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Abstract

A graph G = (V,E), where |V (G)| = n and |E(G)| = m is said to be a distance magic graph if
there is a bijection f : V (G) → {1, 2, . . . , n} such that the vertex weight w(u) =

∑
v∈N(u) f(v) =

k is constant and independent of u, where N(u) is an open neighborhood of the vertex u. The
constant k is called a distance magic constant, the function f is called a distance magic labeling of
the graph G and the graph which admits such a labeling is called a distance magic graph. In this
paper, we present some results on distance magic labeling of Mycielskian graphs.
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1. Introduction

Throughout this paper, by a graph G = (V,E), we mean a connected undirected simple graph
with vertex set V (G) and edge set E(G), where |V (G)| = n and |E(G)| = m. For graph theoretic
terminology and notation we refer to West [15].

A labeling of a graph is any function that assigns elements of a graph (vertices or edges or
both) to the set of numbers (positive integers or elements of groups, etc). In particular, if we have
a bijection f : V (G) → {1, 2, . . . , |V (G)|}, then f is called a vertex labeling. The neighborhood
of a vertex x in G is the set of all the vertices adjacent to x and is denoted by NG(x). The degree
of vertex v in G, denoted by dG(v) is |NG(v)|. When a graph G is clear from the context we will
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simply write N(x) and d(x) for neighborhood and degree of a vertex x, respectively. The weight
of a vertex v, denoted by w(v) is defined as w(v) =

∑
u∈N(v) f(u). If f is vertex labeling such that

w(v) = k, for all v ∈ V (G), then k is called a distance magic constant and labeling f is called a
distance magic labeling. The graph which admits such a labeling is called a distance magic graph.
For more details see [1, 5, 6, 7, 8, 9, 10, 13, 14].

There are several constructions available for a triangle free graph with chromatic number in-
crease by one in the literature, Mycielski’s construction is one of the simplest. Given a triangle
free graph G with chromatic number k, Mycielskian of G is the triangle free graph with chromatic
number k + 1. For a simple graph G, Mycielski’s construction [11] produces a simple graph de-
noted by µ(G) called Mycielskian graph of G, containing G. Begin with G having vertex set V =
{x1, x2, . . . , xn}. The vertex set of µ(G) is V ∪ U ∪ {u}, where U = {y1, y2, . . . , yn} where each
yi is an image of xi and E(µ(G)) = E(G) ∪ {yixj : xj ∈ NG(xi)} ∪ {uyi}. We call yi an image
of vertex xi and we write yi = Im(xi), similarly Im(N(xi)) = {yj : yj = Im(xj), xj ∈ N(xi)}.
Mycielskian of P3 is shown in Figure 1.

x1

x2
x3

y1 y2 y3

u

Figure 1. Mycielskian of P3. Figure 2. µ(C5): Grötzsch Graph

The construction preserves the property of being triangle-free but increases the chromatic num-
ber; by applying the construction repeatedly to a triangle-free starting graph, Mycielski showed that
there exist triangle-free graphs with an arbitrarily large chromatic number. For example, starting
with the graph G = K2, which is triangle-free with χ(G) = 2, we obtain µ(G) = C5 a cycle on
5 vertices and χ(C5) = 3. Further µ2(G) = µ(µ(G)) = µ(C5) is a Grötzsch graph (see Figure 2)
with the chromatic number 4 and so on. We define µr(G) ∼= µ(µr−1(G)) for r ≥ 1.

Researchers have made few attempts to construct distance magic graphs with specific graph-
theoretic properties or to study distance magic property of a specific graph family, see [2, 4, 6, 9,
12]. In this paper, we investigate whether there exists distance magic labeling of Mycielskian of
various families of graphs.

Observe that, for a connected graph G with |V (G)| = n and |E(G)| = m, µ(G) is also
connected with |V (µ(G))| = 2n+ 1, and |E(µ(G)| = 3m+ n. Though there are other interesting
structural relations between G and µ(G) such as edge connectivity, vertex connectivity, etc., we
are not proving them here as they are beyond the interest of this article.
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2. Known Results

In this section, we cite some known results on distance magic graphs which are useful for our
further investigation. Recall that for non-empty sets A and B, the symmetric difference of A and
B, denoted by A△B, is the set (A ∪B) \ (A ∩B).

