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Abstract

A graph edge is d-coloring redundant if the removal of the edge does not change the set of d-
colorings of the graph. Graphs that are too sparse or too dense do not have coloring redundant
edges. Tight upper and lower bounds on the number of edges in a graph in order for the graph
to have a coloring redundant edge are proven. Two constructions link the class of graphs with a
coloring redundant edge to the K4-free graphs and to the uniquely colorable graphs. The structure
of graphs with a coloring redundant edge is explored.
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1. Preliminaries

As usual in graph coloring (see for instance [3]), we focus on simple connected graphs; χ(G) de-
notes the chromatic number of a graph G, i.e. the smallest number of colors needed to color G.
For convenience, we number the colors from 1 upwards. We use col(v) to denote the color of node
v in a particular coloring. G(V,E) denotes a graph with node set V and edge set E. We denote by
Gab the graph G(V,E \ {(a, b)}, and by Gab the graph G(V ∪ {a, b}, E ∪ {(a, b)}). In the sequel,
larger or smaller graph has to be understood in terms of the number of the edges.

We make use of complete d-partite graphs denoted byKa1,a2,...,ad with (for convenience) ai ≥ ai+1.
The Turán graphs T (n, d), introduced in [6], can be characterized as any Ka1,a2,...,ad for which
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(a1 − ad) ≤ 1 and n =
∑d

i=1 ai. An alternative characterization is that T (n, d) is the largest
d-partite graph with n nodes.

Definition 1. An edge (a, b) in a connected graph G is d-coloring redundant (d-CR) if G is d-
colorable and every d-coloring of Gab assigns different colors to a and b.

The set of graphs with n nodes and a d-coloring redundant edge is denoted by GCRE(n, d): we
are in particular interested in the size (the number of edges) of the graphs for combinations of n
and d. The removal of a d-CR edge (a, b) of G does not change the set of d-colorings, or otherwise
said: any d-coloring of Gab is a d-coloring of G.

Lemma 1.1. If G ∈ GCRE(n, d) then d = χ(G).

Proof. From the definition it follows that d ≥ χ(G). Suppose d > χ(G). Let (a, b) be a d-CR
edge. Let C denote a color number larger than χ(G). Consider a d-coloring of G constructed as
follows: first construct a χ(G)-coloring of Gab, and then change col(a) and col(b) into C. This
results in a d-coloring of Gab in which a and b have the same color, which contradicts the choice
of (a, b). Hence the lemma follows.

This lemma allows us to drop the reference to the chromatic number d, and simply say G ∈
GCRE, or (a, b) is a CR edge. We state two lemma’s without a proof. The first one says that the
removal of a CR edge does not change the chromatic number.

Lemma 1.2. If G has a CR edge (a, b), then χ(G) = χ(Gab). 2

Lemma 1.2 has an analogue in which an edge is added, and which is useful while constructing
larger GCRE.

Lemma 1.3. If G ∈ GCRE(n, d), then either Gab ∈ GCRE(n, d) or
χ(G) < χ(Gab). 2

From Lemma 1.3, it follows that if G′ is a subgraph of a connected graph G with χ(G′) = χ(G)
and G′ ∈ GCRE, then also G ∈ GCRE.

Lemma 1.4. For every k ≥ 1, G = Kk,1,1,...,1 is not in GCRE.

Proof. Let the natural partition ofG’s nodes be {x1, . . . , xk}, {a2}, {a3} . . . , {ad}. An edge (ai, aj)
(with i 6= j) is not CR, because Gaiaj can be colored with less than d colors (see Lemma 1.2). No
edge (xi, aj) is CR, because Gxiaj can be colored while giving the same color to xi and aj .

Theorem 1.1. Let {A1, ..., Ad} be a partition of n nodes so that |Ai| = ai, ai ≥ ai+1 and
∑
ai = n.

Then G = Ka1,a2,...,ad ∈ GCRE(n, d) if and only if a2 ≥ 2. The only CR edges are the edges
between Ai and Aj for which ai > 1 and aj > 1.

Proof. An edge between the nodes in Ai and Aj for which ai = aj = 1 cannot be CR because
without this edge, the node in Ai can have the same color as the node in Aj . Similarly, if ai = 1
and aj > 1, the removal of an edge between Ai and Aj allows a d-coloring with the same color for
the two involved nodes, so such edges cannot be CR.
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This leaves edges between Ai and Aj (i < j) each with at least two nodes. Name these selected
nodes vi,1, vi,2 (both in Ai) and vj,1, vj,2 (in Aj). Let vk be nodes selected from Ak for k /∈ {i, j}.
G contains as a subgraph the d-clique with nodes {v1, v2, ..., vi−1, vi,1, vi+1, ...vj−1, vj,1, vj+1...vd}
and the d-clique with nodes
{v1, v2, ..., vi−1, vi,2, vi+1, ...vj−1, vj,1, vj+1...vd}.

