2) for all v € V. Clearly, a (g, f)-parity-factor is a special kind of
H-factor and it has been shown that the decision problem of determining whether a graph has a
(g, f)-parity factor is polynomial.

Let a, b be two integers such that 1 < a < band a = b (mod 2). If g(v) = a and f(v) = b
for all v € V(G), then a (g, f)-parity-factor is called an (a, b)-parity factor. Let n > 1 be odd. If
a = 1 and b = n, then an (a, b)-parity factor is called a (1, n)-odd factor. There is also a special
case of the (g, f)-factor problem which is called the even factor problem, i.e., the problem with
g(v) =2, f(v) > |V(G)] and f(v) = g(v) (mod 2) forall v € V(G).

Fleischner gave a sufficient condition for a graph to have an even factor in terms of edge
connectivtiy.

Theorem 1.1 (Fleischner,[8]; Lovasz, [12]). If G is a bridgeless graph with 6(G) > 3, then G has
an even factor.

For a general graph GG and an integer k, a spanning subgraph F' such that
dp(x) =k forallz € V(G)

is called a k-factor. In fact, a k-factor is also a (k, k)-parity factor.
The first investigation of the (1,7)-odd factor problem is due to Amahashi [2], who gave a
Tutte type characterization for graphs having a global odd factor.

Theorem 1.2 (Amahashi). Let n be an odd integer. A graph G has a (1, n)-odd factor if and only

if
o(G—8) <n|S] for all subsets S C V(G). (2)

For general odd value functions h, Cui and Kano [6] established a Tutte type of theorem.

Theorem 1.3 (Cui and Kano, [6]). Let h : V(G) — N be odd value function. A graph G has a
(1, h)-odd factor if and only if

o(G—S) < h(S) for all subsets S C V(G). 3)
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Now there are many results on consecutive factors (i.e. (g, f)-factor). But the research progress
on non-consecutive factors is slow. In non-consecutive factor problems, (g, f)-parity factors have
many similar properties with k-factors. So we believe that many results on k-factors can be ex-
tended to (g, f)-factor. In this paper, we will extend a result on k-factors of regular graphs to the
(g, f)-parity-factors.

Now let us recall one of the classical results due to Petersen.

Theorem 1.4 (Petersen [13]). Let r and k be integers such that 1 < k < r. Every 2r-regular graph
has a 2k-factor.

Considering the edge-connectivity, Gallai [7] proved the following result.

Theorem 1.5 (Gallai [7]). Let r and k be integers such that 1 < k < r, and G an m-edge-
connected r-regular graph, where m > 1. If one of the following conditions holds, then G has a
k-factor.

(i) ris even, k is odd, |G| is even, and = < k < r(1 — L+);
(ii) risodd, kisevenand2 <k <r(1—L1);
(iii) 7 and k are both odd and =~ < k.
Bollobas, Satio and Wormald [3] improved above the result.

Theorem 1.6 (Bollobdas, Saito and Wormald ). Let r and k be integers such that 1 < k < r, and G
be an m-edge-connected r-regular graph, where m > 1 is a positive integer. Let m* € {m,m+1}
such that m* = 1 (mod 2). If one of the the following conditions holds, then G has a k-factor.

(i) risodd, k is evenand 2 < k < r(1 — L

m*))

(ii) r and k are both odd and -~ < k.

In this paper, we extend Theorems 1.5 and 1.6 to (a, b)-factors. The main tool in our proofs is
the following theorem of Lovasz (see[11]).

Theorem 1.7 (Lovasz [11]). G has a (g, f)-parity factor if and only if for all disjoint subsets S
and T of V(G),

where T denotes the number of components C, called f-odd components of G — (S UT) such that
ec(V(C), T)+ f(V(C)) =1 (mod 2). Moreover, §(S,T) = f(V(G)) (mod 2).
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2. Main Theorem

Theorem 2.1. Let a,b and r be integers such that 1 < a < b < rand a = b (mod 2). Let G be

an m-edge-connected r-regular graph with n vertices. Let m* € {m, m + 1} such that m* =
(mod 2). If one of the following conditions holds, then G has an (a, b)-parity factor.