Theorem 2.1. [8, 14] A graph G is not distance magic if there are vertices x and y in G such that
|N(x)△N(y)| = 1 or 2.

Theorem 2.2. [10, 13, 14] Let f be a distance magic labeling of a graph G with the vertex set V .
Then sum of weights of all the vertices is given by:∑

v∈V (G)

w(v) =
∑

v∈V (G)

d(v)f(v) = kn,

where k is the distance magic constant and n is the number of vertices.

Corollary 2.1. [8, 10, 14] No odd regular graph is distance magic.

Theorem 2.3. [10] Cycle Cn is distance magic if and only if n = 4.

3. Main Results

First we discuss some basic structural properties of Mycielskian of a graph such as regularity,
degree conditions etc.

Theorem 3.1. Let G be a graph. For any vertex x ∈ V (G), dµ(G)(y) =
dµ(G)(x)

2
+ 1, where

y = Im(x) in µ(G).

Proof. Let G be a graph and for any vertex x ∈ V (G). By construction dµ(G)(x) = 2dG(x). If
y = Im(x) in µ(G), then Nµ(G)(y) = NG(x)∪{u}. This implies dµ(G)(y) = dG(x)+1. Therefore,
dµ(G)(y) =

dµ(G)(x)

2
+ 1.

Theorem 3.2. Let G be a graph. The Mycielskian of G is regular if and only if G ∼= K2.

Proof. Let G be a graph on n vertices such that µ(G) is r-regular. Therefore, for x ∈ V and y ∈ U
we have

dµ(G)(x) = dµ(G)(y) = dµ(G)(u) = r. (1)

Also, Nµ(G)(u) = U implies dµ(G)(u) = |U | = n. Hence,

r = n. (2)

By Theorem 3.1, we have dµ(G)(y) =
dµ(G)(x)

2
+ 1. From Equation (1) we get r = 2. Therefore,

from Equation (2), we get n = r = 2. This means G is a graph on two vertices such that µ(G)
is 2-regular. There are only two non-isomorphic graphs of order two viz; K2 and its complement
K2. For x ∈ V (K2), dµ(K2)

(x) = 0 and dµ(K2)
(u) = 2. Therefore, µ(K2) is not regular. Hence,

G ̸∼= K2. The graph µ(K2) is isomorphic to a cycle C5, which is a 2-regular graph. So, G must be
isomorphic to K2. Conversely if G ∼= K2, then µ(K2) ∼= C5 which is 2-regular. This completes
the proof.
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Now we provide the sufficient conditions on a graph G, for the non-existence of distance magic
labeling of its Mycielskian graph.

Lemma 3.1. If a graph G contains two vertices xi and xj such that |NG(xi)△NG(xj)| = 1 or 2,
then for any r ≥ 1, µr(G) is not distance magic.

Proof. First we will prove the theorem for r = 1. Let xi and xj be vertices in G such that
|NG(xi)△NG(xj)| = 1 or 2. Then Nµ(G)(yi) = NG(xi) ∪ {u} and Nµ(G)(yj) = NG(xj) ∪ {u}.
Therefore,

Nµ(G)(yi) ∪Nµ(G)(yj) = NG(xi) ∪NG(xj) ∪ {u} =⇒ |Nµ(G)(yi)△Nµ(G)(yj)| = 1 or 2

and by Theorem 2.1, µ(G) is not distance magic. For r ≥ 2, suppose that result is true for all
positive integers less than or equal to r − 1 and let H = µr−1(G). Then by induction hypothesis
H has two vertices ui and uj such that |NH(ui)△NH(uj)| = 1 or 2. Therefore by proceeding as
before we obtain |Nµ(H)(Im(ui))△Nµ(H)(Im(uj))| = 1 or 2. Since µ(H) = µr(G), by Theorem
2.1, we conclude that µr(G) is not distance magic. This proves the theorem.