As a consequence, the nodes vi,1 and vi,2 have the same color
in any d-coloring, which implies that the edges (vi,1, vj,2) and
(vi,2, vj,2) are coloring redundant. Figure 1 exemplifies the
situation for d = 4, i = 2, j = 3: a dashed line between two
node sets means that all nodes of one set are connected by an
edge to all nodes of the other set.

v2,2 A2v2,1

A3
v3,1 v3,2

v4

v1

A4

A1

Figure 1: K ,2,2, .

By symmetry, all edges between sets with at least two nodes are CR, and no other edges are.

Since T (n, d) is a complete d-partite graph, we can conclude that T (n, d) ∈ GCRE(n, d) if
(n ≥ d+ 2) and d ≥ 2.

2. The results

The next subsections explore the size and the structure of elements of GCRE(n, d) for all values
of n and d.

2.1. Maximal GCRE(n,d)
Theorem 2.1. GCRE(n, d) = ∅ for n < d + 2, and the maximal elements of GCRE(n, d) with
n ≥ d+ 2 are the Turán graphs T (n, d).

Proof. A largest element - i.e. one with the highest number of edges - G ∈ GCRE(n, d) has the
following properties:

• it is d-partite (because χ(G) = d)

• adding any new edge results in a graph with chromatic number (d + 1) (see Lemma 1.3)
because G is maximal

It follows that such a largest graph G equals a Ka1,...,ad . A Ka1,...,ad which gives the maximal
number of edges under the restriction that

∑d
i=1 ai = n is the Turán graph T (n, d). Lemma 1.4

implies that T (n, d) is indeed in GCRE(n, d) for n ≥ d + 2, and that otherwise GCRE(n, d) =
∅.

As a conclusion, we can state that up to isomorphism, there is only one largest element inGCRE(n, d),
and its number of edges is b (d−1)n

2

2d
c.
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2.2. Minimal GCRE(n,d)
For a graph G with edge (a, b), we denote by Ga=b the graph in which (a, b) is contracted.

Lemma 2.1. Let G ∈ GCRE(n, d) with e edges, and let (a, b) be one of its CR edges. Let e be
the number of edges in G. Then

• the number of nodes in Ga=b equals (n− 1)

• the number of edges in Ga=b is at most (e− 1)

• Ga=b is connected

• χ(Ga=b) = d+ 1

Proof. The first three are trivial to prove. The last one can be proved as follows: suppose Ga=b

can be colored with d colors, than this coloring can be lifted to a coloring of Gab in which a and
b have the same colors, which contradicts the fact that (a, b) is CR. Ga=b can be (d + 1)-colored
as follows: color G with d colors, then assign to both a and b the (d + 1)th color and contract
(a, b).

Theorem 2.2. Let e be the number of edges of G ∈ GCRE(n, d). It follows that n+ d2−d−2
2
≤ e.

Moreover, there exist G ∈ GCRE(n, d) for which equality holds.

Proof. For any connected graph with n′ nodes, e′ edges and chromatic number d′, the following
inequality holds: d′(d′−1)

2
+ (n′ − d′) ≤ e′.

Let (a, b) be a CR edge of G. Then by using Lemma 2.1 for Ga=b, we can substitute e′, d′, n′ by
(e− 1), (d+ 1), (n− 1) and derive:

d(d+1)
2

+ (n− 1)− (d+ 1) ≤ (e− 1) or equivalently n+ d2−d−2
2
≤ e

To prove the second part of the
theorem, we establish one partic-
ular example: name the n nodes
v1, v2, ..., vn. Connect the nodes as
in Figure 2, i.e. the edges and their
counts are

v
1

v
2

v
3

v
d+1 v

d+2

v
d

v
n

v
d+3v

4

...

d−2

. . . .

... . . . .

n−d−2

Figure 2: A GCRE(n, d) with n+ d2−d−2
2

= e.