(i) ris even, a,bare odd, |G| is even, = < band a < r(1 — +);

(i) ris odd, a,b are even and a < r(1 — ni*),

(iii) 7, a,bare odd and = < b.

m* —

By Theorem 1.6, (ii) and (iii) are true. Now we prove (i). Let ¢; = % and 0, = g Then
0 < #; < 60y < 1. Suppose that G contains no (a, b)-parity factors. By Theorem 1.7, there exist
two disjoint subsets S and 7" of V(G) such that S U T # (), and

—2>6(8,T) =b|S| + Y _da(x) — a|T| — ec(S,T) — T, (4)

zeT

where 7 is the number of a-odd (i.e. b-odd) components C' of G — (SUT). Let C4, - - - , C, denote
a-odd components of G — S —Tand D =C; U---UC,.
Note that

—2>5(8,T) =b|S| + Y da(x) — alT| — ea(S.T) — 7
= b|S|+ (r — a)|T| — ec(S,T) — 7
= Or|S| + (1 = 01)r|T| —eq(S,T) — 7
=0, da(x)+(1-061)) de(z) —eq(S.T) — 7

eSS zeT
-

> (e (S, T) + Z eG(S,C) + (1= 01)(ea(S,T) + 3 ea(T.Co)) — ec(S.T) — 7

i=1 i=1

= (Bhea(S,Ci) + (1= 01)ea(T,C;) — 1) + (62 — 61 )ec (S, T)

T

> (b2ec(S,Cy) + (1= 01)ea(T,Ci) — 1).

=1

Since G is connected and 0 < 61 < 6y < 1, 50 Oseq (S, C;) + (1 — 01)eq(T, C;) > 0 for each C;.
Hence we will obtain a contradiction by showing that for every C' = C};, 1 <1 < 7, we have

Oarec(S, C) + (1 — 01)ec(T, C) > 1. (5)
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These inequalities imply

—2>6a(S,T) 2> (brec(S,Ci) + (1 — 01)ec(T,C;) — 1)
=1
T—2
> (0ae6(S,Ci) + (1= 01)e(T, C;) = 1) =2 > =2,
=1
which is impossible.
Now, we will prove the 5 is true. Since C'is an a-odd component of G — (S U T'), we have

a|Cl + eq(T,C) =1 (mod 2). (6)

Moreover, since
rlCl= Y da(x) =ea(SUT,C)+2|E(C)],
zeV(C)
we have

r|C| = eq(SUT,C) (mod 2). (7
It is obvious that the two inequalities e (.S, C') > 1 and e (7', C) > 1 imply
926(;(5, C) + (1 - Hl)eG(T, C) 2 92 + 1-— (91 =1.

Hence we may assume ei(S,C) = 0oreq(7T,C) = 0.
We consider the condition (i). If e¢:(S, C') = 0, then e (T, C) > m. Since a < r(1 — +), then
0, <1-— % and so 1 < (1 — #;)m. By substituting e (7', C) > m and eg (S, C) = 0 into (5), we
have
(1—="01)eq(T,C)>(1—6;)m > 1.

If eq(T,C) = 0, then e (S, C') > m. Since = < b, hence fym > 1, and so we obtain
026@(8, O) Z ng Z 1.

Consequently, condition (i) guarantees (5) holds and thus (i) is true. The proof is completed.  []
Remark: The edge connectivity conditions in Theorem 2.1 are sharp.

We will give the construction for condition (i) of Theorem 2.1. For (ii) and (iii), the construc-
tions are similar. Let » > 2 be an even integer, a,b > 1 two odd integers and 2 < m < r — 2 an
even integer such that b < r/m or r(1 — 1) < a. Since G has an (a, b)-parity factor if and only
if G has an (r — b,r — a)-parity factor, so we can assume b < r/m. Let J(r,m) be the complete
graph K, from which a matching of size m/2 is deleted. Take r disjoint copies of .J(r,m). Add
m new vertices and connect each of these vertices to a vertex of degree  — 1 of J(r,m). This
gives an m-edge-connected r-regular graph denoted by G. Let S denote the set of m new vertices
and T = (). Let 7 denote the number of components C, which are called a-odd components of
G—(SUT)and eq(V(C),T)+ a|C| =1 (mod 2). Then we have 7 = r, and

5(S.T) =S|+ da-s(x) — a|T| = 7(S,T) = bm — r < 0.

zeT

So by Theorem 1.7, G contains no (a, b)-parity factors.
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