Corollary 3.1. The graph µr(Cn) is not distance magic for n ≥ 5 and r ≥ 1.

Proof. Let Cn be a cycle with vertex set V (Cn) = {x1, x2, . . . , xn}, where n ≥ 5. We prove by
contraposition. Consider the neighborhood of two vertices x2 and xn then NCn(x2) = {x1, x3}
and NCn(xn) = {x1, xn−1} so that |NCn(x2)△NCn(xn)| = 2 and by Lemma 3.1, µr(Cn) is not
distance magic for any r ≥ 1.

Lemma 3.2. For a graph G with δ(G) = 1, the Mycielskian graph µr(G) is not distance magic
for any r ≥ 1.

Proof. Let x1 be a vertex in G such that dG(x1) = 1. Hence, there is an unique vertex x2 ∈ NG(x1).
Then Nµ(G)(x1) = {x2, y2} and Nµ(G)(y1) = {x2, u} which gives |Nµ(G)(x1)△Nµ(G)(y1)| =
|{y2, u}| = 2. Therefore, by Theorem 2.1, µ(G) is not distance magic. Also, as proved earlier,
H = µ(G) contains two vertices x1 and y1 such that symmetric difference of their neighborhoods
is two. Therefore, by Lemma 3.1 µr(H) is not distance magic for any r ≥ 1. This proves that
µr(G) is not distance magic for any r ≥ 1.

This lemma immediately gives non-existence of distance magic labeling of Mycielskian of a
major family of graphs.

Corollary 3.2. If T is a tree, then µr(T ) is not distance magic for any r ≥ 1.

Corollary 3.3. The graph µr(Pn) is not distance magic for n ≥ 2 and r ≥ 1.

Corollary 3.4. For a complete graph Kn, µr(Kn) is not distance magic for any r ≥ 1.

Proof. Let x1, x2,. . . , xn be vertices of Kn. For n = 1, µ(K1) ∼= K1 ∪K2 is not distance magic.
So, we assume n ≥ 2. Then, NKn(x1) = {x2, x3, . . . , xn} and NKn(x2) = {x1, x3, x4, . . . , xn}.
Hence, |NKn(x1)△NKn(x2)| = 2. Therefore, by Lemma 3.1, µr(Kn) is not distance magic for
any r ≥ 1.
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Theorem 3.3. The Mycielskian of the wheel Wn = Cn +K1 is not distance magic for n ≥ 3.

Proof. Let the vertex set V (Wn) = V ∪ U ∪ {u}. Let {x1, x2, . . . , xn} be the set of vertices
lying on the rim of Wn and let c1 be the central vertex, where the subscripts of the rim vertices
are taken modulo n. Then, NG(x1) = {x2, xn, c1} and NG(x3) = {x2, x4, c1}. If n ̸= 4,
|NG(x1)△NG(x3)| = |{x4, xn}| = 2. Therefore, by Lemma 3.1, the Mycielskian of the wheel
Wn = Cn +K1 is not distance magic for n ̸= 4.

Next, we suppose that n = 4. On contrary suppose that for n = 4, Mycielskian of wheel
Wn = Cn +K1 is distance magic with distance magic labeling f .

x1

x2 x3
x4

y1
y2 y3 y4

c1

c2

u

Figure 3. Mycielskian of W4.

The Mycielskian of W4 is shown in Figure 3. From Figure 3, consider the neighborhoods of
vertices in µ(W4):