• (v1, v2), (v1, vd+2), (vd+1, v2), (vd+1, vd+2): 4 edges

• the ellipse represents a clique between the nodes {v3, v4, ...vd}:
(d− 2)(d− 3)/2 edges

• the multi-edges represent (vk, x) for k = 3, 4, . . . , d and x ∈ {v1, v2, vd+1}:
3(d− 2) edges
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• the nodes vd+2...vn are connected amongst each other as (vi, vi+1) for
i = (d+ 2), (d+ 3), . . . , (n− 1): (n− d− 2) edges

The graph is connected, has n nodes and its number of edges is 4 + (d − 2)(d − 3)/2 + 3(d −
2) + (n− d− 2) = n+ d2−d−2

2
. Clearly, its chromatic number is d. Finally, the edge (v1, vd+2) is

CR because the d-cliques {v1, v2, v3, ..., vd} and {vd+1, v2, v3, ..., vd} force v1 and vd+1 to have the
same color in any d-coloring. The reasoning is similar to the one in Theorem 1.1.

2.3. Intermediate GCRE(n,d)

Theorem 2.3. For all n, d, e : d ≥ 2, n ≥ d + 2, n + d2−d−2
2
≤ e ≤ b (d−1)n

2

2d
c, there exists a

G ∈ GCRE(n, d) such that G has exactly e edges.

Proof. Consider the graph constructed in Theorem 2.2. Define the sets
Vi, i = 1..d such that Vi = {vi+kd | k = 0..bn−i

d
c}: these sets form an equitable partition of the

nodes. The graph does not contain any edge between nodes of the same Vi. Add one by one as
many edges as possible between nodes in different Vi. This keeps the chromatic number equal to
d, and from Lemma 1.3, all intermediate graphs are in GCRE(n, d). Thanks to the choice of the
partition, when the maximal amount of edges is added, the result is T (n, d).

2.4. The structure of graphs in GCRE
Let G\{a,b} denote the graph G from which a and b and all their edges are removed. We use δX for
the degree of a node in a graph X .

Lemma 2.2. If G is GCRE(n, d) and (a, b) is CR in G, then χ(G\{a,b}) = d.

Proof. Suppose that there exists a (d− 1)-coloring of G\{a,b}, then assign the dth color to a and b,
and get a d-coloring of Gab in which a and b have the same color, but this contradicts the choice of
(a, b).

Lemma 2.3. Let G be connected, with χ(G) = d, n nodes and the edge (a, b). (a, b) is CR in G if
and only if every d-coloring col of Gab satisfies

|col(Na) ∪ col(Nb)| = d (or equivalently col(Na) ∩ col(Nb) = ∅

where Na (resp. Nb) is the set of neighbors of a (resp. b) in Gab, and A means the complement with
respect to the d available colors.

Proof. (⇒) Suppose that for some d-coloring ofGab, col(Na)∩col(Nb) contains at least one color,
say C. One can then change the color of a and b to C, contradicting the choice of (a, b).
(⇐) Suppose a d-coloring of Gab exists that gives the same color C to a and b. That implies that
C ∈ col(Na) ∩ col(Nb), which violates the assumption.

Lemma 2.3 implies that for a CR edge (a, b) in G, |Na ∪ Nb| ≥ d, and consequently δGab
(a) +

δGab
(b) ≥ |Na ∪Nb| ≥ d.
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The general structure of G ∈ GCRE(n, d) with CR
edge (a, b) becomes more clear now. As in Figure 3,G
consists of a subgraph with the same chromatic num-
ber as G. The vertices a and b are connected to that
subgraph with at least d neighbors. In the figure, the
graph within the rectangle is G\{a,b}. G\{a,b} does not
need to be connected, but in some sense, one compo-
nent is enough.

.
.

.

.

ba

.
.

Figure 3: General structure of a
GCRE(n, d).

Lemma 2.4. If G is minimal in GCRE(n, d) and (a, b) is CR in G, then G\{a,b} is connected.

Proof. Let the components of G\{a,b} be S1, ...Sk. Denote by Gi the subgraph of G induced by
the vertices a, b and the nodes of Si. Suppose (a, b) is not CR in any Gi, then each Giab has a
d-coloring Ci in which coli(a) = coli(b). Rename the colors so that coli(a) = colj(a) for all i, j:
this results in a d-coloring of Gab in which a and b have the same color, which is impossible.

3. K4-free, and uniquely colorable GCRE(n, d)

K4-free GCRE(n, d). We show a general construction of a GCRE(n, d) without a 4-clique for
every d > 3. The basis for this construction is Mycielski’s Theorem [5] and the so called Iterated
Mycielskians Mi which are a sequence of triangle-free graphs with chromatic number i. We start
from such a graph Mi with i = χ(Mi) ≥ 3 and let m be the number of its nodes. Construct the
graph G that has Mi as a subgraph and the following additional nodes and edges (as shown in
Figure 4):

• three new nodes named a, b, x

• (a, z) and (b, z) for all z ∈Mi

• (a, x) and (b, x)
M

i

a

x

b

Figure 4: A K4-free GCRE(n, d) from Mi.