Nµ(G)(x1) = {x2, x4, c1, c2, y2, y4}
Nµ(G)(x2) = {x1, x3, c1, c2, y1, y3}
Nµ(G)(y1) = {x2, x4, c1, u}
Nµ(G)(y2) = {x1, x3, c1, u}
Nµ(G)(c1) = {x1, x2, x3, x4, y1, y2, y3, y4}
Nµ(G)(c2) = {x1, x2, x3, x4, u}
Nµ(G)(u) = {y1, y2, y3, y4, c2}.
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Now we calculate the weights of vertices as follows:

w(x1) = f(x2) + f(x4) + f(c1) + f(c2) + f(y2) + f(y4)

w(x2) = f(x1) + f(x3) + f(c1) + f(c2) + f(y1) + f(y3)

w(y1) = f(x2) + f(x4) + f(c1) + f(u)

w(y2) = f(x1) + f(x3) + f(c1) + f(u)

w(c1) = f(x1) + f(x2) + f(x3) + f(x4) + f(y1) + f(y2) + f(y3) + f(y4)

w(c2) = f(x1) + f(x2) + f(x3) + f(x4) + f(u)

w(u) = f(y1) + f(y2) + f(y3) + f(y4) + f(c2).

Since, Mycielskian of W4 is assumed to be distance magic, we can equate the weights.

w(x1) = w(y1) =⇒ f(u) = f(y2) + f(y4) + f(c2) (3)
w(x2) = w(y2) =⇒ f(u) = f(y1) + f(y3) + f(c2). (4)

Form equations (3) and (4) we have

f(y1) + f(y3) = f(y2) + f(y4). (5)

Now, w(x1) = w(x2) =⇒ f(x2) + f(x4) + f(y2) + f(y4) = f(x1) + f(x3) + f(y1) + f(y3). By
Equation (5) we get, f(x1) + f(x3) = f(x2) + f(x4). Now we assume that

f(x1) + f(x3) = f(x2) + f(x4) = α (6)
f(y1) + f(y3) = f(y2) + f(y4) = β. (7)

By equations (6) and (7), we obtain

w(x1) = α + β + f(c1) + f(c2)

w(y1) = α + f(c1) + f(u)

w(c1) = 2α + 2β

w(c2) = 2α + f(u)

w(u) = 2β + f(c2).

Next we equate the weight of the following vertices:

w(y1) = w(c2) =⇒ f(c1) = α (8)
w(x1) = w(u) =⇒ f(c1) + α = β (9)
w(u) = w(c1) =⇒ f(c2) = 2α (10)
w(c1) = w(c2) =⇒ f(u) = 2β. (11)

From equations (8) and (9) we get, 2α = β. Therefore, by Equation (11), f(u) = 2β = 4α =
4(f(x1) + f(x3)). By assigning smallest labels to x1 and x2 we get f(u) ≥ 4(1 + 2) = 12 which
is contradiction to the fact that f(u) ∈ {1, 2, . . . , 11}.
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Theorem 3.4. The Mycielskian of cycle Cn is distance magic if and only if n = 4.

Proof. Let Cn be a cycle with vertex set V (Cn) = {x1, x2, . . . , xn}, where n ≥ 3. Suppose that
n ̸= 4, then NCn(x2) = {x1, x3} and NCn(xn) = {x1, xn−1} so that |NCn(x2)△NCn(xn)| = 2
and by Lemma 3.1, µ(Cn) is not distance magic.
For the converse part consider a cycle on 4 vertices. We label the vertices of µ(C4) as shown in
Figure 4. It is easy to see that the weight of each vertex is 18. Hence, µ(C4) is distance magic

x1
1

x2

2
x3

8
x4

7

x5
3

x6
4

x7
6

x8
5

x9

9

Figure 4. Mycielskian of C4.

graph with distance magic constant 18.

Theorem 3.5. µ2(C4) is not distance magic.

Proof. From Figure 4, we note the neighborhoods of all the vertices of µ2(C4):

N(x1) = N(x3) = {x2, x4, x6, x8, y2, y4, y6, y8}
N(x2) = N(x4) = {x1, x3, x5, x7, y1, y3, y5, y7}
N(x5) = N(x7) = {x2, x4, x9, y2, y4, y9}
N(x6) = N(x8) = {x1, x3, x9, y1, y3, y9}
N(y1) = N(y3) = {x2, x4, x6, x8, u}
N(y2) = N(y4) = {x1, x3, x5, x7, u}
N(y5) = N(y7) = {x2, x4, x9, u}
N(y6) = N(y8) = {x1, x3, x9, u}
N(x9) = {x5, x6, x7, x8, y5, y6, y7, y8}
N(y9) = {x5, x6, x7, x8, u}
N(u) = {y1, y2, y3, y4, y5, y6, y7, y8, y9}.

Suppose that µ2(C4) is distance magic with distance magic labeling f . Then we can equate the
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weights of any two distinct vertices. Equating w(xi) with w(yi), for each i = 1, 2, 5, 6, 9 we obtain

f(u) = f(y2) + f(y4) + f(y6) + f(y8)

= f(y1) + f(y3) + f(y5) + f(y7)

= f(y2) + f(y4) + f(y9)

= f(y1) + f(y3) + f(y9)

= f(y5) + f(y6) + f(y7) + f(y8).

On simplifying we get f(y9) = f(y1) + f(y3) = f(y2) + f(y4) = f(y5) + f(y7) = f(y6) + f(y8).
Since f(u) = f(y2) + f(y4) + f(y6) + f(y8), we get f(u) = 2f(y9). Now, equating w(y5)
with w(y6), w(y2) with w(y9), w(y1) with w(y9), and w(y1) with w(y5) we obtain the following
equalities

f(x1) + f(x3) = f(x2) + f(x4)

f(x1) + f(x3) = f(x6) + f(x8)

f(x2) + f(x4) = f(x5) + f(x7)

f(x6) + f(x8) = f(x9)

respectively. Which gives f(x9) = f(x1) + f(x3) = f(x2) + f(x4) = f(x5) + f(x7) = f(x6) +
f(x8). There are 19 vertices in µ2(C4). The sum of all vertex labels is

9∑
i=1

f(xi) +
9∑

i=1

f(yi) + f(u) = 190

=⇒ 5f(x9) + 7f(y9) = 190.

Which is a Diophantine equation and all of its possible non-negative integer solutions in the form
(x9, y9) are:

(3, 25), (10, 20), (17, 15), (24, 10), (31, 5), (38, 0).

But 1 ≤ f(x) ≤ 19, the only possible solution is f(x9) = 17 and f(y9) = 15. This gives
f(u) = 2f(y9) > 19, which is not possible. Hence, µ2(C4) is not a distance magic.

Theorem 3.6. The Mycielskian of a complete bipartite graph Km,n is distance magic if and only
if m = n = 2.

Proof. Let G ∼= Km,n, where m and n both are at least 2. Otherwise, G will be a star and by
Lemma 3.2, it is not distance magic. Let V1 = {x11, x12, . . . , x1m} and V2 = {x21, x22, . . . , x2n}
be the partition of vertex set of G. Then as per our convention y1i = Im(x1i) and y2j = Im(x2j).
On the contrary suppose that, Mycielskian graph µ(G) is distance magic with distance magic
labeling f . Now, let us find the neighborhood of each vertex in µ(G).

Nµ(G)(x1i) = {x2j, y2j : 1 ≤ j ≤ n} for each 1 ≤ i ≤ m

Nµ(G)(x2j) = {x1i, y1i : 1 ≤ i ≤ m} for each 1 ≤ j ≤ n

Nµ(G)(y1i) = {u, x2j : 1 ≤ j ≤ n} for each 1 ≤ i ≤ m

Nµ(G)(y2j) = {u, x1i : 1 ≤ i ≤ m} for each 1 ≤ j ≤ n

Nµ(G)(u) = {y1i, y2j : 1 ≤ i ≤ m and 1 ≤ j ≤ n}.
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Assume that
m∑
i=1

f(x1i) = α,
n∑

j=1

f(x2j) = β,

m∑
i=1

f(y1i) = γ,

n∑
j=1

f(y2j) = δ. (12)

Then the weights of the vertices are as follows:

w(x1i) =
n∑

j=1

f(x2j) +
n∑

j=1

f(y2j) = β + δ for each 1 ≤ i ≤ m

w(x2j) =
m∑
i=1

f(x1i) +
m∑
i=1

f(y1i) = α + γ for each 1 ≤ j ≤ n

w(y1i) =
n∑

j=1

f(x2j) + f(u) = β + f(u) for each 1 ≤ i ≤ m

w(y2j) =
m∑
i=1

f(x1i) + f(u) = α + f(u) for each 1 ≤ j ≤ n

w(u) =
m∑
i=1

f(y1i) +
n∑

j=1

f(y2j) = γ + δ.