We now prove that G has no 4-clique and G ∈ GCRE(m+ 3, d) with d = i+ 1:

• χ(G) = dχ(G) = dχ(G) = d: G clearly has a d-coloring, as a (d− 1)-coloring of Mi can be extended to G by
giving a and b both the dth color, and giving x any color different from that. Now suppose
thatG had a (d−1)-coloring: the restriction toMi could use only (d−2) colors, since col(a)
must differ from all colors in Mi. So, G has no (d− 1)-coloring and χ(G) = d

• edges (a, x) and (b, x) are CR: indeed, a and b have the same color in every d-coloring, so
(col(a) 6= col(x))⇔ (col(b) 6= col(x)), which proves each of the two edges is CR

• GGG has no 4-clique: suppose G has a 4-clique C4; since Mi is triangle-free, C4 contains at
least one of a,b or x; x cannot be in C4 because it has degree 2; a and b cannot be both in
C4 because there is no edge between them; so assume that a ∈ C4; the restriction of C4 to
Mi would then be a 3-clique; this contradicts the fact that Mi is triangle-free
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The construction applied toM3 results in the
graph in Figure 5: it has 17 edges and no 4-
clique. It is not a minimal GCRE(8, 4), but
it is one of the three minimal GCRE(8, 4)
without a 4-clique.

a b

x

Figure 5: K4-free GCRE(8, 4).

A natural question in this context is: do triangle-free
GCRE(n, d) exist? Via a computer experiment, we found
the graph in Figure 6: it is the only triangle-free graph in
GCRE(n, d) for all n ≤ 9 and d ≥ 3. The two dashed
edges are CR.

Figure 6: A triangle-free GCRE(9, 3).

Uniquely colorable GCRE. Any complete d-partite graph is uniquely colorable and Theorem 1.1
shows that infinitely many are also a GCRE. We give a general construction that turns every
uniquely colorable graph into a uniquely colorable GCRE, without ending up necessarily with a
complete d-partite graph.
In a uniquely colorable graph G(V,E) with chromatic number d, one can partition V in subsets
V1, V2, ..., Vd such that in every d-coloring, {col(v) | v ∈ Vi} is a singleton for each i. From
G(V,E), we construct a new uniquely colorable graph U whose nodes are V ∪ {a, b} (a and b are
two new nodes) and whose edges consist of E ∪ {(a, b)} ∪ {(x, a) | x ∈

⋃d−1
i=1 Vi} ∪ {(x, b) | x ∈⋃d

i=2 Vi}.
One can check that χ(U) = d, (a, b) is CR, and that U is uniquely colorable. The latter is
a consequence of Theorem 4 from [4]: the partition according to the colors in any coloring is
V1 ∪ {b}, V2, ..., Vd ∪ {a}. The additional edge (a, b) retains the uniqueness of the coloring.

Figure 7 shows the construction starting from the
uniquely colorable graph with the full lines: it is
not in GCRE. The added edges are the dashed
lines. The result is one edge short of K3,3, and it is
GCRE.

a b

Figure 7: A uniquely colorable GCRE.

4. Discussion and Future Work

The motivation for this work comes from the study of redundant disequalities in the context of con-
straint programming: when transposed to the graph coloring context, a set of disequalities corre-
sponds to the constraint graph with edges between disequal variables (the nodes), and a redundant
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disequality (one implied by the others) corresponds to a CR edge. In [1] and [2], the redundant dis-
equalities were fully classified for the Latin Square problem and for Sudoku. It seemed worthwhile
to explore the graph context and this resulted in the current work. To sum up our results:

• the maximal number of edges in a GCRE(n, d) is attained by the Turán graph T (n, d); the
number of edges equals b (d−1)n

2

2d
c

• the minimal number of edges in any GCRE with n nodes and chromatic number d equals
n+ d2−d−2

2

• for each e, such that n+d2−d−2
2
≤ e ≤ b (d−1)n

2

2d
c, there exists a graphG(V,E) ∈ GCRE(n, d)

such that e = |E|

This work has focussed solely on the existence of at least one CR edge. Ultimately, we want to
understand graphs with many CR edges, and quantify that understanding. We would also like to
develop (polynomial) algorithms that (approximately) complete the graph, i.e. to add as many CR
edges as possible: this should benefit solving constraint satisfaction problems by typical constraint
solvers. The observation in Lemma 2.3 could be of great value there. Finally, the extension of our
work to list coloring is interesting, because it corresponds to constraint satisfaction problems in
which the variables have different domains.
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