Since, the Mycielskian graph µ(G) is distance magic, the vertex weights are the same under f
i.e.

β + δ = α + γ = β + f(u) = α + f(u) = γ + δ.

From the above equations we get,

α = β = γ = δ = f(u). (13)

The vertex u must receive the largest label, that is, f(u) = 2(m + n) + 1. Otherwise, one of
the vertex x1i, x2i, y1j or y2j for some i or j will receive the label 2(m + n) + 1 and one of the
equalities

α = f(u), β = f(u), γ = f(u), δ = f(u)

is not possible. Therefore, from Equation (13) we have

α + β + γ + δ = 4f(u). (14)

Since, f(u) = 2(m+ n) + 1, α+ β + γ + δ is the sum of the first 2(m+ n) natural numbers, and
Equation (14) becomes

2(m+ n)[2(m+ n) + 1]

2
= 4[2(m+ n) + 1].

This implies m+ n = 4. Since, m and n both are at least 2, we must have m = n = 2.

Conversely, suppose that m = n = 2. In this case Km,n
∼= C4 and by Theorem 3.4, µ(C4) is

distance magic. This completes the proof.
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Theorem 3.7. If G is an r-regular graph such that the Mycielskian graph µ(G) is distance magic,
then r ≤ 3.

Proof. Let G be an r-regular graph such that its Mycielskian graph µ(G) admits a distance magic
labeling f . Then dµ(G)(xi) = 2r, dµ(G)(yi) = r+1 and dµ(G)(u) = n. Also, the sum of the weight
of all the vertices xi is

n∑
i=1

w(xi) = r

n∑
i=1

f(xi) + r

n∑
i=1

f(yi) = kn (15)

and those of yi is
n∑

i=1

w(yi) = r

n∑
i=1

f(xi) + nf(u) = kn. (16)

From Equation (15) and Equation (16), we obtain

r
n∑

i=1

f(yi) = nf(u). (17)

If we assign the smallest labels 1, 2, 3, . . . , n to the vertices y1, y2, . . . , yn, then we get
n(n+ 1)

2
≤

n∑
i=1

f(yi) and we know that f(u) ≤ 2n+ 1. Using these inequalities in Equation (17), we get

rn(n+ 1)

2
≤ n(2n+ 1) =⇒ r ≤ 4− 2

n+ 1
.

Since, n is at least 1, r ≤ 3. This completes the proof.

Thus, it is clear that if G is an r-regular graph such that the Mycielskian graph µ(G) admits a
distance magic labeling, then r ∈ {1, 2, 3}. If G is 1-regular graph then δ(G) = 1. Therefore,
by Lemma 3.2, µ(G) is not distance magic. Therefore, r must be either 2 or 3. Theorem 3.4 gives
a complete characterization of distance magic labeling of Mycielskian of connected 2−regular
graphs.

Now we discuss the existence of distance magic labeling of Mycielskian of connected 3-regular
graphs of order up to 8. The smallest 3-regular graph is K4 and by Corollary 3.4, Mycielskian of
K4 is not distance magic.

Lemma 3.3. The Mycielskian of a 3-regular graph of order 6 is not distance magic.

Proof. There are 2 graphs of order 6 that are 3-regular as shown in Figure 5. One of them is
isomorphic to K3,3 and hence by Theorem 3.6, Mycielskian of K3,3 is not distance magic. For My-
cielskian of graph G as shown in Figure 5(b), consider N(a) = {b, d, f} and N(c) = {b, d, e}.
Therefore, NG(a)△NG(c) = {e, f} which implies |NG(a)△NG(c)| = 2 and by Lemma 3.1,
Mycielskian of this graph is not distance magic. This proves the lemma.
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(a) K3,3 (b) G

Figure 5. 3-regular graphs of order 6.

Lemma 3.4. The Mycielskian of a 3-regular graph of order 8 is not distance magic.

Proof. Since, we know that there are five 3-regular graphs of order 8 [3], denoted by G1, G2, G3, G4, G5

as shown in Figure 6. To apply Lemma 3.1 for each of these graphs we identify two vertices u and
v in each graph to get 2 as the size of symmetric difference N(u)△N(v) as follows:

1. In graph G1, N(a)△N(g) = {b, d} and hence |N(a)△N(g)| = 2.
2. In graph G2, N(a)△N(b) = {a, b} and hence |N(a)△N(b)| = 2.
3. In graph G3, N(b)△N(g) = {a, f} and hence |N(b)△N(g)| = 2.
4. In graph G4, N(c)△N(g) = {b, h} and hence |N(c)△N(g)| = 2.
5. In graph G5, N(a)△N(d) = {b, c} and hence |N(a)△N(d)| = 2.

Then by Lemma 3.1, Mycielskian of a 3-regular graph of order 8 is not distance magic.

Theorem 3.8. The Mycielskian of 3-regular graph G of order ≤ 8 is not distance magic.

Proof. Proof follows from Corollary 3.4, Lemma 3.3 and Lemma 3.4.

There are nineteen 3-regular graphs of order 10 [3]. We consider the Petersen graph—the
best-known graph in this family.

Theorem 3.9. The Mycielskian of the Petersen graph is not distance magic.

Proof. Let G denote the Petersen graph as shown in Figure 7. On contrary suppose that Myciel-
skian of Petersen admits distance magic labeling f . Then the neighborhoods of vertices y1, y4, y7, y8
in µ(G) as shown in Figure 7 are:
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(a) G1 (b) G2

(c) G3 (d) G4 (e) G5

Figure 6. 3-regular graphs of order 8.

Nµ(G)(y1) = {x2, x5, x6, u}
Nµ(G)(y4) = {x3, x5, x9, u}
Nµ(G)(y7) = {x2, x9, x10, u}
Nµ(G)(y8) = {x3, x6, x10, u}.

Hence, their weights are given by,

w(y1) = f(x2) + f(x5) + f(x6) + f(u)

w(y4) = f(x3) + f(x5) + f(x9) + f(u)

w(y7) = f(x2) + f(x9) + f(x10) + f(u)

w(y8) = f(x3) + f(x6) + f(x10) + f(u).

Since, all weights are same, w(y1) = w(y7) gives

f(x5) + f(x6) = f(x9) + f(x10) (18)
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and w(y4) = w(y8) gives

f(x5) + f(x9) = f(x6) + f(x10). (19)

Subtracting Equation (18) from Equation (19) we obtain a contradiction f(x6) = f(x9).

x1

x2

x3 x4

x5

x6

x7

x8

x9

x10

Figure 7. Petersen Graph.

Proposition 3.1. Let G be a graph. If µ(G) is a regular graph, then µ(G) is not distance magic.

Proof. Let G be a graph on n vertices such that µ(G) is r-regular. Then by Theorem 3.2, G ∼= K2.
But µ(K2) ∼= C5 and by Theorem 2.3, C5 is not distance magic. This completes the proof.

Observation 1. The graph G and its Mycielskian µ(G) do not share the property of being distance
magic, i.e. µ(G) is distance magic irrespective of G, e.g., the path on 3 vertices P3 is distance
magic [10] but µr(P3) is not distance magic for any r ≥ 1 (see Corollary 3.2). Whereas, C4 is
distance magic [10] and µ(C4) is also distance magic (see Theorem 3.4) but µ2(C4) is not distance
magic.

4. Conclusion and Future Scope

It remains to find other classes of graphs whose Mycielskian is distance magic. To construct
distance magic graphs of arbitrarily large chromatic number by Mycielskians construction we need
a graph G such that µr(G) is distance magic, for all r ≥ 1 but Observation 1, makes it hard to think
of such a graph G.
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